X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fposter%2Femrs2008.tex;h=15e72a60f3063806a86bdf2033d40ed8c942d383;hb=98bd4f1b5bcb795de6a6b172c8e8ae93447abcdc;hp=5945eac895ef73d19ff7c5102956a9a480781a2a;hpb=b05b08319c0aedb26856e20f744a54215a196003;p=lectures%2Flatex.git diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex index 5945eac..15e72a6 100644 --- a/posic/poster/emrs2008.tex +++ b/posic/poster/emrs2008.tex @@ -1,5 +1,5 @@ \documentclass[portrait,a0b,final]{a0poster} -\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color} +\usepackage{epsf,psfig,pstricks,multicol,pst-grad,pst-node,color} \usepackage{graphicx,amsmath,amssymb} \graphicspath{{../img/}} \usepackage[english,german]{babel} @@ -26,7 +26,11 @@ % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite \renewcommand{\columnfrac}{.31} +% potential +\newcommand{\pot}{\mathcal{V}} + % header +\vspace{-18cm} \begin{header} \centerline{{\Huge \bfseries Molecular dynamics simulation of defect formation and precipitation}} @@ -65,6 +69,7 @@ \begin{poster} +%\vspace{-6cm} \begin{pcolumn} \begin{pbox} \section*{Motivation} @@ -137,32 +142,222 @@ [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27. } \end{pbox} + \begin{pbox} + \section*{Simulation details} + {\bf MD basics:} + \begin{itemize} + \item Microscopic description of N particles + \item Analytical interaction potential + \item Propagation rule in 6N-dim. phase space: + Hamilton's equations of motion + \item Observables obtained by time or ensemble averages + \end{itemize} + {\bf Application details:}\\[0.5cm] + \begin{minipage}{17cm} + \begin{itemize} + \item Integrator: Velocity Verlet, timestep: 1 fs + \item Ensemble: isothermal-isobaric NPT [4] + \begin{itemize} + \item Berendsen thermostat: + $\tau_{\text{T}}=100\text{ fs}$ + \item Brendsen barostat:\\ + $\tau_{\text{P}}=100\text{ fs}$, + $\beta^{-1}=100\text{ GPa}$ + \end{itemize} + \item Potential: Tersoff-like bond order potential [5] + \[ + E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad + \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] + \] + \end{itemize} + \end{minipage} + \begin{minipage}{9cm} + \includegraphics[width=9cm]{tersoff_angle.eps} + \end{minipage}\\[1cm] + {\tiny + [4] L. Verlet, Phys. Rev. 159 (1967) 98.}\\ + {\tiny + [5] P. Erhart and K. Albe, Phys. Rev. B 71 (2005) 35211.} + \end{pbox} \end{pcolumn} \begin{pcolumn} \begin{pbox} - \section*{Simulation algorithm} - Hier die Simulation rein! - \end{pbox} - \begin{pbox} - \section*{Results} - Hier die Resultate! + \section*{Interstitial configurations} + {\bf Simulation sequence:}\\ + +\begin{minipage}{15cm} +{\small + \begin{pspicture}(0,0)(14,14) + \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{14cm}{ + \begin{itemize} + \item Initial configuration: $9\times9\times9$ unit cells Si + \item Periodic boundary conditions + \item $T=0\text{ K}$, $p=0\text{ bar}$ + \end{itemize} + }}}} +\rput(7,6){\rnode{insert}{\psframebox{ + \parbox{14cm}{ + Insertion of C / Si atom: + \begin{itemize} + \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} + (${\color{red}\triangleleft}$) + \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} + (${\color{green}\triangleright}$) + \item $(-1/8,-1/8,-1/4)$, $(-3/8,-3/8,-1/4)$\\ + $\rightarrow$ {\color{magenta}110 dumbbell} + (${\color{magenta}\Box}$,$\circ$) + \item random positions (critical distance check) + \end{itemize} + }}}} + \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{7cm}{ + Relaxation time: 2 ps + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \end{pspicture} +} +\end{minipage} +\begin{minipage}{10cm} + \includegraphics[width=11cm]{unit_cell_s.eps} +\end{minipage} + + {\bf Si self-interstitial results:}\\ + +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=3.41$ eV\\ + \includegraphics[width=8cm]{si_self_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=4.39$ eV\\ + \includegraphics[width=8cm]{si_self_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx4.48$ eV (unstable!)\\ + \includegraphics[width=8cm]{si_self_int_hexa_0.eps} + \end{minipage}\\[1cm] + + \underline{Random insertion}\\ + + \begin{minipage}{8.5cm} + $E_f=3.97$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_397_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.75$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_375_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.56$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_356_0.eps} + \end{minipage}\\[1cm] +} + + {\bf C in Si interstitial results:}\\ + +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=2.67$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=1.76$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx5.6$ eV (unstable!)\\ + \includegraphics[width=8cm]{c_in_si_int_hexa_0.eps} + \end{minipage}\\[1cm] +} +\begin{minipage}{17cm} +\underline{$<100>$ dumbbell configuration} +\begin{itemize} + \item $E_f=0.47$ eV + \item Very often observed + \item Most energetically favorable configuration + \item Experimental evidence [6] +\end{itemize} +\end{minipage} +\begin{minipage}{8cm} +\includegraphics[width=8cm]{c_in_si_int_001db_0.eps} +\end{minipage}\\[1cm] +\begin{center} +\includegraphics[width=24cm]{100-c-si-db_s.eps} +\end{center} +{\tiny + [6] G. D. Watkins and K. L. Brower, Phys. Rev. Lett. 36 (1976) 1329.} + \end{pbox} + \end{pcolumn} \begin{pcolumn} \begin{pbox} - \section*{Structural/compositional information} - blabla - \end{pbox} - \begin{pbox} - \section*{Recipe for thick films of ordered lamellae} - blabla + \section*{High C concentration simulations} + + {\bf Simulation sequence:}\\ + +{\small + \begin{pspicture}(0,0)(30,13) + % nodes + \rput(7.5,11){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{15cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}C$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$ + \end{itemize} + }}}} + \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ + \parbox{15cm}{ + Insertion of $6000$ carbon atoms at constant\\ + temperature into: + \begin{itemize} + \item Total simulation volume $V_1$ {\pnode{in1}} + \item Volume of minimal SiC precipitation $V_2$ {\pnode{in2}} + \item Volume of necessary amount of Si $V_3$ {\pnode{in3}} + \end{itemize} + }}}} + \rput(7.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{8cm}{ + Cooling down to $20\, ^{\circ}\textrm{C}$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \psframe[fillstyle=solid,fillcolor=white](16,2.6)(26,12.6) + \psframe[fillstyle=solid,fillcolor=lightgray](18,4.6)(24,10.6) + \psframe[fillstyle=solid,fillcolor=gray](18.5,5.1)(23.5,10.1) + \rput(17,8.4){\pnode{ins1}} + \rput(18.15,6.88){\pnode{ins2}} + \rput(21,7.6){\pnode{ins3}} + \ncline[linewidth=0.08]{->}{in1}{ins1} + \ncline[linewidth=0.08]{->}{in2}{ins2} + \ncline[linewidth=0.08]{->}{in3}{ins3} + \end{pspicture} +} + + {\bf Results:}\\ + Foobar hier .. + \end{pbox} \begin{pbox} \section*{Conclusions} - Hier die Zusammenfassung + \begin{itemize} + \item there should be + \item 3 conclusions + \item at least! + \end{itemize} \end{pbox} \end{pcolumn}