X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fpublications%2Femrs2008_abstract.tex;fp=posic%2Fpublications%2Femrs2008_abstract.tex;h=e7cc4fed765b66a79d40c2077db0227652b37aa4;hb=a26586e1fd32745c018e4111b98b34e628aaf245;hp=0000000000000000000000000000000000000000;hpb=1b6fb0a647597c3de9429ca7c8bca68bdec5ab0e;p=lectures%2Flatex.git diff --git a/posic/publications/emrs2008_abstract.tex b/posic/publications/emrs2008_abstract.tex new file mode 100644 index 0000000..e7cc4fe --- /dev/null +++ b/posic/publications/emrs2008_abstract.tex @@ -0,0 +1,58 @@ +\pdfoutput=0 +\documentclass[a4paper,11pt]{article} +\usepackage[activate]{pdfcprot} +\usepackage{verbatim} +\usepackage{a4} +\usepackage{a4wide} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage[dvips]{graphicx} +\graphicspath{{./img/}} +\usepackage{color} +\usepackage{pstricks} +\usepackage{pst-node} +\usepackage{rotating} + +\setlength{\headheight}{0mm} \setlength{\headsep}{0mm} +\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm} +\setlength{\oddsidemargin}{-10mm} +\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm} +\setlength{\textheight}{26cm} \setlength{\headsep}{0cm} + +\begin{document} + +% header +\begin{center} + {\LARGE {\bf Molecular dynamics simulation + of defect formation and precipitation + in heavily carbon doped silicon. + }\\} + \vspace{16pt} + \textsc{\Large \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$, + K. Nordlund$^2$, B. Stritzker$^1$}\\ + \vspace{16pt} + $^1$ Experimentalphysik IV, Institut f"ur Physik, Universit"at Augsburg,\\ + Universit"atsstr. 1, D-86135 Augsburg, Germany\\ + \vspace{16pt} + $^2$ Accelerator Laboratory, Department of Physical Sciences, + University of Helsinki,\\ + Pietari Kalmink. 2, 00014 Helsinki, Finland\\ +\end{center} + +\vspace{24pt} + +\section*{Abstract} +The precipitation process of silicon carbide in heavily carbon doped silicon is not yet understood for the most part. +High resolution transmission electron microscopy indicates that in a first step carbon atoms form $C-Si$ dumbbells on regular $Si$ lattice sites which agglomerate into large clusters. +In a second step, when the cluster size reaches a radius of a few $nm$, the high interfacial energy due to the $SiC$/$Si$ lattice misfit of almost $20 \, \%$ is overcome and the precipitation occurs. +By simulation details of the precipitation process can be obtained on the atomic level. +A newly parametrized Tersoff like bond-order potential is used to model the system appropriately. +First results gained by molecular dynamics simulations using this potential are presented. +The influence of the amount and placement of inserted carbon atoms on the defect formation and structural changes is discussed. +Furthermore a minimal carbon concentration necessary for precipitation is examined by simulation. + +\end{document}