X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fpublications%2Fsic_prec.tex;h=614be92475e5a72ea3c9d969661eaf6be99feb25;hb=aed690758bc0c3ec2c6c4e058597935f213e6bfd;hp=8a6d36d864f9ca736575b95fb72e86fb86fdc1a5;hpb=537c302265dd73722c04f8b867ba58b090e0f8b9;p=lectures%2Flatex.git diff --git a/posic/publications/sic_prec.tex b/posic/publications/sic_prec.tex index 8a6d36d..614be92 100644 --- a/posic/publications/sic_prec.tex +++ b/posic/publications/sic_prec.tex @@ -325,47 +325,60 @@ No significant change in structure is observed. However, the decrease of the cut-off artifact and slightly sharper peaks observed with increasing temperature, in turn, indicate a slight acceleration of the dynamics realized by the supply of kinetic energy. However, it is not sufficient to enable the amorphous to crystalline transition. In contrast, even though next neighbored C bonds could be partially dissolved in the system exhibiting low C concentrations the amount of next neighbored C pairs even increased in the latter case. -Moreover the peak at \unit[0.252]{nm}, which gets slightly more distinct, equals the second next neighbor distance in diamond and indeed is made up by a structure of two C atoms interconnected by a third C atom. -Obviously conducive rearrangements of C are hindered in a system, in which high amounts of C are incoorporated within a too short period of time. -Thus, for these systems even larger time scales are necessary for an amorphous to crystalline transition and structural evolution in general, which is not accessible by the traditional MD technique. +Moreover the C-C peak at \unit[0.252]{nm}, which gets slightly more distinct, equals the second next neighbor distance in diamond and indeed is made up by a structure of two C atoms interconnected by a third C atom. +Obviously processes that appear to be non-conducive are likewise accelerated in a system, in which high amounts of C are incoorporated within a short period of time, which is accompanied by a concurrent introduction of accumulating, for the reason of time non-degradable, damage. +% non-degradable, non-regenerative, non-recoverable +Thus, for these systems even larger time scales, which are not accessible within traditional MD, must be assumed for an amorphous to crystalline transition or structural evolution in general. % maybe put description of bonds in here ... - - - +Nevertheless, some results likewiese indicate the acceleration of other processes that, again, involve C$_{\text{s}}$. +The increasingly pronounced Si-C peak at \unit[0.35]{nm} corresponds to the distance of a C and a Si atom interconnected by another Si atom. +Additionally the C-C peak at \unit[0.31]{nm} corresponds to the distance of two C atoms bound to a central Si atom. +For both structures the C atom appears to reside on a substitutional rather than an interstitial lattice site. +However, huge amount of damage hampers identification. +The alignment of the investigated structures to the c-Si host is lost in many cases, which suggests the necissity of much more time for structural evolution to maintain the topotaptic orientation of the precipitate. \section{Discussion} - -Sii stress compensation ... - -Both, low and high, acceleration not enough to either observe C agglomeration or amorphous to crystalline transition ... - -The first-principles results are in good agreement to previous work on this subject\cite{burnard93,leary97,dal_pino93,capaz94}. -The C-Si \hkl<1 0 0> dumbbell interstitial is found to be the ground state configuration of a C defect in Si. -The lowest migration path already proposed by Capaz et~al.\cite{capaz94} is reinforced by an additional improvement of the quantitative conformance of the barrier height calculated in this work (\unit[0.9]{eV}) with experimentally observed values (\unit[0.70]{eV} -- \unit[0.87]{eV})\cite{lindner06,song90,tipping87}. -However, it turns out that the bond-centered configuration is not a saddle point configuration as proposed by Capaz et~al.\cite{capaz94} but constitutes a real local minimum if the electron spin is properly accounted for. -A net magnetization of two electrons, which is already clear by simple molecular orbital theory considerations on the bonding of the sp hybridized C atom, is settled. -By investigating the charge density isosurface it turns out that the two resulting spin up electrons are localized in a torus around the C atom. -With an activation energy of \unit[0.9]{eV} the C$_{\text{i}}$ carbon interstitial can be expected to be highly mobile at prevailing temperatures in the process under investigation, i.e. IBS. - -We found that the description of the same processes fails if classical potential methods are used. -Already the geometry of the most stable dumbbell configuration differs considerably from that obtained by first-principles calculations. -The classical approach is unable to reproduce the correct character of bonding due to the deficiency of quantum-mechanical effects in the potential. -%ref mod: language - energy / order -%Nevertheless, both methods predict the same type of interstitial as the ground state configuration, and also the order in energy of the remaining defects is reproduced fairly well. -Nevertheless, both methods predict the same type of interstitial as the ground state configuration. -Furthermore, the relative energies of the other defects are reproduced fairly well. -From this, a description of defect structures by classical potentials looks promising. -% ref mod: language - changed -%However, focussing on the description of diffusion processes the situation is changing completely. -However, focussing on the description of diffusion processes the situation has changed completely. -Qualitative and quantitative differences exist. -First of all, a different pathway is suggested as the lowest energy path, which again might be attributed to the absence of quantum-mechanical effects in the classical interaction model. -Secondly, the activation energy is overestimated by a factor of 2.4 compared to the more accurate quantum-mechanical methods and experimental findings. -This is attributed to the sharp cut-off of the short range potential. -As already pointed out in a previous study\cite{mattoni2007} the short cut-off is responsible for overestimated and unphysical high forces of next neighbor atoms. -The overestimated migration barrier, however, affects the diffusion behavior of the C interstitials. -By this artifact the mobility of the C atoms is tremendously decreased resulting in an inaccurate description or even absence of the dumbbell agglomeration as proposed by the precipitation model. +Investigations are targeted on the initially stated controversy of SiC precipitation, i.e. whether precipitation occurs abrubtly after ehough C$_{\text{i}}$ agglomerated or a successive agglomeration of C$_{\text{s}}$ on usual Si lattice sites (and Si$_{\text{i}}$) followed by a contraction into incoherent SiC. +Results of a previous ab initio study on defects and defect combinations in C implanted Si\cite{zirkelbach10b} sugeest C$_{\text{s}}$ to play a decisive role in the precipitation of SiC in Si. +To support previous assumptions MD simulations, which are capable of modeling the necessary amount of atoms, i.e. the precipitate and the surrounding c-Si structure, have been employed in the current study. + +In a previous comparative study\cite{zirkelbach10a} we have schown that the utilized empirical potential fails to describe some selected processes. +Thus, limitations of the employed potential have been further investigated and taken into account in the present study. +We focussed on two major shortcomings: the overestimated activation energy and the improper description of intrinsic and C point defects in Si. +Overestimated forces between next neighbor atoms that are expected for short range potentials\cite{mattoni2007} have been confirmed to influence the C$_{\text{i}}$ diffusion. +The migration barrier was estimated to be larger by a factor of 2.4 to 3.5 compared to highly accurate quantum-mechanical calculations\cite{zirkelbach10a}. +Concerning point defects the drastically underestimated formation energy of C$_{\text{s}}$ and deficiency in the description of the Si$_{\text{i}}$ ground state necessitated further investigations on structures that are considered important for the problem under study. +It turned out that the EA potential still favors a C$_{\text{i}}$ \hkl<1 0 0> DB over a C$_{\text{s}}$-Si$_{\text{i}}$ configuration, which, thus, does not constitute any limitation for the simulations aiming to resolve the present controversy of the proposed SiC precipitation models. + +MD simulations at temperatures used in IBS resulted in structures that were dominated by the C$_{\text{i}}$ \hkl<1 0 0> DB and its combinations if C is inserted into the total volume. +Incoorporation into volmes $V_2$ and $V_3$ led to an amorphous SiC-like structure within the respective volume. +To compensate overestimated diffusion barriers we performed simulations at accordingly increased temperatures. +No significant change was observed for high C concentrations. +The amorphous phase is maintained. +Due to the incoorparation of a huge amount of C into a small volume within a short period of time damage is produced, which obviously decelerates strcutural evolution. +For the low C concentrations, time scales are still too low to observe C agglomeration sufficient for SiC precipitation, which is attributed to the slow phase space propagation inherent to MD in general. +However, we observed a phase tranisiton of the C$_{\text{i}}$-dominated into a clearly C$_{\text{s}}$-dominated structure. +The amount of substitutionally occupied C atoms increases with increasing temperature. +Entropic contributions are assumed to be responsible for these structures at eleveated temperatures that deviate from the ground state at 0 K. +Indeed, in a previous ab initio MD simulation\cite{zirkelbach10b} performed at \unit[900]{$^{\circ}$C} we observed the departing of a Si$_{\text{i}}$ \hkl<1 1 0> DB located next to a C$_{\text{s}}$ atom instead of a recombination into the ground state configuration, i.e. a C$_{\text{i}}$ \hkl<1 0 0> DB. +Ci to Cs by increased temperatures ...\cite{eichhorn99} +Increased temperatures during implantation more efficient than postannealing methods, which reflects the present problems of low temperature and low time strcutural evolution ...\cite{eichhorn02} +C-C for low temperatures, postannealing no that efficient as for high C implantations ...\cite{deguchi92} + +Thus, we propose an increased participation of C$_{\text{s}}$ already in the initial stages of the precipitation process. +Thermally activated, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by Si$_{\text{i}}$. +The associated emission of Si$_{\text{i}}$ is needed for several reasons. +For the agglomeration and rearrangement of C Si$_{\text{i}}$ is needed to turn C$_{\text{s}}$ into highly mobile C$_{\text{i}}$ again. +Since the conversion of a coherent SiC structure, i.e. C$_{\text{s}}$ occupying the Si lattice sites of one of the two fcc lattices that build up the c-Si diamond lattice, into incoherent SiC is accompanied by a reduction in volume, large amount of strain is assumed to reside in the coherent as well as incoherent structure. +Si$_{\text{i}}$ serves either as supply of Si atoms needed in the surrounding of the contracted precipitates or as interstitial defect minimizing the emerging strain energy of a coherent precipitate. +The latter has been directly identified in the present simulation study, i.e. structures of two C$_{\text{s}}$ atoms with one being slightly displaced by a next neighbored Si$_{\text{i}}$ atom. + +It is, thus, concluded that precipitation occurs by successive agglomeration of C$_{\text{s}}$ as already proposed by Nejim et~al.\cite{nejim95}. +This agrees well with a previous ab inito study on defects in C implanted Si\cite{zirkelbach10b}, which showed C$_{\text{s}}$ to occur in all probability. +However, agglomeration and rearrangement is enabled by mobile C$_{\text{i}}$, which has to be present at the same time and is formed by recombination of C$_{\text{s}}$ and Si$_{\text{i}}$. +In contrast to assumptions of an abrupt precipitation of an agglomerate of C$_{\text{i}}$\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}, however, structural evolution is believed to occur by a successive occupation of usual Si lattice sites with substitutional C. +This mechanism satisfies the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate, whereas there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC. \section{Summary}