X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fdpg_2008.tex;h=d9a903d066553525b217429981965d94456a9c03;hb=24b25f0a6b5a931c3fcda31a305d4fcee1ce03b4;hp=00e9aafe8e7e867d6cc4501b7c77d6e77a86dbcb;hpb=b3f67410beb238a88261d42fc5a78d08f8ee29ed;p=lectures%2Flatex.git diff --git a/posic/talks/dpg_2008.tex b/posic/talks/dpg_2008.tex index 00e9aaf..d9a903d 100644 --- a/posic/talks/dpg_2008.tex +++ b/posic/talks/dpg_2008.tex @@ -6,6 +6,7 @@ \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath} +\usepackage{latexsym} \usepackage{ae} \usepackage{calc} % Simple computations with LaTeX variables @@ -16,9 +17,17 @@ \usepackage{fancyvrb} % Fancy verbatim environments \usepackage{pstricks} % PSTricks with the standard color package +\usepackage{pstricks} +\usepackage{pst-node} + +\usepackage{epic} +\usepackage{eepic} + \usepackage{graphicx} \graphicspath{{../img/}} +\usepackage[setpagesize=false]{hyperref} + \usepackage{semcolor} \usepackage{semlayer} % Seminar overlays \usepackage{slidesec} % Seminar sections and list of slides @@ -28,10 +37,14 @@ \articlemag{1} +\special{landscape} + \begin{document} \extraslideheight{10in} -\slideframe{plain} +\slideframe{none} + +\pagestyle{empty} % specify width and height \slidewidth 27.7cm @@ -39,13 +52,16 @@ % shift it into visual area properly \def\slideleftmargin{3.3cm} -\def\slidetopmargin{0.0cm} +\def\slidetopmargin{0.6cm} \newcommand{\ham}{\mathcal{H}} \newcommand{\pot}{\mathcal{V}} \newcommand{\foo}{\mathcal{U}} \newcommand{\vir}{\mathcal{W}} +% itemize level ii +\renewcommand\labelitemii{{\color{gray}$\bullet$}} + % topic \begin{slide} @@ -130,10 +146,10 @@ \item Integrator, potential, ensemble control \item Simulation sequence \end{itemize} - \item Results gained by simulation + \item Simulation results \begin{itemize} - \item Carbon interstitials in silicon - \item Existence of $SiC$-precipitates + \item Interstitials in silicon + \item SiC-precipitation experiments \end{itemize} \item Conclusion / Outlook \end{itemize} @@ -141,5 +157,564 @@ % start of contents +\begin{slide} + + {\large\bf + Motivation / Introduction + } + + \vspace{16pt} + + Reasons for investigating C in Si: + + \begin{itemize} + \item 3C-SiC wide band gap semiconductor formation + \item Strained Si (no precipitation wanted!) + \end{itemize} + + \vspace{16pt} + + Si / 3C-SiC facts: + + \begin{minipage}{8cm} + \begin{itemize} + \item Unit cell: + \begin{itemize} + \item {\color{yellow}fcc} $+$ + \item {\color{gray}fcc shifted $1/4$ of volume diagonal} + \end{itemize} + \item Lattice constants: $4a_{Si}\approx5a_{SiC}$ + \item Silicon density: + \[ + \frac{n_{SiC}}{n_{Si}}= + \frac{4/a_{SiC}^3}{8/a_{Si}^3}= + \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\% + \] + \end{itemize} + \end{minipage} + \hspace{8pt} + \begin{minipage}{4cm} + \includegraphics[width=4cm]{sic_unit_cell.eps} + \end{minipage} + +\end{slide} + + \small +\begin{slide} + + {\large\bf + Motivation / Introduction + } + + \small + \vspace{6pt} + + Supposed conversion mechanism of heavily carbon doped Si into SiC: + + \vspace{8pt} + + \begin{minipage}{3.8cm} + \includegraphics[width=3.7cm]{sic_prec_seq_01.eps} + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{3.8cm} + \includegraphics[width=3.7cm]{sic_prec_seq_02.eps} + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{3.8cm} + \includegraphics[width=3.7cm]{sic_prec_seq_03.eps} + \end{minipage} + + \vspace{8pt} + + \begin{minipage}{3.8cm} + Formation of C-Si dumbbells on regular c-Si lattice sites + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{3.8cm} + Agglomeration into large clusters (embryos)\\ + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{3.8cm} + Precipitation of 3C-SiC + Creation of interstitials\\ + \end{minipage} + + \vspace{12pt} + + Experimentally observed: + \begin{itemize} + \item Minimal diameter of precipitation: 4 - 5 nm + \item (hkl)-planes identical for Si and SiC + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Simulation details + } + + \vspace{12pt} + + MD basics: + \begin{itemize} + \item Microscopic description of N particle system + \item Analytical interaction potential + \item Hamilton's equations of motion as propagation rule\\ + in 6N-dimensional phase space + \item Observables obtained by time average + \end{itemize} + + \vspace{12pt} + + Application details: + \begin{itemize} + \item Integrator: Velocity Verlet, timestep: $1\, fs$ + \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$ + \item Potential: Tersoff-like bond order potential\\ + \[ + E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad + \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] + \] + \begin{center} + {\scriptsize P. Erhart und K. Albe. Phys. Rev. B 71 (2005) 035211} + \end{center} + \end{itemize} + + \begin{picture}(0,0)(-240,-70) + \includegraphics[width=5cm]{tersoff_angle.eps} + \end{picture} + +\end{slide} + +\begin{slide} + + {\large\bf + Simulation details + } + + \vspace{20pt} + + Interstitial experiments: + + \vspace{12pt} + + \begin{itemize} + \item Initial configuration: $9\times9\times9$ unit cells Si + \item Periodic boundary conditions + \item $T=0 \, K$ + \item Insertion of Si / C atom at + \begin{itemize} + \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} + \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} + \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\ + $\rightarrow$ {\color{yellow}110 dumbbell} + \item random positions (critical distance check) + \end{itemize} + \item Relaxation time: $2\, ps$ + \item Optional heating-up + \end{itemize} + + \begin{picture}(0,0)(-210,-45) + \includegraphics[width=6cm]{unit_cell.eps} + \end{picture} + +\end{slide} + +\begin{slide} + + {\large\bf + Simulation details + } + + \small + + SiC precipitation experiments: + + \begin{pspicture}(0,0)(12,8) + % nodes + \rput(4.5,6.5){\rnode{init}{\psframebox{\parbox{7cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}C$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$ + \end{itemize} + }}}} + \rput(4.5,4.5){\rnode{tc1}{\psframebox[fillstyle=solid,fillcolor=red]{ + $T=450\pm 1\, ^{\circ}C$}}} + \rput(7,3.5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ + \parbox{3cm}{ + Insertion of 10 atoms\\ + at random positions}}}} + \rput(2,3.5){\rnode{adj1}{\psframebox[fillstyle=solid,fillcolor=red]{ + \parbox{3.5cm}{ + Adjusting temperature\\ + for another $100\, fs$}}}} + \rput(7,2.5){\rnode{nc}{\psframebox[fillstyle=solid,fillcolor=red]{ + $N_{atoms}=6000$}}} + \rput(4.5,2){\rnode{tc2}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + $T=T_{set}$}}} + \rput(7,1){\rnode{td}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + $T_{set}:=T_{set}-1\, ^{\circ}C$}}} + \rput(2,1){\rnode{adj2}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{3.5cm}{ + Adjusting temperature\\ + for another $50\, fs$}}}} + \rput(7,0){\rnode{tc3}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + $T_{set}=20\, ^{\circ}C$}}} + \rput(10,0){\rnode{end}{\psframebox{End}}} + % help nodes + \rput(7,4.5){\pnode{tc1-h}} + \rput(2,4.5){\pnode{tc1-hh}} + \rput(4.5,2.5){\pnode{nc-h}} + \rput(9,2.5){\pnode{nc-hh}} + \rput(9,2){\pnode{tc2-h}} + \rput(2,2){\pnode{tc2-hh}} + \rput(4.5,0){\pnode{tc3-h}} + % direct lines + \ncline[]{->}{init}{tc1} + \ncline[]{->}{adj1}{tc1} + \ncline[]{->}{insert}{nc} + \ncline[]{->}{adj2}{tc2} + \ncline[]{->}{tc2}{td} + \lput*{0}{yes} + \ncline[]{->}{td}{tc3} + \ncline[]{->}{tc3}{end} + \lput*{0}{yes} + % lines using help nodes + \ncline[]{tc1}{tc1-h} + \lput*{0}{yes} + \ncline[]{->}{tc1-h}{insert} + \ncline[]{tc1}{tc1-hh} + \lput*{0}{no} + \ncline[]{->}{tc1-hh}{adj1} + \ncline[]{nc}{nc-h} + \lput*{0}{no} + \ncline[]{->}{nc-h}{tc1} + \ncline[]{nc}{nc-hh} + \ncline[]{-}{nc-hh}{tc2-h} + \ncline[]{->}{tc2-h}{tc2} + \lput*{0}{yes, {\footnotesize $T_{set}:=450\, ^{\circ}C$}} + \ncline[]{tc2}{tc2-hh} + \lput*{0}{no} + \ncline[]{->}{tc2-hh}{adj2} + \ncline[]{tc3}{tc3-h} + \lput*{0}{no} + \ncline[]{->}{tc3-h}{tc2} + % insertion volumes + \psframe[fillstyle=solid,fillcolor=white](9.5,1.3)(13.5,5.3) + \psframe[fillstyle=solid,fillcolor=lightgray](10,1.8)(13,4.8) + \psframe[fillstyle=solid,fillcolor=gray](10.5,2.3)(12.5,4.3) + \rput(9.75,3){\pnode{ins1}} + \rput(10.25,3.3){\pnode{ins2}} + \rput(10.75,3.6){\pnode{ins3}} + \ncline[]{-}{insert}{ins1} + \ncline[]{-}{insert}{ins2} + \ncline[]{-}{insert}{ins3} + \psframe[fillstyle=solid,fillcolor=white](9.5,7.6)(13.5,8.1) + \psframe[fillstyle=solid,fillcolor=lightgray](9.5,6.8)(13.5,7.3) + \psframe[fillstyle=solid,fillcolor=gray](9.5,6)(13.5,6.5) + \rput(11.5,7.85){{\tiny Simulation volume: + $31\times31\times31\, a^3_{Si}$}} + \rput(11.5,7.05){{\tiny Volume of minimal SiC precipitation}} + \rput(11.5,6.25){{\tiny Volume of necessary amount of Si}} + \end{pspicture} + +\end{slide} + +\begin{slide} + + {\large\bf + Results + } + + Si self-interstitial experiments: + + {\footnotesize + {\bf Note:} + \begin{itemize} + \item $r_{cutoff}^{Si-Si}=2.96>\frac{5.43}{2}$ + \item Bond length near $r_{cutoff} \Rightarrow$ small bond strength + \end{itemize} + } + + \vspace{8pt} + + \small + + \begin{minipage}[t]{4.0cm} + \underline{Tetrahedral} + \begin{itemize} + \item $E_f=3.41\, eV$ + \item essentialy tetrahedral\\ + bonds + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \underline{110 dumbbell} + \begin{itemize} + \item $E_f=4.39\, eV$ + \item essentially 4 bonds + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \underline{Hexagonal} + \begin{itemize} + \item $E_f^{\star}\approx4.48\, eV$ + \item unstable! + \end{itemize} + \end{minipage} + + \vspace{8pt} + + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps} + \begin{center} + \href{../video/si_self_int_hexa.avi}{$\rhd$} + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Results + } + + \vspace{8pt} + + Si self-interstitial \underline{random insertion} experiments: + + \small + + \vspace{8pt} + + \begin{minipage}[t]{4.0cm} + \begin{itemize} + \item $E_f=3.97\, eV$ + \item 3 identical weak bonds + \item displaced in volume\\ diagonal + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \begin{itemize} + \item $E_f=3.75\, eV$ + \item 4 identical weak bonds + \item displaced in plane\\ diagonal + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \begin{itemize} + \item $E_f=3.56\, eV$ + \item single weak bond + \item displaced along\\ $x$-direction + \item closest to tetrahedral\\ configuration + \end{itemize} + \end{minipage} + + \vspace{8pt} + + \begin{minipage}{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps} + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps} + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps} + \end{minipage} + + \vspace{8pt} + + \begin{center} + {\footnotesize + {\bf Note:} Displacements relative to tetrahedral configuration + } + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Results + } + + \vspace{8pt} + + Carbon interstitial experiments: + + \vspace{12pt} + + \small + + \begin{minipage}[t]{4.0cm} + \underline{Tetrahedral} + \begin{itemize} + \item $E_f=2.67\, eV$ + \item tetrahedral bond + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \underline{110 dumbbell} + \begin{itemize} + \item $E_f=1.76\, eV$ + \item C forms 3 bonds + \end{itemize} + \end{minipage} + \hspace{0.3cm} + \begin{minipage}[t]{4.0cm} + \underline{Hexagonal} + \begin{itemize} + \item $E_f^{\star}\approx5.6\, eV$ + \item unstable! + \end{itemize} + \end{minipage} + + \vspace{8pt} + + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps} + \begin{center} + \href{../video/c_in_si_int_hexa.avi}{$\rhd$} + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Results + } + + %\vspace{8pt} + + Carbon \underline{random insertion} experiments: + + %\vspace{8pt} + + \footnotesize + + \begin{minipage}[c]{6.3cm} + \begin{minipage}{3.4cm} + \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps} + \end{minipage} + \begin{minipage}{2.5cm} + \begin{itemize} + \item $E_f=0.47\, eV$ + \item 001 dumbbell + \end{itemize} + \end{minipage} + \end{minipage} + \begin{minipage}[c]{6.3cm} + \begin{minipage}{3.4cm} + \includegraphics[width=3.3cm]{c_in_si_int_rand_162_0.eps} + \end{minipage} + \begin{minipage}{2.8cm} + \begin{itemize} + \item $E_f=1.62\, eV$ + \item 3 weak + strong bonds + \end{itemize} + \end{minipage} + \end{minipage} + + \begin{minipage}[c]{6.3cm} + \begin{minipage}{3.4cm} + \includegraphics[width=3.3cm]{c_in_si_int_rand_239_0.eps} + \end{minipage} + \begin{minipage}{2.5cm} + \begin{itemize} + \item $E_f=2.39\, eV$ + \end{itemize} + \begin{center} + \href{../video/c_in_si_int_rand_239.avi}{$\rhd$} + \end{center} + \end{minipage} + \end{minipage} + \begin{minipage}[c]{6.3cm} + \begin{minipage}{3.4cm} + \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps} + \end{minipage} + \begin{minipage}{2.8cm} + \begin{itemize} + \item $E_f=3.41\, eV$ + \end{itemize} + \begin{center} + \href{../video/c_in_si_int_rand_341.avi}{$\rhd$} + \end{center} + \end{minipage} + \end{minipage} + + \vspace{4pt} + + \begin{center} + {\bf Note:} High probability for 110 dumbbell ($1.76\, eV$) configurations! + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Results + } + + SiC-precipitation experiments: + + \begin{minipage}[t]{6.3cm} + %\input{../plot/sic_prec} + \includegraphics[width=6.0cm]{../plot/sic_prec_energy.ps} + \includegraphics[width=6.0cm]{../plot/sic_prec_temp.ps} + \end{minipage} + \begin{minipage}[t]{6cm} + \includegraphics[width=6.0cm]{../plot/sic_pc.ps} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Conclusion / Outlook + } + +\begin{itemize} + \item Importance of understanding C in Si + \item Interstitial configurations in silicon using the Albe potential + \item Indication of SiC precipitation +\end{itemize} + +\vspace{16pt} + +\begin{itemize} + \item Displacement and stress calculations + \item Diffusion dependence of temperature and carbon concentration + \item Analyzing results of the precipitation simulation runs + \item Analyzing self-designed Si/SiC interface +\end{itemize} + +\end{slide} + \end{document}