X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fmd_simulation_von_silizium.tex;h=47e144acc28ece1cdc369945cf31b6cc1a24ef62;hb=74bdf88a71df101efc703ee94986c45418f56ad7;hp=3282577aae68f5b969957cbec4adbdbc2c209c53;hpb=a8210d608f38e87d1ec09cf134207dd4af596cda;p=lectures%2Flatex.git diff --git a/posic/talks/md_simulation_von_silizium.tex b/posic/talks/md_simulation_von_silizium.tex index 3282577..47e144a 100644 --- a/posic/talks/md_simulation_von_silizium.tex +++ b/posic/talks/md_simulation_von_silizium.tex @@ -39,6 +39,9 @@ \def\slideleftmargin{5.1cm} \def\slidetopmargin{-0.6cm} +\newcommand{\ham}{\mathcal{H}} +\newcommand{\pot}{\mathcal{V}} + % topic \begin{slide} @@ -139,7 +142,7 @@ Ergodenhypothese: Gleichheit der zwei Mittelwerte \item System Hamilton-Funktion $\mathcal{H}({\bf q},{\bf p})$ \item Hamilton'sche Bewegungsgleichungen:\\ \[ - \dot{p}_i = \frac{\partial \mathcal{H}}{\partial q_i}, + \dot{p}_i = - \frac{\partial \mathcal{H}}{\partial q_i}, \qquad \dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i} \]\\ @@ -318,9 +321,11 @@ Kraft: ${\bf F}_i = - \nabla_{{\bf r}_i} \mathcal{V}$ {\large\bf Wahl/Kontrolle des Ensembles }\\ +\begin{picture}(350,10) +\end{picture} Erinnerung: \begin{itemize} - \item Stichproben aus Zust"anden im Phasenraum + \item Stichproben aus Zust"anden im Phasenraum, $_{ens} = _t$ \item Bewegungsgleichung als Propagationsvorschrift $\Rightarrow$ Gesamtenergie erhalten \item Au"serdem konstant: $N$ und $V$ \end{itemize} @@ -328,77 +333,267 @@ $\Rightarrow$ Simulation eines NVE-Ensembles \[ \rho_{ens}=\delta(H(t)-E) \] -F"ur ander Ensembles: +\begin{picture}(350,10) +\end{picture} +F"ur andere Ensembles: \begin{itemize} - \item Anpassung der Bewegungsgleichungen - \item Tricks + \item Anpassung der Bewegungsgleichungen f"ur eine Sequenz von Konfigurationen + im gew"unschten Ensemble +\end{itemize} +\begin{center} +{\color{red} oder} +\end{center} +\begin{itemize} + \item Tricks zur Kontrolle von $T$ und $p$ + $\Rightarrow$ $NVE \rightarrow NVT,NpT$\\ + Anmerkung: $T$ und $p$ fluktuieren, + Mittelwerte entsprechen den gew"unschten Werten \end{itemize} \end{slide} \begin{slide} {\large\bf kanonisches Ensemble (NVT) -} +}\\ +\begin{picture}(350,10) +\end{picture} +Trick: {\em temperature scaling} +\begin{itemize} + \item forcieren der gew"unschten Temperatur in jedem Schritt + \item $E_{kin} = 3/2 Nk_BT$ + \item eigentlich {\em velocity scaling} + \item Berendsen Thermostat: + \[ + \lambda = \sqrt{1+\frac{\delta t}{\tau_T}\Big(\frac{T_{ref}}{T}-1\Big)} + \] + \begin{center} + $\tau_T>100\times\delta t \Rightarrow$ reale thermische Fluktuationen\\ + {\scriptsize Berendsen et al. J. Chem. Phys. 81 (1984) 3684.} + \end{center} +\end{itemize} +Andersen: +\begin{itemize} + \item Zuf"alliges "Andern der Geschwindigkeit eines Atoms entsprechend + der Temperatur + \item Physikalische Interpretation: Kopplung an W"armebad + \item {\color{green} n"utzlich zum Berechnen thermodynamischer Gr"o"sen} + \item {\color{red} nicht geeignet zur Beschreibung atomistischer Prozesse}\\ + (unphysikalische St"orung der Bewegung des einzelnen Atoms) +\end{itemize} \end{slide} \begin{slide} {\large\bf isothermales isobares Ensemble (NpT) -} +}\\ +\begin{picture}(350,10) +\end{picture} +Trick: {\em pressure scaling} +\begin{itemize} + \item analog zum {\em temperature scaling} + \item $p = - \frac{\partial \mathcal{V}}{V}$ (Alternative sp"ater) + \item eigentlich {\em volume scaling} + \item Berendsen Barostat: + \[ + \mu = \Big[1-\frac{\delta t}{\tau_p}\beta (p_0-p)\Big]^{1/3} + \] +\end{itemize} +\begin{picture}(350,10) +\end{picture} +Andersen: +\begin{itemize} + \item modifizierte Bewegungsgleichung + (neue Variable $Q$, ${\bf \rho}_i = {\bf r}_i/V^{1/3}$) + \[ + \mathcal{L}(\rho^N,\dot{\rho}^N,Q,\dot{Q}) + =\frac{1}{2}mQ^{2/3}\sum_i \dot{\rho}_i^2 - + \sum_{ir_c$ + \item Atome in Subzell-Listen eintragen\\ + $\Rightarrow$ $\mathcal{O}(N)$ + \item WW mit Atomen aus $27$ Subzellen\\ + $\Rightarrow$ $\mathcal{O}(27N \frac{N}{M^3})$\\ + $N/M^3$ Materialkonstante + \end{itemize} + $\Rightarrow$ $\mathcal{O}(27N \frac{N}{M^3} + N) = \mathcal{O}(N)$ + \end{minipage} + \begin{minipage}{5cm} + \includegraphics[width=5cm]{cell_meth.eps} + \end{minipage} +\end{itemize} \end{slide} \begin{slide} {\large\bf - Brenner / Tersoff + Thermodynamische Gr"o"sen } +\begin{itemize} + \item Innere Energie: + \[ + E = + = < \sum_i \frac{{\bf p}_i^2}{2m_i} > + + \] + \item Temperatur/Druck + \begin{eqnarray} + &=& k_BT \nonumber \\ + &=& k_BT \nonumber + \end{eqnarray} + \begin{center} + "Aquipartitionstheorem + \end{center} + Temperatur: + \[ + \sum_i {\bf p}_i \frac{{\bf p}_i}{m_i} = 3Nk_BT \quad + \Rightarrow \quad T=\frac{1}{3Nk_B} \sum_i \frac{{\bf p}_i^2}{m_i} + \] + Druck: + \[ + \sum_i {\bf q}_i \nabla_{{\bf q}_i} \pot = 3Nk_BT \quad + \stackrel{\textrm{kart. Koord.}}{\Rightarrow} \quad + - \sum_i {\bf r}_i \nabla_{{\bf r}_i} \pot = -3Nk_BT \quad + \] + \item W"armekapazit"at + \item Struktur Werte + \item Diffusion +\end{itemize} \end{slide} \begin{slide} {\large\bf - EAM + Tersoff } \end{slide} \begin{slide} {\large\bf - Albe Reparametrisierung + EAM } + \end{slide} \begin{slide} {\large\bf - Zusammenfassung + Albe Reparametrisierung } \end{slide} \begin{slide} {\large\bf - Ausblick -} + Zusammenfassung / Ausblick +}\\ +\begin{tabular}{|l|c|lr|} +\hline +Zusammenfassung & {\em moldyn}-Bibliothek & Ausblick und & Priorit"at \\ +\hline +{\bf Integrator} & & & \\ +Velocity Verlet & ${\color{green} \surd}$ & & - \\ +Gear Predictor Corrector & ${\color{red} \times}$ & GEAR-5 & $\bullet\bullet$ \\ +{\bf Potential} & & & \\ +Harmonischer Oszillator & ${\color{green} \surd}$ & & - \\ +Lennard-Jones &$ {\color{green} \surd}$ & & - \\ +Tersoff/Albe & ${\color{green} \surd\surd}$ & & - \\ +Tersoff/Albe (inkl. $\lambda^3$) & ${\color{red} \times\times}$ & + & $\bullet\bullet\bullet$ \\ +EAM & ${\color{red} \times}$ & & $\bullet\bullet$ \\ +{\bf Ensembles} & & & \\ +{\em temperature scaling} & ${\color{green} \surd}$ & & - \\ +{\em pressure scaling} & ${\color{green} \surd}$ & & - \\ +Andersen $T$ & ${\color{red} \times}$ & & - \\ +Andersen $p$ & ${\color{red} \times}$ & & $\bullet$ \\ +{\bf Simulationzelle} & & & \\ +periodische RB & ${\color{green} \surd}$ & & - \\ +$T,p$-Skalierung pro Atom & ${\color{green} \surd}$ & & - \\ +{\bf Thermodynamische Gr"o"sen} & einige & viele + & $\bullet\bullet\bullet\bullet\bullet$ \\ +\hline +\end{tabular} \end{slide} \end{document}