X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=2d7db856fd219613306f2fd9dce4fcea0c030a8f;hb=ae16e2c0d5eb1f261c1f3fbf2f53712d0b723615;hp=8561eb37f694e487841bc06454b1fd8ec3652294;hpb=a14f12a9addac7366d8065ac82188867df2c1d38;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 8561eb3..2d7db85 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -916,6 +916,42 @@ POTIM = 0.1 \end{slide} +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + {\color{blue}New approach:}\\ + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix!\\ + {\color{blue}Problem:}\\ + Too high forces due to the small distance of the C atom to the Si + atom sharing the lattice site.\\ + {\color{blue}Solution:} + \begin{itemize} + \item {\color{red}Slightly displace the Si atom} + (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$}) + \item {\color{green}Immediately quench the system} + (Video \href{../video/c_in_si_pqmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pqmig_albe.avi}{$\rhd_{\text{remote url}}$}) + \end{itemize} + + \begin{minipage}{6.5cm} + \includegraphics[width=6cm]{c_100_110pqmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Jump in energy corresponds to the abrupt + structural change (as seen in the videos) + \item Due to the abrupt changes in structure and energy + this is {\color{red}not} the correct migration path and energy!?! + \end{itemize} + \end{minipage} + +\end{slide} + \begin{slide} {\large\bf @@ -923,17 +959,143 @@ POTIM = 0.1 } \small - \vspace*{1cm} - \ldots simulations running! - \vspace*{1cm} - - \begin{minipage}{5cm} - \end{minipage} + {\color{blue}Method:} + \begin{itemize} + \item Place interstitial carbon atom at the respective coordinates + into perfect c-Si + \item 110 direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + {\color{blue}Results:} + (Video \href{../video/c_in_si_pmig_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_vasp.avi}{$\rhd_{\text{remote url}}$})\\ \begin{minipage}{7cm} + \includegraphics[width=7cm]{c_100_110pmig_01_vasp.ps} + \end{minipage} + \begin{minipage}{5.5cm} + \begin{itemize} + \item Characteristics nearly equal to classical calulations + \item Approximately half of the classical energy + needed for migration + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (VASP) + } + + \small + + {\color{blue}Method:} + \begin{itemize} + \item Continue with atomic positions of the last run + \item Displace the C atom in 110 direction + \item 110 direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + \includegraphics[width=7cm]{c_100_110mig_01_vasp.ps} + +\end{slide} + +\begin{slide} + {\large\bf + Again: C 100 interstitial migration + } + + \small + + {\color{blue}The applied methods:} + \begin{enumerate} + \item Method + \begin{itemize} + \item Start in relaxed 100 interstitial configuration + \item Displace C atom along 110 direction + \item Relaxation (Berendsen thermostat) + \item Continue with configuration of the last run + \end{itemize} + \item Method + \begin{itemize} + \item Place interstitial carbon at the respective coordinates + into the perfect Si matrix + \item Quench the system + \end{itemize} + \end{enumerate} + {\color{blue}In both methods:} + \begin{itemize} + \item Fixed border atoms + \item Applied 110 constraint for the C atom + \end{itemize} + {\color{red}Pitfalls} and {\color{green}refinements}: + \begin{itemize} + \item {\color{red}Fixed border atoms} $\rightarrow$ + Relaxation of stress not possible\\ + $\Rightarrow$ + {\color{green}Fix only one Si atom} (the one furthermost to the defect) + \item {\color{red}110 constraint not sufficient}\\ + $\Rightarrow$ {\color{green}Apply 11x constraint} + (connecting line of initial and final C positions) + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Again: C 100 interstitial migration + } + + Defining the transformation for the Type 1 supercell (VASP) + + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=4cm]{c_100_mig_vasp/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{0.8cm} + $\Delta x=\frac{1}{4}a_{\text{Si}}=1.368\text{ \AA}$\\ + $\Delta y=\frac{1}{4}a_{\text{Si}}=1.368\text{ \AA}$\\ + $\Delta z=0.888\text{ \AA}$\\ \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=4cm]{c_100_mig_vasp/final.eps}\\ + \end{minipage}\\ + Angle of rotation about the 1-10 axis: + \[ + \Theta=\arctan\frac{\Delta z}{\sqrt{2}\Delta x}=24.666^{\circ} + \] + Transformation of basis: + \[ + T(\Theta)=\left(\begin{array}{ccc} + 1 & 0 & 0\\ + 0 & \cos\Theta & -\sin\Theta \\ + 0 & \sin\Theta & \cos\Theta + \end{array}\right) + \] + Transformation of atom coordinates: $T(-\Theta)$ + +\end{slide} +\begin{slide} + + {\large\bf + Density Functional Theory + } + + Hohenberg-Kohn theorem + + \small + \end{slide}