X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=4197c0ab1ecbc77e0621617e5486c72275814a7e;hb=071e7bdd84bc69d2dde1835c2693fc1375d2bfb2;hp=a3d1048f9c5eadf272cfff136966e1de6a1c37fb;hpb=200984a06c22985aa9403bd9950934430d770906;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index a3d1048..4197c0a 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -97,7 +97,7 @@ \vspace{08pt} - June 2009 + July 2009 \end{center} \end{slide} @@ -185,6 +185,7 @@ POTIM = 0.1 \item Supercell: $x_1=(2,0,0),\, x_2=(0,2,0),\, x_3=(0,0,2)$; 64 atoms (32 pc) \end{enumerate} + \begin{minipage}{6cm} Cohesive energy / Lattice constant: \begin{enumerate} \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.955 eV / 5.378 \AA\\ @@ -197,32 +198,397 @@ POTIM = 0.1 $E_{\textrm{cut-off}}=300\, \textrm{eV}^{*}$: 5.975 eV / 5.390 \AA \item $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.977 eV / 5.389 \AA \end{enumerate} + \end{minipage} + \begin{minipage}{7cm} + \includegraphics[width=7cm]{si_lc_and_ce.ps} + \end{minipage}\\[0.3cm] + {\scriptsize + $^*$special settings (p. 138, VASP manual): + spin polarization, no symmetry, ... + } \end{slide} \begin{slide} {\large\bf - Interstitial configurations + Silicon bulk properties + } + + \begin{itemize} + \item Calculation of cohesive energies for different lattice constants + \item No ionic update + \item Tetrahedron method with Blöchl corrections for + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ + \item Supercell 3 (8 atoms, 4 primitive cells) + \end{itemize} + \vspace*{0.6cm} + \begin{minipage}{6.5cm} + \begin{center} + $E_{\textrm{cut-off}}=150$ eV\\ + \includegraphics[width=6.5cm]{si_lc_fit.ps} + \end{center} + \end{minipage} + \begin{minipage}{6.5cm} + \begin{center} + $E_{\textrm{cut-off}}=250$ eV\\ + \includegraphics[width=6.5cm]{si_lc_fit_250.ps} + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + 3C-SiC bulk properties\\[0.2cm] } - Silicon: + \begin{minipage}{6.5cm} + \includegraphics[width=6.5cm]{sic_lc_and_ce2.ps} + \end{minipage} + \begin{minipage}{6.5cm} + \includegraphics[width=6.5cm]{sic_lc_and_ce.ps} + \end{minipage}\\[0.3cm] \begin{itemize} - \item Lattice constant: - \item Cohesive energy: 5.95 eV, 5.99 eV, 5.96 eV, 5.98 eV + \item Supercell 3 (4 primitive cells, 4+4 atoms) + \item Error in equilibrium lattice constant: {\color{green} $0.9\,\%$} + \item Error in cohesive energy: {\color{red} $31.6\,\%$} \end{itemize} - <100> interstitial: +\end{slide} + +\begin{slide} + + {\large\bf + 3C-SiC bulk properties\\[0.2cm] + } + + \small + \begin{itemize} - \item Lattice constant: - \item Cohesive energy: + \item Calculation of cohesive energies for different lattice constants + \item No ionic update + \item Tetrahedron method with Blöchl corrections for + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ \end{itemize} + \vspace*{0.6cm} + \begin{minipage}{6.5cm} + \begin{center} + Supercell 3, $4\times 4\times 4$ k-points\\ + \includegraphics[width=6.5cm]{sic_lc_fit.ps} + \end{center} + \end{minipage} + \begin{minipage}{6.5cm} + \begin{center} + {\color{red} + Non-continuous energies\\ + for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\ + } + \vspace*{0.5cm} + {\footnotesize + Does this matter in structural optimizaton simulations? + \begin{itemize} + \item Derivative might be continuous + \item Similar lattice constants where derivative equals zero + \end{itemize} + } + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + 3C-SiC bulk properties\\[0.2cm] + } + + \footnotesize + +\begin{picture}(0,0)(-188,80) + %Supercell 1, $3\times 3\times 3$ k-points\\ + \includegraphics[width=6.5cm]{sic_lc_fit_k3.ps} +\end{picture} + + \begin{minipage}{6.5cm} + \begin{itemize} + \item Supercell 1 simulations + \item Variation of k-points + \item Continuous energies for + $E_{\textrm{cut-off}} > 550\,\textrm{eV}$ + \item Critical $E_{\textrm{cut-off}}$ for + different k-points\\ + depending on supercell? + \end{itemize} + \end{minipage}\\[1.0cm] + \begin{minipage}{6.5cm} + \begin{center} + \includegraphics[width=6.5cm]{sic_lc_fit_k5.ps} + \end{center} + \end{minipage} + \begin{minipage}{6.5cm} + \begin{center} + \includegraphics[width=6.5cm]{sic_lc_fit_k7.ps} + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Cohesive energies + } + + {\bf\color{red} From now on ...} + + {\small Energies used: free energy without entropy ($\sigma \rightarrow 0$)} + + \small - Hexagonal interstitial: \begin{itemize} - \item Lattice constant: - \item Cohesive energy: + \item $E_{\textrm{free,sp}}$: + energy of spin polarized free atom + \begin{itemize} + \item $k$-points: Monkhorst $1\times 1\times 1$ + \item Symmetry switched off + \item Spin polarized calculation + \item Interpolation formula according to Vosko Wilk and Nusair + for the correlation part of the exchange correlation functional + \item Gaussian smearing for the partial occupancies + $f(\{\epsilon_{n{\bf k}}\})$ + ($\sigma=0.05$) + \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001 + \item Supercell: one atom in cubic + $10\times 10\times 10$ \AA$^3$ box + \end{itemize} + {\color{blue} + $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})= + -0.70036911\,\textrm{eV}$ + }\\ + {\color{blue} + $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})= + -0.70021403\,\textrm{eV}$ + }, + {\color{gray} + $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})= + -1.3535731\,\textrm{eV}$ + } + \item $E$: + energy (non-polarized) of system of interest composed of\\ + n atoms of type N, m atoms of type M, \ldots \end{itemize} + \vspace*{0.2cm} + {\color{red} + \[ + \Rightarrow + E_{\textrm{coh}}=\frac{ + -\Big(E(N_nM_m\ldots)-nE_{\textrm{free,sp}}(N)-mE_{\textrm{free,sp}}(M) + -\ldots\Big)} + {n+m+\ldots} + \] + } + +\end{slide} + +\begin{slide} + + {\large\bf + Used types of supercells\\ + } + + \footnotesize + + \begin{minipage}{4.3cm} + \includegraphics[width=4cm]{sc_type0.eps}\\[0.3cm] + \underline{Type 0}\\[0.2cm] + Basis: fcc\\ + $x_1=(0.5,0.5,0)$\\ + $x_2=(0,0.5,0.5)$\\ + $x_3=(0.5,0,0.5)$\\ + 1 primitive cell / 2 atoms + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=4cm]{sc_type1.eps}\\[0.3cm] + \underline{Type 1}\\[0.2cm] + Basis:\\ + $x_1=(0.5,-0.5,0)$\\ + $x_2=(0.5,0.5,0)$\\ + $x_3=(0,0,1)$\\ + 2 primitive cells / 4 atoms + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=4cm]{sc_type2.eps}\\[0.3cm] + \underline{Type 2}\\[0.2cm] + Basis: sc\\ + $x_1=(1,0,0)$\\ + $x_2=(0,1,0)$\\ + $x_3=(0,0,1)$\\ + 4 primitive cells / 8 atoms + \end{minipage}\\[0.4cm] + + {\bf\color{blue} + In the following these types of supercells are used and + are possibly scaled by integers in the different directions! + } + +\end{slide} + +\begin{slide} + + {\large\bf + Silicon point defects\\ + } + + \small + + Calculation of formation energy $E_{\textrm{f}}$ + \begin{itemize} + \item $E_{\textrm{coh}}^{\textrm{initial conf}}$: + cohesive energy per atom of the initial system + \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$: + cohesive energy per atom of the interstitial system + \item N: amount of atoms in the interstitial system + \end{itemize} + \vspace*{0.2cm} + {\color{blue} + \[ + \Rightarrow + E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}} + -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N + \] + } + Influence of supercell size\\ + \begin{minipage}{8cm} + \includegraphics[width=7.0cm]{si_self_int.ps} + \end{minipage} + \begin{minipage}{5cm} + $E_{\textrm{f}}^{\textrm{110},\,{\color{red}32}\textrm{pc}}=3.38\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$ + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Questions so far ...\\ + } + + What configuration to chose for C in Si simulations? + \begin{itemize} + \item Switch to another method for the XC approximation (GGA, PAW)? + \item Reasonable cut-off energy + \item Switch off symmetry? (especially for defect simulations) + \item $k$-points + (Monkhorst? $\Gamma$-point only if cell is large enough?) + \item Switch to tetrahedron method or Gaussian smearing ($\sigma$?) + \item Size and type of supercell + \begin{itemize} + \item connected to choice of $k$-point mesh? + \item hence also connected to choice of smearing method? + \item constraints can only be applied to the lattice vectors! + \end{itemize} + \item Use of real space projection operators? + \item \ldots + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ + and $k$-point mesh + + \begin{itemize} + \item $1\times 1\times 1$ Type 0 simulations + \begin{itemize} + \item No difference in tetrahedron method and Gauss smearing + \item ... + \end{itemize} + \item $1\times 1\times 1$ Type 2 simulations + \begin{itemize} + \item Again, no difference in tetrahedron method and Gauss smearing + \item ... + \end{itemize} + \end{itemize} + + {\LARGE\bf\color{red} + More simulations running ... + } + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Symmetry (in defect simulations) + + {\LARGE\bf\color{red} + Simulations running ... + } + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Real space projection + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Energy cut-off + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Size and type of supercell + +\end{slide} + +\begin{slide} + + {\large\bf + Not answered (so far) ...\\ + } + +\vspace{1.5cm} + + \LARGE + \bf + \color{blue} + + \begin{center} + Continue\\ + with\\ + US LDA? + \end{center} + +\vspace{1.5cm} \end{slide}