X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=63139eed075978ae523e5a4e7b5d9e2fdc52beff;hb=ed6682d70ad5a945b3c518c928445be3f70d4016;hp=f1f60f4c8a9055f192e4163ba9982f28caf54f65;hpb=48c53df439a14a13f49a66f4eeaf12445c3d0a03;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index f1f60f4..63139ee 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -1959,6 +1959,29 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ in the $3\times 3\times 3$ Type 2 supercell } + \begin{minipage}{6cm} + Method: + \begin{itemize} + \item Starting configuration:\\ + C bond centered + \item CRT towards \hkl<0 0 -1> configuration + \item Spin polarized calculations + \end{itemize} + Results:\\ + Video \href{../video/c_im_00-1_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_im_00-1_vasp.avi}{$\rhd_{\text{remote url}}$} + \begin{itemize} + \item Still abrupt changes in configuration and energy + \item Migration barrier $>$ 1 eV + \item I bet it's not reversible! + \item {\color{red}Final run in progress} + \end{itemize} + \end{minipage} + \begin{minipage}{6cm} + \includegraphics[width=6cm]{c_im_001_mig_vasp.ps} + \includegraphics[width=6cm]{c_im_001_mig_rc_vasp.ps} + \end{minipage} + \end{slide} \begin{slide} @@ -1969,6 +1992,19 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ } \includegraphics[width=6cm]{c_00-1_0-10_mig_vasp.ps} + \includegraphics[width=6cm]{c_00-1_0-10_mig_dis_vasp.ps} + + Calculations without spin:\\ + Video \href{../video/c_00-1_0-10_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_00-1_0-10_vasp.avi}{$\rhd_{\text{remote url}}$} ... see the whole truth! WAAAAH!!! + \begin{itemize} + \item Refined starting from 70\% due to + abrubt jumps in energy and configuration + \item Displacement from 80 to 85\% disastrous + \item Subsequent displacements too large + \end{itemize} + + Waiting for spin polarized calculations before deciding what to do ... \end{slide} @@ -2103,6 +2139,50 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ \end{slide} +\begin{slide} + + {\large\bf\boldmath + Carbon point defects in silicon + } + + \begin{minipage}{3.2cm} + \underline{C bond centered} + \begin{itemize} + \item $E_{\text{f}}=4.10\text{ eV}$ + \end{itemize} + \includegraphics[width=3cm]{c_pd_vasp/bc_2333.eps} + \underline{\hkl<1 1 0> interstitial} + \begin{itemize} + \item $E_{\text{f}}=3.60\text{ eV}$ + \end{itemize} + \includegraphics[width=3cm]{c_pd_vasp/110_2333.eps} + \end{minipage} + \begin{minipage}{4.5cm} + \begin{center} + \includegraphics[height=8cm]{c_pd_vasp/110_2333_ksl.ps} + {\scriptsize \hkl<1 1 0> interstitial} + \end{center} + \end{minipage} + \begin{minipage}{4.5cm} + \begin{center} + \includegraphics[height=8cm]{c_pd_vasp/bc_2333_ksl.ps} + {\scriptsize C bond centered} + \end{center} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Carbon point defects in silicon + } + + The hexagonal and tetrahedral C configurations both relax into the + \hkl<0 0 1> interstitial configuration! + +\end{slide} + \begin{slide} {\large\bf\boldmath @@ -2112,12 +2192,13 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ \begin{itemize} \item Supercell: $3\times 3\times 3$ Type 2 \item Starting configuration: \hkl<0 0 -1> C-Si interstitial + ($E_{\text{f}}=3.15\text{ eV}$) \item Energies: $E_{\text{f}}$ of the interstitial combinations in eV \end{itemize} \underline{Along \hkl<1 1 0>:} - \begin{tabular}{|l|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|} + \begin{tabular}{|l|p{2.0cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|} \hline {\scriptsize \backslashbox{2nd interstitial}{Distance $[\frac{a}{4}]$} @@ -2141,7 +2222,7 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ \hline \hkl<-1 0 0>, \hkl<0 -1 0> & 3.92 & 4.43 & 6.02 & 6.02 \\ \hline - Vacancy & ... & ... & ... & ... \\ + Vacancy & 1.39 ($\rightarrow\text{ C}_{\text{S}}$)& 5.81 & 5.47 & 6.50 \\ \hline \end{tabular} @@ -2204,25 +2285,37 @@ $z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$ Combination of defects } + \small + + Initial C \hkl<0 0 -1> insterstital at: $\frac{1}{4}\hkl<1 1 1>$ + \begin{tabular}{|l|l|l|l|l|l|} \hline & 2 & 3 & 4 & 5 & 6 \\ \hline -\hkl<0 0 -1> & 6.23 & 5.16 & 6.23 & ... & 4.65\\ +C \hkl<0 0 -1> & 6.23/-0.08 & 5.16/-1.15 & 6.23/-0.08 & 6.35/0.04 & 4.65/-1.66\\ \hline -\hkl<0 0 1> & 6.64 & 6.31 & ... & ... & 4.78 \\ +C \hkl<0 0 1> & 6.64/0.34 & 6.31/0.01 & 4.26/-2.05 & 6.57/0.26 & 4.78/-1.53 \\ \hline -\hkl<1 0 0> & 4.06 & 6.13 & 6.21 & ... & 4.93 \\ +C \hkl<1 0 0> & 4.06/-2.25 & 6.13/-0.17 & 6.21/-0.10 & 6.03/-0.27 & 4.93/-1.38 \\ \hline -\hkl<-1 0 0> & \hkl<0 -1 0> & 4.41 & ... & ... & 4.43 \\ +C \hkl<-1 0 0> & \hkl<0 -1 0> & 4.41/-1.90 & 4.06/-2.25 & 6.19/-0.12 & 4.43/-1.88 \\ \hline -\hkl<0 1 0> & \hkl<1 0 0> & 5.95 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\ +C \hkl<0 1 0> & \hkl<1 0 0> & 5.95/-0.36 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\ \hline -\hkl<0 -1 0> & 3.92 & ... & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\ +C \hkl<0 -1 0> & 3.92/-2.39 & 4.15/-2.16 & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\ \hline -Vacancy & ... & ... & ... & ... & ... \\ +Vacancy & 1.39/-5.39 ($\rightarrow\text{ C}_{\text{S}}$) & 6.19/-0.59 & 3.65/-3.14 & 6.24/-0.54 & 6.50/-0.50 \\ \hline - \end{tabular} + \end{tabular}\\[0.2cm] + Energies: $x/y$\\ + $x$: Defect formation energy of the complex\\ + $y$: + $E_{\text{f}}^{\text{defect combination}}- + E_{\text{f}}^{\text{isolated C \hkl<0 0 -1>}}- + E_{\text{f}}^{\text{isolated 2nd defect}} + $\\ + That is: If $y<0$ $\rightarrow$ favored compared to far-off isolated defects \end{slide} @@ -2234,7 +2327,7 @@ Vacancy & ... & ... & ... & ... & ... \\ \small - Supercell size: $2$ - $2000 \cdot 10^{-21}\text{ cm}^3$ + Supercell size: $2$ -- $2000 \cdot 10^{-21}\text{ cm}^3$ \underline{After crystal growth} \begin{itemize} @@ -2273,11 +2366,11 @@ Vacancy & ... & ... & ... & ... & ... \\ Reminder (just for me to keep in mind ...) } - \scriptsize + \small \underline{Volume of the MD cell} \begin{itemize} - \item $T=900\text{ K}$ + \item $T=450, 900, 1400\text{ K}$ - (no melting, N\underline{V}T!) \item $\alpha=2.0 \cdot 10^{-6}\text{ K}^{-1}$ \item $a = a_0(1+\alpha \Delta T)$ \item Plain Si$(T=0)$: $a_0=5.4575\text{ \AA}$ @@ -2286,27 +2379,18 @@ Vacancy & ... & ... & ... & ... & ... \\ \frac{1}{3}(a_0^x+a_0^y+a_0^z)=5.4605\text{ \AA}$ $\rightarrow a(900\text{ K})=5.4704{ \AA}$ \end{itemize} - Used in the 900 K simulations: 5.4705 \AA\\ - Consider next thoughts as well! + Used in first 900 K simulations: 5.4705 \AA\\ + BUT: Better use plain Si lattice constant! (only local distortions)\\ + $\Rightarrow a(1400\text{ K})=5.4728\text{ \AA}$ \underline{Zero total momentum simulations} \begin{itemize} \item If C is randomly inserted there is a net total momentum \item No correction in the temperature control routine of VASP? - \item Relax a Si:C configuration first (at T=0) + \item Relax a Si:C configuration first + (at T=0, no volume relaxation, scaled volume) \item Use this configuration as the MD initial configuration \end{itemize} - Two possibilities regarding volume which came to my mind: - \begin{enumerate} - \item Calculate and use an averaged $a_0$ (in each direction) - from the relaxed configuration. - Else there might be a preferred orientation for the defect. - \item On the other hand this might be important - for the way defects agglomerate. - Continue using the relaxation results. - \end{enumerate} - In both methods the corrections due to the non zero temperature - are applied! \end{slide}