X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=b1483e68751a54f3ca6d0a078eaaf58af853b0b9;hb=e8c736106da8aa48a4e3794d3e2384358f08d8d6;hp=502375bbb17bd3c4d370cb80f90d59b7450a27e0;hpb=308a99aefd361f2e795db24e852574f91758a9df;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 502375b..b1483e6 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -219,7 +219,7 @@ POTIM = 0.1 \item Calculation of cohesive energies for different lattice constants \item No ionic update \item Tetrahedron method with Blöchl corrections for - the partial occupancies $f_{nk}$ + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ \item Supercell 3 (8 atoms, 4 primitive cells) \end{itemize} \vspace*{0.6cm} @@ -270,7 +270,7 @@ POTIM = 0.1 \item Calculation of cohesive energies for different lattice constants \item No ionic update \item Tetrahedron method with Blöchl corrections for - the partial occupancies $f_{nk}$ + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ \end{itemize} \vspace*{0.6cm} \begin{minipage}{6.5cm} @@ -283,7 +283,15 @@ POTIM = 0.1 \begin{center} {\color{red} Non-continuous energies\\ - for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$! + for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\ + } + \vspace*{0.5cm} + {\footnotesize + Does this matter in structural optimizaton simulations? + \begin{itemize} + \item Derivative might be continuous + \item Similar lattice constants where derivative equals zero + \end{itemize} } \end{center} \end{minipage} @@ -348,25 +356,30 @@ POTIM = 0.1 \item Spin polarized calculation \item Interpolation formula according to Vosko Wilk and Nusair for the correlation part of the exchange correlation functional - \item Gaussian smearing for the partial occupancies $f_{nk}$ + \item Gaussian smearing for the partial occupancies + $f(\{\epsilon_{n{\bf k}}\})$ ($\sigma=0.05$) \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001 \item Supercell: one atom in cubic $10\times 10\times 10$ \AA$^3$ box \end{itemize} {\color{blue} - $E_{\textrm{free,sp}}(\textrm{Si},250\, \textrm{eV})= + $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})= -0.70036911\,\textrm{eV}$ + }\\ + {\color{blue} + $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})= + -0.70021403\,\textrm{eV}$ }, {\color{gray} - $E_{\textrm{free,sp}}(\textrm{C},xxx\, \textrm{eV})= - yyy\,\textrm{eV}$ + $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})= + -1.3535731\,\textrm{eV}$ } \item $E$: energy (non-polarized) of system of interest composed of\\ n atoms of type N, m atoms of type M, \ldots \end{itemize} - \vspace*{0.3cm} + \vspace*{0.2cm} {\color{red} \[ \Rightarrow @@ -379,6 +392,49 @@ POTIM = 0.1 \end{slide} +\begin{slide} + + {\large\bf + Calculation of the defect formation energy\\ + } + + \small + + {\color{blue}Method 1} (single species) + \begin{itemize} + \item $E_{\textrm{coh}}^{\textrm{initial conf}}$: + cohesive energy per atom of the initial system + \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$: + cohesive energy per atom of the interstitial system + \item N: amount of atoms in the interstitial system + \end{itemize} + \vspace*{0.2cm} + {\color{blue} + \[ + \Rightarrow + E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}} + -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N + \] + }\\[0.4cm] + {\color{magenta}Method 2} (two and more species) + \begin{itemize} + \item $E$: energy of the interstitial system + (with respect to the ground state of the free atoms!) + \item $N_{\text{Si}}$, $N_{\text{C}}$: + amount of Si and C atoms + \item $\mu_{\text{Si}}$, $\mu_{\text{C}}$: + chemical potential (cohesive energy) of Si and C + \end{itemize} + \vspace*{0.2cm} + {\color{magenta} + \[ + \Rightarrow + E_{\textrm{f}}=E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}} + \] + } + +\end{slide} + \begin{slide} {\large\bf @@ -430,22 +486,6 @@ POTIM = 0.1 \small - Calculation of formation energy $E_{\textrm{f}}$ - \begin{itemize} - \item $E_{\textrm{coh}}^{\textrm{initial conf}}$: - cohesive energy per atom of the initial system - \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$: - cohesive energy per atom of the interstitial system - \item N: amount of atoms in the interstitial system - \end{itemize} - \vspace*{0.2cm} - {\color{blue} - \[ - \Rightarrow - E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}} - -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N - \] - } Influence of supercell size\\ \begin{minipage}{8cm} \includegraphics[width=7.0cm]{si_self_int.ps} @@ -454,8 +494,28 @@ POTIM = 0.1 $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\ $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\ $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\ - $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$ + $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$\\\\ + $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{110},\,54\textrm{pc}}=3.48\textrm{ eV}$ + \end{minipage} + + Comparison with literature (PRL 88 235501 (2002)):\\[0.2cm] + \begin{minipage}{8cm} + \begin{itemize} + \item GGA and LDA + \item $E_{\text{cut-off}}=35 / 25\text{ Ry}=476 / 340\text{ eV}$ + \item 216 atom supercell + \item Gamma point only calculations + \end{itemize} + \end{minipage} + \begin{minipage}{5cm} + $E_{\textrm{f}}^{\textrm{110}}=3.31 / 2.88\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{hex}}=3.31 / 2.87\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac}}=3.17 / 3.56\textrm{ eV}$ \end{minipage} + \end{slide} @@ -479,6 +539,7 @@ POTIM = 0.1 \item hence also connected to choice of smearing method? \item constraints can only be applied to the lattice vectors! \end{itemize} + \item Use of real space projection operators? \item \ldots \end{itemize} @@ -490,8 +551,421 @@ POTIM = 0.1 Review (so far) ...\\ } + Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ + and $k$-point mesh + + \begin{minipage}{4.4cm} + \includegraphics[width=4.4cm]{sic_smear_k.ps} + \end{minipage} + \begin{minipage}{4.4cm} + \includegraphics[width=4.4cm]{c_smear_k.ps} + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=4.4cm]{si_smear_k.ps} + \end{minipage}\\[0.3cm] + \begin{itemize} + \item Convergence reached at $6\times 6\times 6$ k-point mesh + \item No difference between Gauss ($\sigma=0.05$) + and tetrahedron smearing method! + \end{itemize} + \begin{center} + $\Downarrow$\\ + {\color{blue}\bf + Gauss ($\sigma=0.05$) smearing + and $6\times 6\times 6$ Monkhorst $k$-point mesh used + } + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + \underline{Symmetry (in defect simulations)} + + \begin{center} + {\color{red}No} + difference in $1\times 1\times 1$ Type 2 defect calculations\\ + $\Downarrow$\\ + Symmetry precission (SYMPREC) small enough\\ + $\Downarrow$\\ + {\bf\color{blue}Symmetry switched on}\\ + \end{center} + + \underline{Real space projection} + + \begin{center} + Error in lattice constant of plain Si ($1\times 1\times 1$ Type 2): + $0.025\,\%$\\ + Error in position of the 110 interstitital in Si ($1\times 1\times 1$ Type 2): + $0.026\,\%$\\ + $\Downarrow$\\ + {\bf\color{blue} + Real space projection used for 'large supercell' simulations} + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ... + } + + Energy cut-off\\ + + \begin{center} + + {\small + 3C-SiC equilibrium lattice constant and free energy\\ + \includegraphics[width=7cm]{plain_sic_lc.ps}\\ + $\rightarrow$ Convergence reached at 650 eV\\[0.2cm] + } + + $\Downarrow$\\ + + {\bf\color{blue} + 650 eV used as energy cut-off + } + + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Not answered (so far) ...\\ + } + +\vspace{1.5cm} + + \LARGE + \bf + \color{blue} + + \begin{center} + Continue\\ + with\\ + US LDA? + \end{center} + +\vspace{1.5cm} + +\end{slide} + +\begin{slide} + + {\large\bf + Final parameter choice + } + + \footnotesize + + \underline{Param 1}\\ + My first choice. Used for more accurate calculations. + \begin{itemize} + \item $6\times 6 \times 6$ Monkhorst k-point mesh + \item $E_{\text{cut-off}}=650\text{ eV}$ + \item Gaussian smearing ($\sigma=0.05$) + \item Use symmetry + \end{itemize} + \vspace*{0.2cm} + \underline{Param 2}\\ + After talking to the pros! + \begin{itemize} + \item $\Gamma$-point only + \item $E_{\text{cut-off}}=xyz\text{ eV}$ + \item Gaussian smearing ($\sigma=0.05$) + \item Use symmetry + \item Real space projection (Auto, Medium) for 'large' simulations + \end{itemize} + \vspace*{0.2cm} + {\color{blue} + In both parameter sets the ultra soft pseudo potential method + as well as the projector augmented wave method is used with both, + the LDA and GGA exchange correlation potential! + } +\end{slide} + +\begin{slide} + + \footnotesize + + {\large\bf + Properties of Si, C and SiC using the new parameters\\ + } + + $2\times 2\times 2$ Type 2 supercell, Param 1, LDA, US PP\\[0.2cm] + \begin{tabular}{|l|l|l|l|} + \hline + & c-Si & c-C (diamond) & 3C-SiC \\ + \hline + Lattice constant [\AA] & 5.389 & 3.527 & 4.319 \\ + Expt. [\AA] & 5.429 & 3.567 & 4.359 \\ + Error [\%] & {\color{green}0.7} & {\color{green}1.1} & {\color{green}0.9} \\ + \hline + Cohesive energy [eV] & -5.277 & -8.812 & -7.318 \\ + Expt. [eV] & -4.63 & -7.374 & -6.340 \\ + Error [\%] & {\color{red}14.0} & {\color{red}19.5} & {\color{red}15.4} \\ + \hline + \end{tabular}\\ + + \begin{minipage}{10cm} + $2\times 2\times 2$ Type 2 supercell, 3C-SiC, Param 1\\[0.2cm] + \begin{tabular}{|l|l|l|l|} + \hline + & {\color{magenta}US PP, GGA} & PAW, LDA & PAW, GGA \\ + \hline + Lattice constant [\AA] & 4.370 & 4.330 & 4.379 \\ + Error [\%] & {\color{green}0.3} & {\color{green}0.7} & {\color{green}0.5} \\ + \hline + Cohesive energy [eV] & -6.426 & -7.371 & -6.491 \\ + Error [\%] & {\color{green}1.4} & {\color{red}16.3} & {\color{green}2.4} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{3cm} + US PP, GGA\\[0.2cm] + \begin{tabular}{|l|l|} + \hline + c-Si & c-C \\ + \hline + 5.455 & 3.567 \\ + {\color{green}0.5} & {\color{green}0.01} \\ + \hline + -4.591 & -7.703 \\ + {\color{green}0.8} & {\color{orange}4.5} \\ + \hline + \end{tabular} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Energy cut-off for $\Gamma$-point only caclulations + } + + $2\times 2\times 2$ Type 2 supercell, Param 2, US PP, LDA, 3C-SiC\\[0.2cm] + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff.ps} + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff_lc.ps}\\ + $\Rightarrow$ Use 300 eV as energy cut-off?\\[0.2cm] + $2\times 2\times 2$ Type 2 supercell, Param 2, 300 eV, US PP, GGA\\[0.2cm] + \small + \begin{minipage}{10cm} + \begin{tabular}{|l|l|l|l|} + \hline + & c-Si & c-C (diamond) & 3C-SiC \\ + \hline + Lattice constant [\AA] & 5.470 & 3.569 & 4.364 \\ + Error [\%] & {\color{green}0.8} & {\color{green}0.1} & {\color{green}0.1} \\ + \hline + Cohesive energy [eV] & -4.488 & -7.612 & -6.359 \\ + Error [\%] & {\color{orange}3.1} & {\color{orange}3.2} & {\color{green}0.3} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{2cm} + {\LARGE + ${\color{green}\surd}$ + } + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=4cm]{c_100_mig/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{0.8cm} + $\Delta x=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta y=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta z=0.325\text{ \AA}$\\ + \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=4cm]{c_100_mig/final.eps}\\ + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Fix border atoms of the simulation cell + \item Constraints and displacement of the C atom: + \begin{itemize} + \item along {\color{green}110 direction}\\ + displaced by {\color{green} $\frac{1}{10}(\Delta x,\Delta y)$} + \item C atom {\color{red}entirely fixed in position}\\ + displaced by + {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$} + \end{itemize} + \item Berendsen thermostat applied + \end{itemize} + {\bf\color{blue}Expected configuration not obtained!} + \end{minipage} + \begin{minipage}{0.5cm} + \hfill + \end{minipage} + \begin{minipage}{6cm} + \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + \footnotesize + + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_50.eps} + \begin{center} + 50 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_80.eps} + \begin{center} + 80 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_90.eps} + \begin{center} + 90 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_99.eps} + \begin{center} + 100 \% + \end{center} + \end{minipage} + + Open questions ... + \begin{enumerate} + \item Why is the expected configuration not obtained? + \item How to find a migration path preceding to the expected configuration? + \end{enumerate} + + Answers ... + \begin{enumerate} + \item Simple: it is not the right migration path! + \begin{itemize} + \item (Surrounding) atoms settle into a local minimum configuration + \item A possibly existing more favorable configuration is not achieved + \end{itemize} + \item \begin{itemize} + \item Search global minimum in each step (by simulated annealing)\\ + {\color{red}But:} + Loss of the correct energy needed for migration + \item Smaller displacements\\ + A more favorable configuration might be achieved + possibly preceding to the expected configuration + \end{itemize} + \end{enumerate} - + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential)\\ + } + + Displacement step size decreased to + $\frac{1}{100} (\Delta x,\Delta y)$\\[0.2cm] + + \begin{minipage}{7.5cm} + Result: (Video \href{../video/c_in_si_smig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_albe.avi}{$\rhd_{\text{remote url}}$}) + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} + {\color{red} + Obviously: overestimated bond strength + } + \end{minipage} + \begin{minipage}{5cm} + \includegraphics[width=6cm]{c_100_110smig_01_albe.ps} + \end{minipage}\\[0.4cm] + New approach to find the migration path:\\ + {\color{blue} + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix! + } + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential)\\ + } + + {\color{blue}New approach:}\\ + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix!\\ + {\color{red}Problem:}\\ + Too high forces due to the small distance of the C atom to the Si + atom sharing the lattice site.\\ + {\color{green}Solution:} + Slightly displace the Si atom\\ + + \begin{minipage}{6.5cm} + Result: + (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$})\\ + \includegraphics[width=6cm]{c_100_110pmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Jump in energy (25 and 75 \%) corresponds to the abrupt + structural change (as seen in the video) + \item Due to the abrupt changes in structure and energy + this is {\color{red}not} the correct migration path and energy!?! + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (VASP) + } + + \small + \vspace*{1cm} + \ldots simulations running! + \vspace*{1cm} + + \begin{minipage}{5cm} + + \end{minipage} + \begin{minipage}{7cm} + + \end{minipage} + \end{slide}