X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=c0e0acab808c7b7056f5ee9839a8985f159d5824;hb=49e043bbb553452f41f1d1b73d6f0d69273dbcf8;hp=524ec2bd4daf1fbc1144d24fe291304a747ca2c1;hpb=a0ad462d8874ee78d823284d8175eb22c1f35d81;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 524ec2b..c0e0aca 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -811,6 +811,7 @@ POTIM = 0.1 displaced by {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$} \end{itemize} + \item Berendsen thermostat applied \end{itemize} {\bf\color{blue}Expected configuration not obtained!} \end{minipage} @@ -821,6 +822,389 @@ POTIM = 0.1 \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps} \end{minipage} +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + \footnotesize + + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_50.eps} + \begin{center} + 50 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_80.eps} + \begin{center} + 80 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_90.eps} + \begin{center} + 90 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_99.eps} + \begin{center} + 100 \% + \end{center} + \end{minipage} + + Open questions ... + \begin{enumerate} + \item Why is the expected configuration not obtained? + \item How to find a migration path preceding to the expected configuration? + \end{enumerate} + + Answers ... + \begin{enumerate} + \item Simple: it is not the right migration path! + \begin{itemize} + \item (Surrounding) atoms settle into a local minimum configuration + \item A possibly existing more favorable configuration is not achieved + \end{itemize} + \item \begin{itemize} + \item Search global minimum in each step (by simulated annealing)\\ + {\color{red}But:} + Loss of the correct energy needed for migration + \item Smaller displacements\\ + A more favorable configuration might be achieved + possibly preceding to the expected configuration + \end{itemize} + \end{enumerate} + + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential)\\ + } + + Displacement step size decreased to + $\frac{1}{100} (\Delta x,\Delta y)$\\[0.2cm] + + \begin{minipage}{7.5cm} + Result: (Video \href{../video/c_in_si_smig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_albe.avi}{$\rhd_{\text{remote url}}$}) + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} + {\color{red} + Obviously: overestimated bond strength + } + \end{minipage} + \begin{minipage}{5cm} + \includegraphics[width=6cm]{c_100_110smig_01_albe.ps} + \end{minipage}\\[0.4cm] + New approach to find the migration path:\\ + {\color{blue} + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix! + } + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + {\color{blue}New approach:}\\ + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix!\\ + {\color{blue}Problem:}\\ + Too high forces due to the small distance of the C atom to the Si + atom sharing the lattice site.\\ + {\color{blue}Solution:} + \begin{itemize} + \item {\color{red}Slightly displace the Si atom} + (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$}) + \item {\color{green}Immediately quench the system} + (Video \href{../video/c_in_si_pqmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pqmig_albe.avi}{$\rhd_{\text{remote url}}$}) + \end{itemize} + + \begin{minipage}{6.5cm} + \includegraphics[width=6cm]{c_100_110pqmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Jump in energy corresponds to the abrupt + structural change (as seen in the videos) + \item Due to the abrupt changes in structure and energy + this is {\color{red}not} the correct migration path and energy!?! + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (VASP) + } + + \small + + {\color{blue}Method:} + \begin{itemize} + \item Place interstitial carbon atom at the respective coordinates + into perfect c-Si + \item 110 direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + {\color{blue}Results:} + (Video \href{../video/c_in_si_pmig_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_vasp.avi}{$\rhd_{\text{remote url}}$})\\ + \begin{minipage}{7cm} + \includegraphics[width=7cm]{c_100_110pmig_01_vasp.ps} + \end{minipage} + \begin{minipage}{5.5cm} + \begin{itemize} + \item Characteristics nearly equal to classical calulations + \item Approximately half of the classical energy + needed for migration + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (VASP) + } + + \small + + {\color{blue}Method:} + \begin{itemize} + \item Continue with atomic positions of the last run + \item Displace the C atom in 110 direction + \item 110 direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + {\color{blue}Results:} + (Video \href{../video/c_in_si_smig_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_vasp.avi}{$\rhd_{\text{remote url}}$})\\ + \includegraphics[width=7cm]{c_100_110mig_01_vasp.ps} + +\end{slide} + +\begin{slide} + + {\large\bf + Again: C 100 interstitial migration + } + + \small + + {\color{blue}The applied methods:} + \begin{enumerate} + \item Method + \begin{itemize} + \item Start in relaxed 100 interstitial configuration + \item Displace C atom along 110 direction + \item Relaxation (Berendsen thermostat) + \item Continue with configuration of the last run + \end{itemize} + \item Method + \begin{itemize} + \item Place interstitial carbon at the respective coordinates + into the perfect Si matrix + \item Quench the system + \end{itemize} + \end{enumerate} + {\color{blue}In both methods:} + \begin{itemize} + \item Fixed border atoms + \item Applied 110 constraint for the C atom + \end{itemize} + {\color{red}Pitfalls} and {\color{green}refinements}: + \begin{itemize} + \item {\color{red}Fixed border atoms} $\rightarrow$ + Relaxation of stress not possible\\ + $\Rightarrow$ + {\color{green}Fix only one Si atom} (the one furthermost to the defect) + \item {\color{red}110 constraint not sufficient}\\ + $\Rightarrow$ {\color{green}Apply 11x constraint} + (connecting line of initial and final C positions) + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Again: C 100 interstitial migration (Albe) + } + + Constraint applied by modyfing the Velocity Verlet algorithm + + {\color{blue}Results:} + (Video \href{../video/c_in_si_fmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_fmig_albe.avi}{$\rhd_{\text{remote url}}$})\\ + \begin{minipage}{6.3cm} + \includegraphics[width=6cm]{c_100_110fmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{center} + Again there are jumps in energy corresponding to abrupt + structural changes as seen in the video + \end{center} + \end{minipage} + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Again: C 100 interstitial migration (VASP) + } + + Transformation for the Type 2 supercell + + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=3cm]{c_100_mig_vasp/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{1.0cm} + $\Delta x=1.367\text{ \AA}$\\ + $\Delta y=1.367\text{ \AA}$\\ + $\Delta z=0.787\text{ \AA}$\\ + \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=3cm]{c_100_mig_vasp/final.eps}\\ + \end{minipage} + \begin{minipage}{6.2cm} + Rotation angles: + \[ + \alpha=45^{\circ} + \textrm{ , } + \beta=\arctan\frac{\Delta z}{\sqrt{2}\Delta x}=22.165^{\circ} + \] + \end{minipage} + \begin{minipage}{6.2cm} + Length of migration path: + \[ + l=\sqrt{\Delta x^2+\Delta y^2+\Delta z^2}=2.087\text{ \AA} + \] + \end{minipage}\\[0.3cm] + Transformation of basis: + \[ + T=ABA^{-1}A=AB \textrm{, mit } + A=\left(\begin{array}{ccc} + \cos\alpha & -\sin\alpha & 0\\ + \sin\alpha & \cos\alpha & 0\\ + 0 & 0 & 1 + \end{array}\right) + \textrm{, } + B=\left(\begin{array}{ccc} + 1 & 0 & 0\\ + 0 & \cos\beta & \sin\beta \\ + 0 & -\sin\beta & \cos\beta + \end{array}\right) + \] + Atom coordinates transformed by: $T^{-1}=B^{-1}A^{-1}$ + +\end{slide} + +\begin{slide} + + {\large\bf + Again: C 100 interstitial migration\\ + } + + {\color{blue}Reminder:}\\ + Transformation needed since in VASP constraints can only be applied to + the basis vectors!\\ + {\color{red}Problem:} (stupid me!)\\ + Transformation of supercell 'destroys' the correct periodicity!\\ + {\color{green}Solution:}\\ + Find a supercell with one basis vector forming the correct constraint\\ + {\color{red}Problem:}\\ + Hard to find a supercell for the $22.165^{\circ}$ rotation\\ + + Another method to {\color{blue}\underline{estimate}} the migration energy: + \begin{itemize} + \item Assume an intermediate saddle point configuration during migration + \item Determine the energy of the saddle point configuration + \item Substract the saddle point configuration energy by + the energy of the initial (final) defect configuration + \end{itemize} + + +\end{slide} + +\begin{slide} + + {\large\bf + The C 100 defect configuration + } + + Needed so often for input configurations ...\\[0.8cm] + \begin{minipage}{7.7cm} + \includegraphics[width=7cm]{100-c-si-db_light.eps} + \hfill + \end{minipage} + \begin{minipage}{4.5cm} + \begin{tabular}{|l|l|l|} + \hline + & a & b \\ + \hline + \underline{VASP} & & \\ + fractional & 0.1969 & 0.1211 \\ + in \AA & 1.08 & 0.66 \\ + \hline + \underline{Albe} & & \\ + fractional & 0.1547 & 0.1676 \\ + in \AA & 0.84 & 0.91 \\ + \hline + \end{tabular} + \end{minipage} + + \begin{center} + Qualitative {\color{red}and} quantitative {\color{red}difference}! + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Density Functional Theory + } + + Hohenberg-Kohn theorem + + \small + \end{slide}