X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fthesis%2Fbasics.tex;h=bd2453ecf5594eb5fc9b4d5df33cbbbe3fced8c0;hb=768e3639a14034a169ae6e347f0b132c4f0f397d;hp=b095d71bec202dc3ed31b08d7da446ac179bcb19;hpb=ab861cbd757aa36afee0ecd21c1d88bc25f36f36;p=lectures%2Flatex.git diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex index b095d71..bd2453e 100644 --- a/posic/thesis/basics.tex +++ b/posic/thesis/basics.tex @@ -526,7 +526,7 @@ Mathematically, a non-local PP, which depends on the angular momentum, has the f V_{\text{nl}}(\vec{r}) = \sum_{lm} | lm \rangle V_l(\vec{r}) \langle lm | \text{ .} \end{equation} -Applying of the operator $V_{\text{nl}}(\vec{r})$ decomposes the electronic wave functions into spherical harmonics $\mid lm \rangle$, i.e.\ the orbitals with azimuthal angular momentum $l$ and magnetic number $m$, which are then multiplied by the respective pseudopotential $V_l(\vec{r})$ for angular momentum $l$. +Applying of the operator $V_{\text{nl}}(\vec{r})$ decomposes the electronic wave functions into spherical harmonics $| lm \rangle$, i.e.\ the orbitals with azimuthal angular momentum $l$ and magnetic number $m$, which are then multiplied by the respective pseudopotential $V_l(\vec{r})$ for angular momentum $l$. The standard generation procedure of pseudopotentials proceeds by varying its parameters until the pseudo eigenvalues are equal to the all-electron valence eigenvalues and the pseudo wave functions match the all-electron valence wave functions beyond a certain cut-off radius determining the core region. Modified methods to generate ultra-soft pseudopotentials were proposed, which address the rapid convergence with respect to the size of the plane wave basis set \cite{vanderbilt90,troullier91}. @@ -558,9 +558,9 @@ However, moving an ion, i.e.\ altering its position, changes the wave functions Writing down the derivative of the total energy $E$ with respect to the position $\vec{R}_i$ of ion $i$ \begin{equation} \frac{dE}{d\vec{R_i}}= - \sum_j \Phi_j^* \frac{\partial H}{\partial \vec{R}_i} \Phi_j -+\sum_j \frac{\partial \Phi_j^*}{\partial \vec{R}_i} H \Phi_j -+\sum_j \Phi_j^* H \frac{\partial \Phi_j}{\partial \vec{R}_i} + \sum_j \langle \Phi_j | \frac{\partial H}{\partial\vec{R}_i} | \Phi_j \rangle ++\sum_j \langle \frac{\partial \Phi_j}{\partial\vec{R}_i} | H \Phi_j \rangle ++\sum_j \langle \Phi_j H | \frac{\partial \Phi_j}{\partial \vec{R}_i} \rangle \text{ ,} \end{equation} indeed reveals a contribution to the change in total energy due to the change of the wave functions $\Phi_j$.