X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fthesis%2Fd_tersoff.tex;h=66abaed4244eb2f648ab13ae766c57ab2b0f09cd;hb=c99f610aabb097a64ddcb1656798fd2d59c958a0;hp=92b421f45876c6ad9a364009353afa1e3c0b2d8d;hpb=a812d191e3b5f031b2227a3bbb40ec3b4be79b3a;p=lectures%2Flatex.git diff --git a/posic/thesis/d_tersoff.tex b/posic/thesis/d_tersoff.tex index 92b421f..66abaed 100644 --- a/posic/thesis/d_tersoff.tex +++ b/posic/thesis/d_tersoff.tex @@ -3,7 +3,7 @@ \section{Form of the Tersoff potential and its derivative} -The Tersoff potential \cite{tersoff_m} is of the form +The Tersoff potential~\cite{tersoff_m} is of the form \begin{eqnarray} E & = & \sum_i E_i = \frac{1}{2} \sum_{i \ne j} V_{ij} \textrm{ ,} \\ V_{ij} & = & f_C(r_{ij}) [ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) ] \textrm{ .} @@ -149,7 +149,7 @@ The pair contributions are, thus, easily obtained. The contribution of the bond order term is given by: \begin{eqnarray} \nabla_{{\bf r}_j}\cos\theta_{ijk} &=& - \nabla_{{\bf r}_j}\Big(\frac{{\bf r}_{ij}{\bf }r_{ik}}{r_{ij}r_{ik}}\Big) + \nabla_{{\bf r}_j}\Big(\frac{{\bf r}_{ij}{\bf r}_{ik}}{r_{ij}r_{ik}}\Big) \nonumber \\ &=& \frac{1}{r_{ij}r_{ik}}{\bf r}_{ik} - \frac{\cos\theta_{ijk}}{r_{ij}^2}{\bf r}_{ij} @@ -185,7 +185,7 @@ Concerning $b_{ij}$, in addition to the angular term, the derivative of the cut- \subsection{Code realization} -The implementation of the force evaluation shown in the following is applied to the potential designed by Erhart and Albe \cite{albe_sic_pot}. +The implementation of the force evaluation shown in the following is applied to the potential designed by Erhart and Albe~\cite{albe_sic_pot}. There are slight differences compared to the original potential by Tersoff: \begin{itemize} \item Difference in sign of the attractive part. @@ -220,7 +220,7 @@ LOOP i \{ \item \item LOOP k \{ \begin{itemize} - \item set $ik$-depending values + \item set $ik$-dependent values \item calculate: $r_{ik}$, $r_{ik}^2$ \item IF $r_{ik} > S_{ik}$ THEN CONTINUE \item calculate: $\theta_{ijk}$, $\cos(\theta_{ijk})$,