X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic%2Fthesis%2Fdefects.tex;h=ab8bd72b4f711998188e88a9fcd81e45c49c31d9;hb=fa21e465b5e59a0bf7712d90cf90369875855d2b;hp=16a42e94ea72183f806c2ef9649572b7ccb97ad4;hpb=ec406716f5dd60384a4b670abdd1f712ef3c8207;p=lectures%2Flatex.git diff --git a/posic/thesis/defects.tex b/posic/thesis/defects.tex index 16a42e9..ab8bd72 100644 --- a/posic/thesis/defects.tex +++ b/posic/thesis/defects.tex @@ -46,13 +46,13 @@ Ref. \cite{leung99} & 3.31 & 3.31 & 3.43 & - & - \\ \begin{minipage}{5cm} \underline{Tetrahedral}\\ $E_{\text{f}}=3.40\,\text{eV}$\\ -\includegraphics[width=4.0cm]{si_pd_albe/tet.eps} +\includegraphics[width=4.0cm]{si_pd_albe/tet_bonds.eps} \end{minipage} \begin{minipage}{10cm} \underline{Hexagonal}\\[0.1cm] \begin{minipage}{4cm} $E_{\text{f}}^*=4.48\,\text{eV}$\\ -\includegraphics[width=4.0cm]{si_pd_albe/hex_a.eps} +\includegraphics[width=4.0cm]{si_pd_albe/hex_a_bonds.eps} \end{minipage} \begin{minipage}{0.8cm} \begin{center} @@ -61,18 +61,18 @@ $\Rightarrow$ \end{minipage} \begin{minipage}{4cm} $E_{\text{f}}=3.96\,\text{eV}$\\ -\includegraphics[width=4.0cm]{si_pd_albe/hex.eps} +\includegraphics[width=4.0cm]{si_pd_albe/hex_bonds.eps} \end{minipage} \end{minipage}\\[0.2cm] \begin{minipage}{5cm} \underline{\hkl<1 0 0> dumbbell}\\ $E_{\text{f}}=5.42\,\text{eV}$\\ -\includegraphics[width=4.0cm]{si_pd_albe/100.eps} +\includegraphics[width=4.0cm]{si_pd_albe/100_bonds.eps} \end{minipage} \begin{minipage}{5cm} \underline{\hkl<1 1 0> dumbbell}\\ $E_{\text{f}}=4.39\,\text{eV}$\\ -\includegraphics[width=4.0cm]{si_pd_albe/110.eps} +\includegraphics[width=4.0cm]{si_pd_albe/110_bonds.eps} \end{minipage} \begin{minipage}{5cm} \underline{Vacancy}\\ @@ -82,7 +82,7 @@ $E_{\text{f}}=3.13\,\text{eV}$\\ \end{flushleft} %\hrule \end{center} -\caption[Relaxed Si self-interstitial defect configurations obtained by classical potential calculations.]{Relaxed Si self-interstitial defect configurations obtained by classical potential calculations. The Si atoms and the bonds (only for the interstitial atom) are illustrated by yellow spheres and blue lines.} +\caption[Relaxed Si self-interstitial defect configurations obtained by classical potential calculations.]{Relaxed Si self-interstitial defect configurations obtained by classical potential calculations. Si atoms and bonds are illustrated by yellow spheres and blue lines. Bonds of the defect atoms are drawn in red color.} \label{fig:defects:conf} \end{figure} The final configurations obtained after relaxation are presented in Fig. \ref{fig:defects:conf}. @@ -183,7 +183,7 @@ Other studies & & & & & & \\ \begin{minipage}{4cm} \underline{Hexagonal}\\ $E_{\text{f}}^*=9.05\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/hex.eps} +\includegraphics[width=4.0cm]{c_pd_albe/hex_bonds.eps} \end{minipage} \begin{minipage}{0.8cm} \begin{center} @@ -193,7 +193,7 @@ $\Rightarrow$ \begin{minipage}{4cm} \underline{\hkl<1 0 0>}\\ $E_{\text{f}}=3.88\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/100.eps} +\includegraphics[width=4.0cm]{c_pd_albe/100_bonds.eps} \end{minipage} \begin{minipage}{0.5cm} \hfill @@ -201,12 +201,12 @@ $E_{\text{f}}=3.88\,\text{eV}$\\ \begin{minipage}{5cm} \underline{Tetrahedral}\\ $E_{\text{f}}=6.09\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/tet.eps} +\includegraphics[width=4.0cm]{c_pd_albe/tet_bonds.eps} \end{minipage}\\[0.2cm] \begin{minipage}{4cm} \underline{Bond-centered}\\ $E_{\text{f}}^*=5.59\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/bc.eps} +\includegraphics[width=4.0cm]{c_pd_albe/bc_bonds.eps} \end{minipage} \begin{minipage}{0.8cm} \begin{center} @@ -216,7 +216,7 @@ $\Rightarrow$ \begin{minipage}{4cm} \underline{\hkl<1 1 0> dumbbell}\\ $E_{\text{f}}=5.18\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/110.eps} +\includegraphics[width=4.0cm]{c_pd_albe/110_bonds.eps} \end{minipage} \begin{minipage}{0.5cm} \hfill @@ -224,11 +224,11 @@ $E_{\text{f}}=5.18\,\text{eV}$\\ \begin{minipage}{5cm} \underline{Substitutional}\\ $E_{\text{f}}=0.75\,\text{eV}$\\ -\includegraphics[width=4.0cm]{c_pd_albe/sub.eps} +\includegraphics[width=4.0cm]{c_pd_albe/sub_bonds.eps} \end{minipage} \end{flushleft} \end{center} -\caption[Relaxed C point defect configurations obtained by classical potential calculations.]{Relaxed C point defect configurations obtained by classical potential calculations. The Si/C atoms and the bonds (only for the interstitial atom) are illustrated by yellow/gray spheres and blue lines.} +\caption[Relaxed C point defect configurations obtained by classical potential calculations.]{Relaxed C point defect configurations obtained by classical potential calculations. Si/C atoms and bonds are illustrated by yellow/gray spheres and blue lines. Bonds of the defect atoms are drawn in red color.} \label{fig:defects:c_conf} \end{figure} @@ -924,7 +924,7 @@ Both DBs are tilted along the same direction remaining aligned in parallel and t Both C atoms form tetrahedral bonds to four Si atoms. However, Si atom number 1 and number 3, which are bound to the second \ci{} atom are also bound to the initial C atom. These four atoms of the rhomboid reside in a plane and, thus, do not match the situation in SiC. -The Carbon atoms have a distance of \unit[2.75]{\AA}. +The C atoms have a distance of \unit[2.75]{\AA}. In Fig. \ref{fig:defects:190} the relaxed structure of a \hkl[0 1 0] DB constructed at position 2 is displayed. An energy of \unit[-1.90]{eV} is observed. The initial DB and especially the C atom is pushed towards the Si atom of the second DB forming an additional fourth bond.