X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=posic.c;h=5ff3bc1b7f03a6378bb549009e7c8db9e9806256;hb=45b27e01673a6cc5bebecb49c51d7f587917483e;hp=d7a659a34b17466ef1d2d8405677f797236e6f60;hpb=3ffe2a08e25fc091b6241885055450009267e2d8;p=physik%2Fposic.git diff --git a/posic.c b/posic.c index d7a659a..5ff3bc1 100644 --- a/posic.c +++ b/posic.c @@ -1,9 +1,11 @@ /* * posic.c - precipitation process of silicon carbide in silicon * - * author: Frank Zirkelbach + * author: Frank Zirkelbach * */ + +#include #include "moldyn.h" #include "math/math.h" @@ -14,6 +16,8 @@ int main(int argc,char **argv) { + t_moldyn md; + t_atom *si; t_visual vis; @@ -21,40 +25,121 @@ int main(int argc,char **argv) { t_random random; int a,b,c; - double t,e; + double t,e,u; + double help; + t_3dvec p; int count; - char fb[32]="saves/fcc_test"; + t_lj_params lj; + t_ho_params ho; + + char fb[32]="saves/lj_test"; /* init */ rand_init(&random,NULL,1); random.status|=RAND_STAT_VERBOSE; + /* testing random numbers */ + //for(a=0;a<1000000;a++) + // printf("%f %f\n",rand_get_gauss(&random), + // rand_get_gauss(&random)); + visual_init(&vis,fb); a=LEN_X; b=LEN_Y; c=LEN_Z; + vis.dim.x=a*LC_SI; + vis.dim.y=b*LC_SI; + vis.dim.z=c*LC_SI; + t=TEMPERATURE; - printf("placing silicon atoms\n"); - count=create_lattice(DIAMOND,Si,M_SI,LC_SI,a,b,c,&si); + printf("placing silicon atoms ... "); + //count=create_lattice(DIAMOND,Si,M_SI,LC_SI,a,b,c,&si); + //printf("(%d) ok!\n",count); + count=2; + si=malloc(2*sizeof(t_atom)); + si[0].r.x=0.16e-9; + si[0].r.y=0; + si[0].r.z=0; + si[0].element=SI; + si[0].mass=M_SI; + si[1].r.x=-0.16e-9; + si[1].r.y=0; + si[1].r.z=0; + si[1].element=SI; + si[1].mass=M_SI; printf("setting thermal fluctuations\n"); - thermal_init(si,&random,count,t); + //thermal_init(si,&random,count,t); + v3_zero(&(si[0].v)); + v3_zero(&(si[1].v)); + /* check kinetic energy */ - /* visualize */ + e=get_e_kin(si,count); + printf("kinetic energy: %.40f [J]\n",e); + printf("3/2 N k T = %.40f [J]\n",1.5*count*K_BOLTZMANN*t); - visual_atoms(&vis,0.0,si,count); + /* check total momentum */ + p=get_total_p(si,count); + printf("total momentum: %.30f [Ns]\n",v3_norm(&p)); - /* check kinetic energy */ + /* check potential energy */ + md.count=count; + md.atom=si; + md.potential=potential_lennard_jones; + //md.potential=potential_harmonic_oscillator; + md.force=force_lennard_jones; + //md.force=force_harmonic_oscillator; + //md.cutoff_square=((LC_SI/4.0)*(LC_SI/4.0)); + md.cutoff=(0.4e-9); + md.cutoff_square=(0.6e-9*0.6e-9); + md.pot_params=&lj; + //md.pot_params=&ho; + md.integrate=velocity_verlet; + md.time_steps=RUNS; + md.tau=TAU; + md.status=0; + md.visual=&vis; + md.write=WRITE_FILE; - e=get_e_kin(si,count); - printf("kinetic energy: %f\n",e); - printf("3/2 N k T = %f\n",1.5*count*K_BOLTZMANN*t); + lj.sigma6=LJ_SIGMA_SI*LJ_SIGMA_SI; + help=lj.sigma6*lj.sigma6; + lj.sigma6*=help; + lj.sigma12=lj.sigma6*lj.sigma6; + lj.epsilon=LJ_EPSILON_SI; + + ho.equilibrium_distance=0.3e-9; + ho.spring_constant=1.0e-9; + + u=get_e_pot(&md); + + printf("potential energy: %.40f [J]\n",u); + printf("total energy (1): %.40f [J]\n",e+u); + printf("total energy (2): %.40f [J]\n",get_total_energy(&md)); + + md.dim.x=a*LC_SI; + md.dim.y=b*LC_SI; + md.dim.z=c*LC_SI; + + printf("estimated accurate time step: %.30f [s]\n", + estimate_time_step(&md,3.0,t)); + + + /* + * let's do the actual md algorithm now + * + * integration of newtons equations + */ + + moldyn_integrate(&md); + + printf("total energy (after integration): %.40f [J]\n", + get_total_energy(&md)); /* close */