X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F1_04.tex;fp=solid_state_physics%2Ftutorial%2F1_04.tex;h=0fc68a6cd839f79a7ea1ac79eee016514022921b;hb=79c30f13ba31a3d5988133db6e6992235b64ca8a;hp=0000000000000000000000000000000000000000;hpb=4eae86611e1b7f0613e8d7109ae0473b85672f90;p=lectures%2Flatex.git diff --git a/solid_state_physics/tutorial/1_04.tex b/solid_state_physics/tutorial/1_04.tex new file mode 100644 index 0000000..0fc68a6 --- /dev/null +++ b/solid_state_physics/tutorial/1_04.tex @@ -0,0 +1,99 @@ +\pdfoutput=0 +\documentclass[a4paper,11pt]{article} +\usepackage[activate]{pdfcprot} +\usepackage{verbatim} +\usepackage{a4} +\usepackage{a4wide} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage[dvips]{graphicx} +\graphicspath{{./img/}} +\usepackage{color} +\usepackage{pstricks} +\usepackage{pst-node} +\usepackage{rotating} + +\setlength{\headheight}{0mm} \setlength{\headsep}{0mm} +\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm} +\setlength{\oddsidemargin}{-10mm} +\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm} +\setlength{\textheight}{26cm} \setlength{\headsep}{0cm} + +\renewcommand{\labelenumi}{(\alph{enumi})} + +\begin{document} + +% header +\begin{center} + {\LARGE {\bf Materials Physics I}\\} + \vspace{8pt} + Prof. B. Stritzker\\ + WS 2007/08\\ + \vspace{8pt} + {\Large\bf Tutorial 4} +\end{center} + +\section{Hall effect and magnetoresistance} +The Hall effect refers to the potential difference (Hall voltage) +on the opposite sides of an electrical conductor +through which an electric current is flowing, +created by a magnetic field applied perpendicular to the current. +Edwin Hall discovered this effect in 1879. + +Consider the following scenario: +An electric field $E_x$ is applied to a wire extending in $x$-direction +and a current density $j_x$ is flowing in that wire. +There is a magnetic field $B$ pointing in the positive $z$-direction. +Electrons are deflected in the negative $y$-direction +due to the Lorentz force $F_L=-evB$ +until they run against the sides of the wire. +An electric field $E_y$ builds up opposing the Lorentz force +and thus preventing further electron accumulation at the sides. +The two quantities of interest are: +\begin{itemize} + \item the magnetoresistance + \[ + \rho(B) = \frac{E_x}{j_x} \textrm{ and} + \] + \item the Hall coefficient + \[ + R_H(B) = \frac{E_y}{j_xB} \textrm{ .} + \] +\end{itemize} +In this tutorial the treatment of the Hall problem is based on a simple +Drude model analysis. +\\\\ +First of all the effect of individual electron collisions can be expressed +by a frictional damping term into the equation of motion for the momentum +per electron. + +\begin{enumerate} + \item Recall the Drude model. + Given the momentum per electron $p(t)$ at time t + calculate the momentum per electron $p(t+dt)$ + an infinitesimal time $dt$ later. + {\bf Hint:} What is the probability of an electron taken at random at + time $t$ to not suffer a collision before time $t+dt$? + If not experiencing a collision it simply evolves under the influence + of the force $f(t)$. + Combine contributions of the order of $(dt)^2$ to the term + $O(dt)^2$. + \item Write down the equation of motion for the momentum per electron + by dividing the above result by $dt$ + and taking the limit $dt\rightarrow 0$. + \item Sketch a schematic view of Hall's experiment. + \item Find an expression for the Hall coefficient. + {\bf Hint:} Insert an appropriate force into the equation of motion + for the momentum per electron. + Consider the steady state and acquire the equations + for the $x$ and $y$ component of the vector equation. + To find an expression for the Hall coefficient use the second equation + and the fact that there must not be transverse current $j_y$ + while determining the Hall field. +\end{enumerate} + +\end{document}