X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F1_05s.tex;fp=solid_state_physics%2Ftutorial%2F1_05s.tex;h=39d9bdd31b41bce13a2a8869190958fe7492bc03;hb=74d9127cb8e2552bc28f766c532ba1a7accb4270;hp=0000000000000000000000000000000000000000;hpb=557ae9de164e6994e728188149e93a7f8380cc34;p=lectures%2Flatex.git diff --git a/solid_state_physics/tutorial/1_05s.tex b/solid_state_physics/tutorial/1_05s.tex new file mode 100644 index 0000000..39d9bdd --- /dev/null +++ b/solid_state_physics/tutorial/1_05s.tex @@ -0,0 +1,96 @@ +\pdfoutput=0 +\documentclass[a4paper,11pt]{article} +\usepackage[activate]{pdfcprot} +\usepackage{verbatim} +\usepackage{a4} +\usepackage{a4wide} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage[dvips]{graphicx} +\graphicspath{{./img/}} +\usepackage{color} +\usepackage{pstricks} +\usepackage{pst-node} +\usepackage{rotating} + +\setlength{\headheight}{0mm} \setlength{\headsep}{0mm} +\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm} +\setlength{\oddsidemargin}{-10mm} +\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm} +\setlength{\textheight}{26cm} \setlength{\headsep}{0cm} + +\renewcommand{\labelenumi}{(\alph{enumi})} + +\begin{document} + +% header +\begin{center} + {\LARGE {\bf Materials Physics I}\\} + \vspace{8pt} + Prof. B. Stritzker\\ + WS 2007/08\\ + \vspace{8pt} + {\Large\bf Tutorial 5 - proposed solutions} +\end{center} + +\section{Charge carrier density of intrinsic semiconductors} + +\begin{enumerate} + \item \begin{itemize} + \item Free electron in a box:\\ + $E(k)=\frac{\hbar^2k^2}{2m}$, $k^2=k_x^2+k_y^2+k_z^2$, + $k_i=\frac{\pi}{L}n_i$ with $n_i=1,2,3,\ldots$ + \item Amount of states in-between $k$ and $k+dk$: + \begin{itemize} + \item Allowed values only in first octant! + \item Volume of one $k$-point: $V_k=(\frac{\pi}{L})^3$ + \item Volume of spherical shell with radius $k$ and $k+dk$:\\ + $V_{shell}=\frac{4}{3}\pi(k+dk)^3-\frac{4}{3}\pi k^3 + \stackrel{Taylor}{=}\frac{4}{3}\pi k^3 + +\frac{3\cdot 4}{3}\pi k^2dk+O(dk^2)-\frac{4}{3}\pi k^3 + \approx 4\pi k^2dk$ + \end{itemize} + $\Rightarrow dZ'=\frac{\frac{1}{8}4\pi k^2dk}{(\pi/L)^3}$ + \item Express $dk$ and $k$ by $dE$ and $E$ and insert it into $dZ$: + \begin{itemize} + \item $\frac{dE}{dk}=\frac{\hbar^2}{m}k \rightarrow + dk=\frac{m}{\hbar^2k}dE$ + \item $k=\frac{\sqrt{2m}}{\hbar^2}\sqrt{E}$ + \end{itemize} + $\Rightarrow dZ'=\frac{4\pi k^2m}{(\pi/L)^3\hbar^2k} dE= + \frac{4\pi\frac{\sqrt{2m}}{\hbar}\sqrt{E}m}{8(\pi/L)^3\hbar^2}dE + =\frac{(2m)^{3/2}L^3}{4\pi^2\hbar^3}\sqrt{E}dE$\\ + $\Rightarrow dZ=\frac{(2m)^{3/2}}{4\pi^2\hbar^3}\sqrt{E}dE$ + \item Density of states:\\ + $D(E)=dZ/dE=\frac{(2m)^{3/2}}{4\pi^2\hbar^3}\sqrt{E} + =\frac{1}{4\pi^2}\left(\frac{2m}{\hbar^2}\right)^{3/2}\sqrt{E}$ + \item Two spins for every $k$-point:\\ + $\Rightarrow D(E)= + \frac{1}{2\pi^2}\left(\frac{2m}{\hbar^2}\right)^{3/2}\sqrt{E}$ + \end{itemize} + \item Curvature of the band:\\ + $\frac{d^2E}{dk^2}=\frac{d^2}{dk^2}\frac{\hbar^2k^2}{2m_{eff}} + =\frac{\hbar^2}{m_{eff}}$ + \item +\end{enumerate} + +\section{'Density of state mass' of electrons and holes in silicon} + +\begin{enumerate} + \item $D_v(E)=\frac{1}{2\pi^2}(\frac{2}{\hbar^2})^{3/2} + (m_{pl}^{3/2}+m_{ph}^{3/2})(E_v-E)^{1/2}$ + \item +\end{enumerate} + +\begin{center} +{\Large\bf + Merry Christmas\\ + \&\\ + Happy New Year!} +\end{center} + +\end{document}