X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_02.tex;h=ecafd2a925bb40885c7b046efb386fa4aee3e9f3;hb=9c6ed4d9ce5cdc917ceab10ae57a50ba2891f9fd;hp=8787db56333869653cc81eae8062045268410611;hpb=82e203acc6d8f125b12df53e5697d5df0875f0e3;p=lectures%2Flatex.git diff --git a/solid_state_physics/tutorial/2_02.tex b/solid_state_physics/tutorial/2_02.tex index 8787db5..ecafd2a 100644 --- a/solid_state_physics/tutorial/2_02.tex +++ b/solid_state_physics/tutorial/2_02.tex @@ -56,7 +56,7 @@ and $\lambda$ is the London penetration depth. of the wire. Assume, that the penetration depth $\lambda$ is much smaller than the radius $R$ of the cylinder. {\bf Hint:} - Use the relation $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r)$ + Use the relation $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r) r$ and integration by parts. \item Calculate $j_c(R,T=0K)$ for a wire of Sn with a radius of 1 mm at $T=0K$. The critical current and penetration depth at $T=0K$ are