int v3_set(t_3dvec *vec,double *ptr);
int v3_copy(t_3dvec *trg,t_3dvec *src);
int v3_cmp(t_3dvec *a,t_3dvec *b);
+double v3_scalar_product(t_3dvec *a,t_3dvec *b);
double v3_absolute_square(t_3dvec *a);
double v3_norm(t_3dvec *a);
int v3_per_bound(t_3dvec *a,t_3dvec *dim);
d_ij=v3_norm(&dist_ij);
/* save for use in 3bp */
- exchange->dist_ij=dist_ij; /* <- needed ? */
exchange->d_ij=d_ij;
+ exchange->dist_ij=dist_ij;
+ exchange->d_ij2=d_ij*d_ij;
/* constants */
if(num==aj->bnum) {
S=params->S[num];
R=params->R[num];
A=params->A[num];
+ B=params->B[num];
lambda=params->lambda[num];
- /* more constants depending of atoms i and j, needed in 3bp */
- params->exchange.B=&(params->B[num]);
- params->exchange.mu=&(params->mu[num]);
mu=params->mu[num];
params->exchange.chi=1.0;
}
S=params->Smixed;
R=params->Rmixed;
A=params->Amixed;
+ B=params->Bmixed;
lambda=params->lambda_m;
- /* more constants depending of atoms i and j, needed in 3bp */
- params->exchange.B=&(params->Bmixed);
- params->exchange.mu=&(params->mu_m);
mu=params->mu_m;
params->exchange.chi=params->chi;
}
*
*/
-
v3_sub(&dist_ik,&(ai->r),&(ak->r));
if(bc) check_per_bound(moldyn,&dist_ik);
d_ik=v3_norm(&dist_ik);
}
/* calc of f_c_ik */
- if(d_ik>S)
- return 0;
-
- if(d_ik<R) {
- /* f_c_ik = 1, df_c_ik = 0 */
+ if(d_ik>S) {
+ f_c_ik=0.0;
+ df_c_ik=0.0;
+ }
+ else if(d_ik<R) {
f_c_ik=1.0;
df_c_ik=0.0;
}
c=*(exchange->c);
d=*(exchange->d);
h=*(exchange->h);
+ chi=exchange->chi;
c2=exchange->c2;
d2=exchange->d2;
c2d2=exchange->c2d2;
numer=d_ij2+d_ik*d_ik-d_jk*d_jk;
denom=2*d_ij*d_ik;
- cos_theta=numer/denom;
+ //cos_theta=numer/denom;
+ cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik);
sin_theta=sqrt(1.0-(cos_theta*cos_theta));
theta=acos(cos_theta);
d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom);
/* some usefull expressions */
frac1=c2/(d2-h_cos2);
bracket1=1+c2d2-frac1;
- bracket2=f_c_ik*bracket1;
- bracket2_n_1=pow(bracket2,n-1.0);
- bracket2_n=bracket2_n_1*bracket2;
- bracket3=1+betan*bracket2_n;
+ if(f_c_ik==0.0) {
+ bracket2=0.0;
+ bracket2_n_1=0.0;
+ bracket2_n=0.0;
+ bracket3=1.0;
+ printf("Foo -> 0: ");
+ }
+ else {
+ bracket2=f_c_ik*bracket1;
+ bracket2_n_1=pow(bracket2,n-1.0);
+ bracket2_n=bracket2_n_1*bracket2;
+ bracket3=1.0+betan*bracket2_n;
+ printf("Foo -> 1: ");
+ }
bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0);
+printf("THETA: %.15f %.15f\n",cos_theta,theta*180/(2*M_PI));
bracket3_pow=bracket3_pow_1*bracket3;
/* now go on with calc of b_ij and derivation of b_ij */
/* add forces */
v3_add(&(ai->f),&(ai->f),&force);
- /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
- moldyn->energy+=(0.25*f_a*b_ij*f_c);
+ /* energy is 0.5 f_r f_c */
+ moldyn->energy+=(0.5*f_a*b_ij*f_c);
return 0;
}