From: hackbard Date: Wed, 6 Dec 2006 21:01:49 +0000 (+0000) Subject: tersoff fixes X-Git-Url: https://hackdaworld.org/gitweb/?a=commitdiff_plain;ds=sidebyside;h=b5e3cea078aea01962b72e32f6c66f29fb6e0494;hp=3b949c0096e27061ab92086d0d06ef3e4a74c8a1;p=lectures%2Flatex.git tersoff fixes --- diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex index 2f1bf6b..7d61ebe 100644 --- a/posic/thesis/basics.tex +++ b/posic/thesis/basics.tex @@ -172,7 +172,8 @@ It is of the form: \begin{eqnarray} b_{ij} & = & \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i} \\ \zeta_{ij} & = & \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} g(\theta_{ijk}) \\ -g(\theta_{ijk}) & = & 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] +g(\theta_{ijk}) & = & 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] \\ +b_{ij} & = & \chi_{ij} \Big( 1 + \beta_i^{n_i} \Big[ \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} \big[ 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] \big] \Big] \Big)^{-1/2n_i} \end{eqnarray} where $\theta_{ijk}$ is the bond angle between bonds $ij$ and $ik$. This is illustrated in Figure \ref{img:tersoff_angle}. @@ -190,7 +191,7 @@ F_n^i & = & - \frac{\partial}{\partial x_n^i} \sum_{j \neq i} V_{ij} \nonumber\\ For the implementation it is helpful to seperate the two and three body terms. \begin{eqnarray} F_n^i & = & \sum_{j \neq i} \Big( f_R(r_{ij}) \partial_{x_n^i} f_C(r_{ij}) + f_C(r_{ij}) \partial_{x_n^i} f_R(r_{ij}) \Big) + \nonumber\\ -& + & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) b_ij f_A(r_{ij}) + f_C(r_{ij}) \big[ b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) +& + & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) b_{ij} f_A(r_{ij}) + f_C(r_{ij}) \big[ b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) \end{eqnarray} The cutoff function $f_C$ derivated with repect to $x^i_n$ is \begin{equation} @@ -204,21 +205,27 @@ The derivations of the repulsive and attractive part are: \partial_{x_n^i} f_R(r_{ij}) & = & - \lambda_{ij} \frac{x_n^i - x_n^j}{r_{ij}} A_{ij} \exp (-\lambda_{ij} r_{ij})\\ \partial_{x_n^i} f_A(r_{ij}) & = & \mu_{ij} \frac{x_n^i - x_n^j}{r_{ij}} B_{ij} \exp (-\mu_{ij} r_{ij}) \textrm{ .} \end{eqnarray} -The angle $\theta_{ijk}$ can be expressed by the atom distances with the law of cosines: -\begin{eqnarray} -\theta_{ijk} & = & \arccos \Big( (r_{ij}^2 + r_{ik}^2 - r_{jk}^2)/(2 r_{ij} r_{ik}) \Big) \\ -\partial_{x^i_n} \theta_{ijk} & = & -\frac{-1}{\sqrt{1 - ((r_{ik}^2+r_{ij}^2-r_{jk}^2)/2r_{ik}r_{ij})^2}} \times \nonumber\\ - & & \times \Big( \frac{4 r_{ik}r_{ij} (2 x^i_n - x^k_n - x^j_n) + 2(x^j_n - x^i_n)\frac{r_{ik}}{r_{ij}} + 2(x^k_n - x^i_n)\frac{r_{ij}}{r_{ik}} }{4 r^2_{ik} r^2_{ij}}\Big) \label{eq:d_theta} -\end{eqnarray} -Using the expressions \eqref{eq:d_cutoff} and \eqref{eq:d_theta} the derivation of $b_{ij}$ with respect to $x^i_n$ can be written as: +The cosine of the angle $\theta_{ijk}$ can be expressed by the atom distances with the law of cosines +\begin{equation} +\cos \theta_{ijk} = \Big( (r_{ij}^2 + r_{ik}^2 - r_{jk}^2)/(2 r_{ij} r_{ik}) \Big) +\end{equation} +or by the definition of the scalar product +\begin{equation} +\cos \theta_{ijk} = \frac{\vec{r}_{ij} \vec{r}_{ik}}{r_{ij} r_{ik}} \textrm{ .} +\end{equation} +The derivation of the angle $\theta_{ijk}$ with respect to $x^i_n$ is given by +\begin{equation} +\partial_{x^i_n} \cos \theta_{ijk} = \Big( r_{ik} r_{ij} - \vec{r}_{ij} \vec{r}_{ik} \frac{r_{ik}}{r_{ij}} \Big) (x_n^i - x_n^j) + \Big( r_{ik} r_{ij} - \vec{r}_{ij} \vec{r}_{ik} \frac{r_{ij}}{r_{ik}} \Big) (x_n^i - x_n^k) +\label{eq:d_costheta} +\end{equation} + +Using the expressions \eqref{eq:d_cutoff} and \eqref{eq:d_costheta} the derivation of $b_{ij}$ with respect to $x^i_n$ can be written as: \begin{eqnarray} \partial_{x^i_n} b_{ij} & = & - \frac{1}{2n_i} \chi_{ij} \Bigg( 1 + \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} \bigg( f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \bigg)^{n_i} \Bigg] \Bigg)^{-\frac{1}{2n_i} - 1} \times \nonumber\\ && \times n_i \beta_i^{n_i} \sum_{k \ne i,j} \Bigg( \Bigg[ f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \Bigg]^{n_i -1} \times \nonumber\\ -&& \times \Bigg[ \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) + \nonumber\\ -&& + f_C(r_{ik}) \omega_{ik} \frac{c_i^2}{(d_i^2 + (h_i - \cos \theta_{ijk})^2)^2} \times \nonumber\\ -&& \times 2 \Big( h_i - \cos \theta_{ijk} \Big) \sin \theta_{ijk} \partial_{x^i_n} \theta_{ijk} \Bigg] \Bigg) +&& \times \Bigg[ \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) - \nonumber\\ +&& - f_C(r_{ik}) \omega_{ik} \frac{2 c_i^2 (h_i - \cos \theta_{ijk})}{(d_i^2 + (h_i - \cos \theta_{ijk})^2)^2} \partial_{x^i_n} \cos \theta_{ijk} \Bigg] \end{eqnarray}