From: hackbard Date: Tue, 1 Jun 2010 15:22:27 +0000 (+0200) Subject: started with 110 - x mig (albe) X-Git-Url: https://hackdaworld.org/gitweb/?a=commitdiff_plain;h=475e8c6d659d1c33c44af33dd6a1bdaa72f82388;p=lectures%2Flatex.git started with 110 - x mig (albe) --- diff --git a/posic/thesis/defects.tex b/posic/thesis/defects.tex index c739087..d7f3052 100644 --- a/posic/thesis/defects.tex +++ b/posic/thesis/defects.tex @@ -723,35 +723,53 @@ However, in some cases a time constant of 100 fs resuls in lower barriers and, \begin{figure}[th!] \begin{center} -\includegraphics[width=13cm]{bc_00-1.ps}\\[1.8cm] +\includegraphics[width=13cm]{bc_00-1.ps}\\[5.6cm] \begin{pspicture}(0,0)(0,0) -\psframe*[linecolor=blue,fillstyle=none,fillcolor=white](-8,3)(7,0) +\psframe[linecolor=red,fillstyle=none](-7,2.7)(7.2,6) \end{pspicture} -\begin{picture}(0,0)(160,0) +\begin{picture}(0,0)(140,-100) +\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_00.eps} +\end{picture} +\begin{picture}(0,0)(10,-100) +\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_01.eps} +\end{picture} +\begin{picture}(0,0)(-120,-100) +\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_02.eps} +\end{picture} +\begin{picture}(0,0)(25,-80) +\includegraphics[width=2.5cm]{110_arrow.eps} +\end{picture} +\begin{picture}(0,0)(215,-100) +\includegraphics[height=2.2cm]{001_arrow.eps} +\end{picture}\\ +\begin{pspicture}(0,0)(0,0) +\psframe[linecolor=blue,fillstyle=none](-7,-0.5)(7.2,2.8) +\end{pspicture} +\begin{picture}(0,0)(160,-10) \includegraphics[width=2.2cm]{albe_mig/bc_00-1_01.eps} \end{picture} -\begin{picture}(0,0)(100,0) +\begin{picture}(0,0)(100,-10) \includegraphics[width=2.2cm]{albe_mig/bc_00-1_02.eps} \end{picture} -\begin{picture}(0,0)(10,0) +\begin{picture}(0,0)(10,-10) \includegraphics[width=2.2cm]{albe_mig/bc_00-1_03.eps} \end{picture} -\begin{picture}(0,0)(-120,0) +\begin{picture}(0,0)(-120,-10) \includegraphics[width=2.2cm]{albe_mig/bc_00-1_04.eps} \end{picture} -\begin{picture}(0,0)(25,20) +\begin{picture}(0,0)(25,10) \includegraphics[width=2.5cm]{100_arrow.eps} \end{picture} -\begin{picture}(0,0)(215,0) +\begin{picture}(0,0)(215,-10) \includegraphics[height=2.2cm]{010_arrow.eps} \end{picture} \end{center} -\caption{Migration barrier of the bond-centered to \hkl<0 0 -1> dumbbell transition using the classical Erhard/Albe potential.} +\caption{Migration barrier and structures of the bond-centered to \hkl<0 0 -1> dumbbell transition using the classical Erhard/Albe potential.} \label{fig:defects:cp_bc_00-1_mig} % red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20 -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.75 -1.25 -0.25 -L -0.25 -0.25 -0.25 -r 0.6 -B 0.1 % blue: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20_tr100/ -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.0 -0.25 1.0 -L 0.0 -0.25 -0.25 -r 0.6 -B 0.1 \end{figure} -Figure \ref{fig:defects:cp_bc_00-1_mig} shows the migration barrier of the bond-centered to \hkl<0 0 -1> dumbbell transition. +Figure \ref{fig:defects:cp_bc_00-1_mig} shows the migration barrier iand corresponding structures of the bond-centered to \hkl<0 0 -1> dumbbell transition. Since the bond-centered configuration is unstable relaxing into the \hkl<1 1 0> C-Si dumbbell interstitial configuration within this potential the low kinetic energy state is used as a starting configuration. Depending on the time constant activation energies of 2.4 eV and 2.2 eV respectively are obtained. The migration path obtained by simulations with a time constant of 1 fs remains in the \hkl(1 1 0) plane. @@ -761,9 +779,28 @@ However, the investigated pathways cover an activation energy approximately twic \begin{figure}[th!] \begin{center} -\includegraphics[width=13cm]{00-1_0-10.ps} +\includegraphics[width=13cm]{00-1_0-10.ps}\\[2.4cm] +\begin{pspicture}(0,0)(0,0) +\psframe[linecolor=red,fillstyle=none](-6,-0.5)(7.2,2.8) +\end{pspicture} +\begin{picture}(0,0)(130,-10) +\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_00.eps} +\end{picture} +\begin{picture}(0,0)(0,-10) +\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_min.eps} +\end{picture} +\begin{picture}(0,0)(-120,-10) +\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_03.eps} +\end{picture} +\begin{picture}(0,0)(25,10) +\includegraphics[width=2.5cm]{100_arrow.eps} +\end{picture} +\begin{picture}(0,0)(185,-10) +\includegraphics[height=2.2cm]{001_arrow.eps} +\end{picture} \end{center} -\caption{Migration barrier of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition using the classical Erhard/Albe potential.} +\caption{Migration barrier and structures of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition using the classical Erhard/Albe potential.} +% red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_00-1_0-10_s20 -nll -0.56 -0.56 -0.8 -fur 0.3 0.2 0 -c -0.125 -1.7 0.7 -L -0.125 -0.25 -0.25 -r 0.6 -B 0.1 \label{fig:defects:cp_00-1_0-10_mig} \end{figure} \begin{figure}[th!] @@ -776,15 +813,21 @@ However, the investigated pathways cover an activation energy approximately twic Figure \ref{fig:defects:cp_00-1_0-10_mig} and \ref{fig:defects:cp_00-1_ip0-10_mig} show the migration barriers of \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition, with a transition of the C atom to the neighboured lattice site in the first case and a reorientation within the same lattice site in the latter case. Both pathways look similar. A local minimum exists inbetween two peaks of the graph. -The corresponding configuration looks similar to the \hkl<1 1 0> configuration. +The corresponding configuration, which is illustrated for the migration simulation with a time constant of 1 fs, looks similar to the \hkl<1 1 0> configuration. Indeed, this configuration is obtained by relaxation simulations without constraints of configurations near the minimum. Activation energies of roughly 2.8 eV and 2.7 eV respectively are needed for migration. +The \hkl<1 1 0> configuration seems to play a decisive role in all migration pathways. +In the first migration path it is the configuration resulting from a further relaxation of the rather unstable bond-centered configuration, which is fixed to be a transition point. +The last two pathways show configurations almost identical to the \hkl<1 1 0> configuration, which constitute a local minimum within the pathway. +Thus, migration pathways with the \hkl<1 1 0> C-Si dumbbell interstitial configuration as a starting or final configuration are further investigated. +Figure ... shows ... + + +The ... diffusion ... ... indicate a problem that is formulated and discussed in more detail in section ... -Since the \hkl<1 1 0> configuration einnehmen a besondere role in all migration pathways migrations mit dieser configuration are investigated further. -... \section{Combination of point defects}