From: hackbard Date: Tue, 28 Nov 2006 23:08:00 +0000 (+0000) Subject: added short nlsop helsinki talk X-Git-Url: https://hackdaworld.org/gitweb/?a=commitdiff_plain;h=49feba01497480b1b3d7c9ec7e6ab32d1cdd86b3;p=lectures%2Flatex.git added short nlsop helsinki talk --- diff --git a/nlsop/nlsop_helsinki.tex b/nlsop/nlsop_helsinki.tex new file mode 100644 index 0000000..d499dc1 --- /dev/null +++ b/nlsop/nlsop_helsinki.tex @@ -0,0 +1,368 @@ +\documentclass[semhelv]{seminar} + +\usepackage{verbatim} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} + +\usepackage{calc} % Simple computations with LaTeX variables +\usepackage[hang]{caption2} % Improved captions +\usepackage{fancybox} % To have several backgrounds + +\usepackage{fancyhdr} % Headers and footers definitions +\usepackage{fancyvrb} % Fancy verbatim environments +\usepackage{pstcol} % PSTricks with the standard color package + +\usepackage{graphicx} +\graphicspath{{./img/}} + +\usepackage{semcolor} +\usepackage{semlayer} % Seminar overlays +\usepackage{slidesec} % Seminar sections and list of slides + +\input{seminar.bug} % Official bugs corrections +\input{seminar.bg2} % Unofficial bugs corrections + +\articlemag{1} + +\begin{document} + +\extraslideheight{10in} +\slideframe{none} + +\def\slideleftmargin{.0in} +\def\sliderightmargin{0in} +\def\slidetopmargin{0in} +\def\slidebottommargin{.2in} % fucking slide number gone now :) + +% topic + +\begin{slide} +\begin{figure}[t] + \begin{center} + \includegraphics[height=1cm]{ifp.eps} + \\ + \includegraphics[height=2cm]{Lehrstuhl-Logo.eps} + \end{center} +\end{figure} +\begin{center} + \large\bf + Monte Carlo simulation study of a selforganization process leading + to ordered precipitate structures +\end{center} +\begin{center} + F. Zirkelbach, M. H"aberlen, J. K. N. Lindner und B. Stritzker +\end{center} +\end{slide} + +% start of content +\ptsize{8} + +\begin{slide} +{\large\bf + Outline +} +\begin{picture}(300,30) +\end{picture} +\begin{itemize} + \item Cross-section TEM: selforganized $SiC_x$-precipitates + \item Model describing the selforganization process + \item Monte Carlo simulation + \item Comparison of experiment and simulation + \item Recipe for thick films of ordered laemllae + \item Summary +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Cross-Section TEM image showing selforganized amorphous lamellar inclusions +} +\begin{figure} + \begin{center} + \includegraphics[width=10cm]{k393abild1_e.eps} + $180 keV \textrm{ } C^+ \rightarrow Si(100)$, $150 \, ^{\circ} \mathrm{C}$, $4.3 \times 10^{17} cm^{-2}$ + \end{center} +\end{figure} +\end{slide} + +\begin{slide} +{\large\bf + Model +} +\begin{figure} + \begin{center} + \includegraphics[width=8cm]{modell_ng_e.eps} + \end{center} +\end{figure} + \scriptsize +\begin{itemize} + \item Supersaturation of $C$ in $c-Si$ \\ + $\rightarrow$ {\bf Carbon induced} nucleation of spherical $SiC_x$-precipitates + \item High interfacial energy between $3C-SiC$ and $c-Si$\\ + $\rightarrow$ {\bf Amorphous} precipitates + \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\ + $\rightarrow$ {\bf Lateral strain} (black arrows) + \item Implantation range near surface\\ + $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component} + \item Reduction of the carbon supersaturation in $c-Si$\\ + $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina (white arrows) + \item Remaining lateral strain\\ + $\rightarrow$ {\bf Strain enhanced} lateral amorphization + \item Absence of crystalline neighbours (structural information)\\ + $\rightarrow$ {\bf Stabilization} of amorphous inclusions {\bf against recrystallization} +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Simulation\\ +} +\\ +{\bf Discretization of the target} +\begin{center} + \includegraphics[width=8cm]{gitter_e.eps} +\end{center} +\begin{itemize} + \item divided into cells with a cube length of $3 \, nm$ + \item periodic boundary conditions in $x$,$y$-direction +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Simulation\\ +} +{\bf TRIM collision statistics} +\begin{center} + \includegraphics[width=8cm]{trim_coll_e.eps} +\end{center} +\begin{itemize} + \item identical depth profiles for + number of + collisions per depth and nuclear stopping power + \item mean constant energy loss per + collision +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Simulation algorithm\\ +} +\\ +The simulation algorithm consists of the following three parts looped +$s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:\\ +\begin{itemize} + \item Amorphization / Recrystallization + \item Carbon incorporation + \item Diffusion / Sputtering +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Amorphization / Recrystallization \\ +} +\begin{itemize} + \item random numbers distributed according to the nuclear energy loss\\ + $\rightarrow$ determine the volume in which a collision occurs + \item compute local probability for amorphization / recyrstallization + \item let another random number decide ... +\end{itemize} +\vspace{12pt} +\[ + \displaystyle p_{c \rightarrow a}(\vec r) = \textcolor[rgb]{0,1,1}{p_{b}} \qquad + \qquad \textcolor{red}{p_{c} \, c_{Carbon}(\vec r)} \qquad + \textcolor[rgb]{0.5,0.25,0.12}{\sum_{amorphous \, neighbours} \frac{p_{s} \, c_{Carbon}(\vec{r'})}{(\vec r - \vec{r'})^2}} \\ +\] +\begin{picture}(70,15)(-10,0) + \bf \textcolor[rgb]{0,1,1}{normal (ballistic)} +\end{picture} +\begin{picture}(100,15)(-15,0) + \bf \textcolor{red}{carbon inuced} +\end{picture} +\begin{picture}(120,15)(-40,0) + \bf \textcolor[rgb]{0.5,0.25,0.12}{stress enhanced} +\end{picture} +\begin{picture}(300,40) +$ + p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \displaystyle \Big( 1 - \frac{\sum_{direct\, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{, } +$ +\end{picture} +\vspace{6pt} +\begin{displaymath} + \delta (\vec r) = \left\{ \begin{array}{ll} + 1 & \textrm{if volume $\vec r$ is amorphous} \\ + 0 & \textrm{else} \\ + \end{array} \right. +\end{displaymath} +\end{slide} + +\begin{slide} +{\large\bf + Carbon incorporation +} +\begin{itemize} + \item random numbers distributed according to + the implantation profile to determine the + incorporation volume + \item increase the amount of carbon atoms in + that volume +\end{itemize} +\begin{picture}(50,20)(0,0)\end{picture}\\ +{\large\bf +Diffusion/Sputtering +} +\begin{itemize} + \item every $d_v$ steps transfer of a fraction $d_r$ + of carbon atoms from crystalline volumina to + an amorphous neighbour volume + \item remove $3 \, nm$ surface layer after $n$ loops, + shift remaining cells $3 \, nm$ up and insert + an empty, crystalline $3 \, nm$ bottom layer +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Comparison of experiment and simulation \\ +} +\begin{center} + \includegraphics[width=10cm]{dosis_entwicklung_ng_e_1-2.eps} +\end{center} +Simulation parameters:\\ +$p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$, +$p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$. +\end{slide} + +\begin{slide} +{\large\bf + Comparison of experiment and simulation \\ +} +\begin{center} + \includegraphics[width=10cm]{dosis_entwicklung_ng_e_2-2.eps} +\end{center} +Simulation parameters:\\ +$p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$, +$p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$. +\end{slide} + +\begin{slide} +{\large\bf + Conclusion:\\ +} +\begin{itemize} + \item Simulation in good agreement with experimentally observed + formation and growth of the continuous amorphous layer + \item Lamellar precipitates and their evolution at the upper + a/c interface with increasing dose is reproduced +\end{itemize} +\begin{picture}(50,20)(0,0)\end{picture}\\ +{\bf\color{red} Simulation is able to model the whole + depth region affected by the + irradiation process} +\end{slide} + +\begin{slide} +{\large\bf + Structural/compositional\\information \\ +} +\begin{itemize} + \item Fluctuation of the carbon\\ + concentration in the region\\ + of the lamellae + \item Saturation limit of carbon\\ + in c-$Si$ under given\\ + implantation conditions\\ + between $8$ and $10 \, at. \%$ +\end{itemize} +\begin{picture}(0,0)(-145,60) +\includegraphics[height=8cm=]{ac_cconc_ver2_e.eps} +\end{picture} +\end{slide} + +\begin{slide} +{\large\bf + Structural/compositional\\information \\ +} +\begin{itemize} + \item Complementarily arranged and\\ + alternating sequence of layers\\ + with high and low amount of\\ + amorphous regions + \item Carbon accumulation in the\\ + amorphous phase +\end{itemize} +\begin{picture}(0,0)(-155,60) +\includegraphics[height=8cm]{97_98_ng_e.eps} +\end{picture} +\end{slide} + +\begin{slide} +{\large\bf + Recipe for thick films of ordered lamellae \\ +} +\\ +Prerequisites:\\ +Crystalline silicon target with a nearly constant carbon +concentration at $10 \, at. \%$ in a $500 \, nm$ thick +surface layer +\includegraphics[width=8cm]{multiple_impl_cp_e.eps} +\end{slide} + +\begin{slide} +{\large\bf + Recipe for thick films of ordered lamellae \\ +} +\\ +{\bf Stirring up:} +$2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at +$150 \, ^{\circ} \mathrm{C}$ +\begin{itemize} + \item This does not significantly change the carbon + concentration in the top $500 \, nm$ + \item Nearly constant nuclear energy loss in the top $700 \, nm$ + region +\end{itemize} +\includegraphics[width=8cm]{multiple_impl_e_ver2.eps}\\ +{\bf\color{blue} Starting point for materials showing strong photoluminescence}\\ +{\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.} +\end{slide} + +\begin{slide} +{\large\bf + Summary +} +\begin{itemize} + \item Observation of selforganized nanometric precipitates by ion irradiation\\ + $C \rightarrow Si \qquad T_{i}: 150 - 350 \, ^{\circ} \mathrm{C} \qquad D \le 8 \times 10^{17} cm^{-2}$ + \item Model proposed describing the selforganization process + \item Model implemented in a Monte Carlo simulation code + \item Modelling of the complete depth region affected by the irradiation process + \item Simulation is able to reproduce entire amorphous phase formation + \item Precipitation process gets traceable by simulation + \item Detailed structural/compositional information available by simulation + \item Recipe proposed for the formation of thick films of lamellar structure +\end{itemize} +\end{slide} + +\begin{slide} +{\large\bf + Thank you for your attention!\\ + Thanks for accepting me as a guest!\\ +} +\\ +\ldots another recipe I propose:\\ +\begin{itemize} + \item {\color{blue} 06 cl vodka} + \item {\color{blue} 03 cl peach liqueur} + \item {\color{blue} 03 cl amaretto} + \item {\color{red} 16 cl black currant juice} + \item {\color{red} dash of citron} + \item {\color{red} 3-4 ice cubes} +\end{itemize} +$\Rightarrow$ Killer Cool Aid +\end{slide} + +\end{document}