From: hackbard <hackbard>
Date: Tue, 21 Jun 2005 15:17:22 +0000 (+0000)
Subject: begin of random value test
X-Git-Url: https://hackdaworld.org/gitweb/?a=commitdiff_plain;h=6f83c9210c3da4eaa80b3f375a691f26a268284d;p=lectures%2Flatex.git

begin of random value test
---

diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex
index d35c8b1..25addd7 100644
--- a/nlsop/diplom/grundlagen.tex
+++ b/nlsop/diplom/grundlagen.tex
@@ -52,6 +52,7 @@
       \end{equation}
 
       \subsubsection{Zufallszahlen mit linear steigender Wahrscheinlichkeit}
+      \label{subsubsection:lin_g_p}
 
       Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[$ linear ansteigen
       \begin{equation}
diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex
index b6382df..d254019 100644
--- a/nlsop/diplom/simulation.tex
+++ b/nlsop/diplom/simulation.tex
@@ -107,6 +107,10 @@
     Die Parameter sind ebenfalls frei w"ahlbar.
     Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen.
 
+    Prinzipiell sollte man den Kohlenstoff"ubertrag abh"angig von dem bereits vorhandenen Kohlenstoff in dem amorphen Volumen bestimmen.
+    Da die implantierte Dosis maximal die St"ochiometridosis und der Parameter $d_r$ gro"s genug gew"ahlt ist, kommt es nicht zur "Ubers"attigung.
+    Der Kohlenstoff in kristallinen Gebieten ist also immer bestrebt in amorphe Gebiete zu diffundieren um die sehr viel geringere S"attigung im Kristallinen zu reduzieren.
+
     \subsection{Sputtern}
 
     Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen.
@@ -192,6 +196,7 @@
   Es wird mit einem komplett kristallinen und kohlenstofffreien Target gestartet.
 
     \subsection{Amorphisierung und Rekristallisation}
+    \label{subsection:a_r_step}
 
     Im ersten Schritt sollen die Kollisionen und die daraus resultierende Amorphisierung beziehungsweise Rekristallisation simuliert werden.
     Zun"achst muss das gestossene Volumen ausgew"ahlt werden.
@@ -231,13 +236,60 @@
     Da nur ganze Atome "ubertragen werden k"onnen wird der Betrag auf die n"achst kleinere ganze Zahl abgerundet.
     Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt.
 
-    Die Sputter-Routine wird alle Schritte ausgef"uhrt.
-    Dabei .
-    Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die darauffolgenden Ebenen auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren.
+    Die Sputter-Routine wird nach der Dosis, die einem Abtrag von $3 nm$ enstpricht ausgef"uhrt.
+    Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben:
+    \begin{equation}
+    S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.}
+    \end{equation}
+    Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben.
+    Dies geschieht wie folgt.
+    Der Inhalt der Eben $i$ wrd auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben.
+    Die Information der obersten Ebene $i=1$ geht dabei verloren.
+    Diese entspricht der abgetragenen Ebene.
+    Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null.
+
+    Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren.
+
+    Die Sputterrate kann durch {\em TRIM} bestimmt werden.
+    Bei den gegebenen Bedingungen werden ungef"ahr $50 nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen.
 
   \section{Simulierte Tiefenbereiche}
 
+  Wie bereits erw"ahnt gibt es zwei verschiedene Versionen des Programms, die verschiedene Tiefenbereiche, im Folgenden Simulationsfenster genannt, simulieren.
+
+  Da in erster Linie der Selbstorganisationsprozess der lamellaren Ausscheidungen an der vorderen Grenzfl"ache der amorphen $SiC_x$-Schicht simuliert werden soll, ist der Tiefenbereich der ersten Version gerade bis zu Beginn der durchgehenden Schicht.
+  Dies entspricht einer Tiefe von ungef"ahr $300 nm$, und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung.
+
+  Wie in \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden.
+  Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohelnstofferh"ohung stattfindet.
+
+  Die Zufallszahl $z$, die auf die Tiefen-Koordinate $m$ abgebildet wird, muss der Verteilung $p(z)dz = (sz + s_0)dz$ gen"ugen.
+  Dabei sind $s$ unnd $s_0$ die linear gen"aherte nukleare Bremskraft beschreibende Simulationsparameter.
+  Die Transformation wird wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben durchgef"uhrt.
+  Dasselbe betrifft die Wahl der Tiefen-Koordinate f"ur den Einbau des Kohlenstoffatoms.
+  Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend wird das linear gen"aherte Implantationsprofil verwendet.
+
+  Da sowohl die Reichweitenverteilung als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist kann Sputtern nicht beachtet werden.
+  Der Diffusionsprozess ist uneingeschr"ankt "moglich.
+
+  In der zweiten Version wird die gesamte Implantationstiefe simuliert.
+  Das Simulationsfenster geht von $0-700 nm$.
+  Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung.
+
+  Die Tiefen-Koordinaten f"ur den Sto"sprozess und die Kohelnstoffinkorporation werden wie in Abschnitt \ref{subsection:a_r_step} beschrieben nach der Verwerfungsmethode entsprechend dem nuklearen Bremskraftprofil und der Reichweitenverteilung gewonnen.
+
+   Da sowohl der nukleare Energieverlust und die Kohlenstoffkonzentration in Ebenen gr"osser $Z$ auf Null abgesunken ist, kann die Sputterroutine ausgef"uhrt werden.
+   Der Diffusionsprozess ist ebenfalls uneingeschr"ankt m"oglich.
+
   \section{Test der Zufallszahlen}
 
+  F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein.
+  Es gibt viele statistische Tests eine Zahlenfolge auf ihre Verteilung beziehungsweise Zuf"alligkeit zu "uberpr"ufen.
+  Im Folgenden soll nur geschaut werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren.
+  Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft.
+
+  Zun"achst soll der 
+  Abbildung \ref{img:uniform_distrib} zeigt die H"aufigkeit
+
   \section{Ablaufschema}