From: hackbard Date: Tue, 11 Oct 2005 16:58:51 +0000 (+0000) Subject: finished variation of parameters in sim2 chapter X-Git-Url: https://hackdaworld.org/gitweb/?a=commitdiff_plain;h=d20cf923e77d5cb7c7d3495263d3e25bb7f1732d;p=lectures%2Flatex.git finished variation of parameters in sim2 chapter --- diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 192fae8..39b19fb 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -372,34 +372,17 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 nm$ wieder in die Gesamtkonzentration "uber. Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 nm$ Tiefe instabil gegen"uber Rekristallisation. - \subsection{Position und Ausdehnung der amorphen Phase} - - \printimg{!h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden Ebenen $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} $b)$).}{img:z_zplus1_ver2} - Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ in einem Tiefenbereich mit lamellaren Strukturen. - Sie best"atigt die Vermutung der komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich. - Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor. - - \printimg{!h}{width=15cm}{position_al.eps}{Position und Ausdehnung amorpher Phasen (graue Fl"achen) und Kohlenstoffkonzentrationsmaximum (rot) in Abh"angigkeit der Dosis in der Simulation aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2}.}{img:position_sim} - Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der amorphen Phasen. - Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet. - Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum. - Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein. - Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden. - Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet. - Diese bestehen in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. - Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt. - Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen. - Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen. - In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nmm$ "uber dem Beginn der durchgehend amorphen Schicht. - Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist. - Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln. - Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden. - - Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache f"ur Experiment und Simulation in Abh"angigkeit der Dosis zusammen. - Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung. - Ausserdem stimmen auch die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \%$ gut "uberein. - Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft eine untergeordnete Rolle im Amorphisierungsprozess einnimmt. + Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache der durchgehend amorphen Schicht f"ur Experiment und Simulation in Abh"angigkeit von der Dosis zusammen. + Experimentell wird dies durch die Kombination der Messung des Kohlenstofftiefenprofils mittels Rutherford-R"uckstreu-Spektroskopie und der Bestimmung der Tiefe der Grenzfl"achen mittels Transmissionselektronenmikroskopie realisiert. + Die selbe Strategie wird f"ur die Auswertung der Simulationsergebnisse verfolgt. + Zuerst bestimmt man visuell die $z$-Koordinaten der Grenzfl"achen mit der {\em NLSOP Standalone} Version (Anhang \ref{section:sav}). + Das selbe Programm liefert auch die zugeh"origen Kohlenstoffkonzentrationsprofile, in denen man die zugeh"origen Konzentrationen ablesen kann. + + Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 at.\&$. + Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 at.\%$ gut "uberein. + Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist. Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehenden amorphen $SiC_x$-Schicht. + \begin{table}[h] \begin{center} \begin{tabular}{|c|c|c|} @@ -414,20 +397,20 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \hline \end{tabular} \end{center} - \caption{Experimentell bestimmte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Dosis.} + \caption{Experimentell bestimmte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Dosis aus \cite{maik_da}.} \label{table:interface_conc_exp} \end{table} \begin{table}[h] \begin{center} - \begin{tabular}{|c|c|c|} + \begin{tabular}{|c|c|c|c|} \hline - Durchl"aufe & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\ + Durchl"aufe & \begin{minipage}{3.5cm} \begin{center} "aquivalente Dosis \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\ \hline - $80 \times 10^6$ & 15,21 $at. \%$ & 14,71 $at. \%$ \\ + $80 \times 10^6$ & $2,16 \times 10^{17} cm^{-2}$ & 13,20 $at. \%$ & 12,82 $at. \%$ \\ \hline - $120 \times 10^6$ & 14,65 $at. \%$ & 14,06 $at. \%$ \\ + $120 \times 10^6$ & $3,25 \times 10^{17} cm^{-2}$ & 13,47 $at. \%$ & 12,32 $at. \%$ \\ \hline - $159 \times 10^6$ & 16,08 $at. \%$ & 14,76 $at. \%$ \\ + $159 \times 10^6$ & $4,3 \times 10^{17} cm^{-2}$ & 15,23 $at. \%$ & 12,87 $at. \%$ \\ \hline \end{tabular} \end{center} @@ -435,51 +418,74 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \label{table:interface_conc_sim} \end{table} + \subsection{Position und Ausdehnung der amorphen Phase} + + \printimg{!h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden $x-y$-Schnitten in der Ebene $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} $b)$).}{img:z_zplus1_ver2} + Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ in einem Tiefenbereich mit lamellaren Strukturen. + Sie best"atigt die Vermutung der nahezu komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich. + Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor. + + \printimg{!h}{width=15cm}{position_al.eps}{Position und Ausdehnung amorpher Phasen (graue Fl"achen) und Kohlenstoffkonzentrationsmaximum (rot) in Abh"angigkeit der Dosis in der Simulation aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2}.}{img:position_sim} + Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der amorphen Phasen. + Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet. + Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum. + Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein. + Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden. + Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet. + Diese bestehen in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. + Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt. + Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen. + Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen. + In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nmm$ "uber dem Beginn der durchgehend amorphen Schicht. + Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist. + Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln. + Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden. + \subsection{Variation der Simulationsparameter} Im Folgenden sollen Ergebnisse mit variierten Simulationsparametern vorgestellt und interpretiert werden. Dabei wird von dem Satz der Parameter aus Abschnitt \ref{subsection:reproduced_dose} ausgegangen und einzelne Parameter variiert. - - \begin{figure}[h] - \includegraphics[width=12cm]{var_sim_paramters.eps} - \caption{Variation der Simulationsparameter. Ausgangssituation in a): $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^6$, $s \approx 159 \times 10^6$. Variation des Parameters b) $d_r$, c) $p_b$, d) $p_c$ und e) $p_s$.} - \label{img:var_sim_paramters} - \end{figure} - Abbildung \ref{img:var_sim_paramters} $a)$ zeigt zum Vergleich die Simulation mit dem Ausgangsparametersatz $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^6$, $d_r=0,05$ und $s \approx 159 \times 10^6$. + So werden die Einfl"usse einzelner Parameter auf das Ergebnis sichtbar. + Abbildung \ref{img:var_sim_paramters} a) zeigt zum Vergleich die Simulation mit dem Ausgangsparametersatz $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^6$, $d_r=0,05$ und $s \approx 159 \times 10^6$. + \printimg{h}{width=15cm}{var_sim_paramters.eps}{Variation der Simulationsparameter. Ausgangssituation in a): $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^6$, $s \approx 159 \times 10^6$. Variation des Parameters b) $d_r$, c) $p_b$, d) $p_c$ und e) $p_s$.}{img:var_sim_paramters} - In Abbildung \ref{img:var_sim_paramters} $b)$ wurde die Diffusion durch einen gr"o"seren Wert des Parameters $d_r$ erh"oht. - Es bildet sich keine durchgehende amorphe Schicht. + In Abbildung \ref{img:var_sim_paramters} b) wurde die Diffusion durch einen gr"o"seren Wert des Parameters $d_r$ erh"oht. + Es bildet sich keine durchgehend amorphe Schicht. Man erkennt fast nur noch amorphe Lamellen. Die hohe Diffusionsrate des Kohlenstoffs bewirkt, dass selbst im Implantationsmaximum zuf"allig amorph gewordene Gebiete ihren kristallinen Nachbarebenen zu schnell den Kohlenstoff entziehen. - Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehenden amorphen $SiC_x$-Schicht. + Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehend amorphen $SiC_x$-Schicht. Die Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen kristallinen Gebieten ist daher zu klein. - Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehenden amorphen Schicht sowie der Bildung der Lamellen. + Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht sowie der Bildung der Lamellen. - Der Versuch die Bildung der durchgehenden amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} $c)$ abgebildet. + Der Versuch die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} c) abgebildet. Dazu wurde der Einfluss der ballistischen Amorphisierung $p_b$ erh"oht. - Die Anzahl amorpher Gebiete steigt. - Dies ist verst"andlich, da die Amorphisierungswahrscheinlichkeit unabh"angig von Lage oder dem Zustand steigt. + Da das nukleare Bremskraftmaximum vor dem Maximum der Kohlenstoffkonzentration liegt (Abbildungen \ref{img:trim_nel}/\ref{img:trim_impl}), sollte sich eine st"arkere Amorphisierung im oberen Fall des Implantationsprofils ergeben. + Dies ist auch tats"achlich feststellbar. + Jedoch steigt auch die Anzahl amorpher Gebiete insgesamt an. + Dies ist verst"andlich, da die Amorphisierungswahrscheinlichkeit unabh"angig von Lage oder Zustand steigt. Die durchgehende Schicht nimmt nach oben hin auf Kosten der lamellaren Ausscheidungen zu. Die allgemein h"ohere Wahrscheinlichkeit der Amorphisierung beg"unstigt eine komplette Amorphisierung im lamellaren Bereich. - Da gleichzeitig die Rekristallisationswahrscheinlichkeit sinkt, haben die ballistisch amorphisierten Gebiete eine h"ohere Chance sich durch implantierten beziehungsweise diffundierten Kohlenstoff zu stabilisieren. - Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe. - - In Betracht auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} $b)$ bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} $d)$ der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. - Wie erwartet hat die Ausdehnung der amorphen Schicht abgenommen. - Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit den experiemntellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. + Da gleichzeitig die Rekristallisationswahrscheinlichkeit sinkt, haben die ballistisch amorphisierten Gebiete eine h"ohere Chance, sich durch implantierten beziehungsweise diffundierten Kohlenstoff zu stabilisieren. + Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt. + Das Entgegenwirken durch den erh"ohten Einfluss der ballistische Amorphisierung ist sehr gering. + + Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} $d)$ der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. + Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt. + Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab. + Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. Sie erstreckt sich weiterhin um das Kohlenstoffmaximum. - Lamellare Strukturen sind, ausser an den kristallinen Einschl"ussen im Beginn der durchgehenden Schicht nicht zu erkennen. + Lamellare Strukturen sind, ausser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen. An diesem Ergebnis erkennt man wieder sehr gut, dass die kohlenstoffinduzierte Amorphisierung den wichtigsten Amorphisierungsmechanismus darstellt. - Der Einfluss der spannungsinduzierten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} $e)$ zu sehen. + Der Einfluss der spannungsinduzierten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} e) zu sehen. Hier wurde der Parameter $p_s$ erh"oht. - Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung der Bereiche im Target, in denen selbst nur wenig Kohlenstoff vorhanden ist. + Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist. Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum. - Die Konzentration am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$. - Da in den Teil f"ur die spannungsinduzierte Amorphisierung auch die Kohelnstoffkonzentration eingeht, ist dies nicht weiter verwunderlich. - Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringen Kohlenstoffanteil sehr unwahrscheinlich ist. + Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$. + Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohelnstoffkonzentration eingeht, ist dies nicht weiter verwunderlich. + Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist. Der Diffusionsprozess verliert somit an Bedeutung. - Dies f"uhrt letztendlich zur kompletten Amorphisierung der Bereiche oberhalb und eingeschlossen der genannten Konzentration. + Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 at.\%$ Kohlenstoff enth"alt. Lamellare Strukturen werden nicht gebildet. \subsection{Herstellung grosser Bereiche lamellarer Strukturen durch einen zweiten Implantationsschritt} diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index e92eddd..7b6fa8b 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -47,5 +47,5 @@ Der Kohlenstoff diffundiert von den kristallinen in angrenzende amorphe Gebiete. Kristalline Gebiete, die auf diese Weise Kohlenstoff an ihre amorphe Nachbarschaft abgegeben haben, werden bei fortgesetzter Bestrahlung mit geringerer Wahrscheinlichkeit amorphisiert. So entstehen abwechselnd amorphe und kristalline Lamellen. - Da in experimentellen Ergebnissen von Implantationen bei weitaus h"oheren Temperaturen \cite{reiber,goetz}, bei denen sich keine amorphe Phase bildet, keine Verbreiterung des Kohlenstoffprofils durch Diffusion beobachtet wird, wird Diffusion innerhalb kristalliner Gebiete ausgeschlossen. + Da in experimentellen Ergebnissen von Implantationen bei weitaus h"oheren Temperaturen \cite{reiber,goetz}, bei denen sich keine amorphe Phase bildet, keine Verbreiterung des Kohlenstoffprofils durch Diffusion beobachtet wird, wird Diffusion innerhalb kristalliner Gebiete ausgeschlossen. diff --git a/nlsop/diplom/quellcode.tex b/nlsop/diplom/quellcode.tex index ffd083c..3fd93cf 100644 --- a/nlsop/diplom/quellcode.tex +++ b/nlsop/diplom/quellcode.tex @@ -33,6 +33,7 @@ Der Quellcode ist auf der beigelegten Compact Disc enthalten. Weiterhin dient es zur Statusabfrage von laufenden Rechnungen, der Warteschlange und der angemeldeten {\em Client}-Rechner. \section{Standalone Version} + \label{section:sav} \begin{verbatim} nlsop.c \end{verbatim}