From 66e63148efc76d3a233b77c6d7cbd96c6479f90f Mon Sep 17 00:00:00 2001
From: hackbard <hackbard>
Date: Tue, 12 Sep 2006 13:19:04 +0000
Subject: [PATCH] (hopefully) final

---
 nlsop/poster/nlsop_ibmm2006_ver2.tex | 126 ++++++++++++++++-----------
 1 file changed, 74 insertions(+), 52 deletions(-)

diff --git a/nlsop/poster/nlsop_ibmm2006_ver2.tex b/nlsop/poster/nlsop_ibmm2006_ver2.tex
index d03cc6a..bc6c1ac 100644
--- a/nlsop/poster/nlsop_ibmm2006_ver2.tex
+++ b/nlsop/poster/nlsop_ibmm2006_ver2.tex
@@ -6,6 +6,8 @@
 
 \begin{document}
 
+\hyphenation{pho-to-lu-mi-nescence}
+
 % Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85
 % und wieder nach  1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter-
 % grunds angenommen)
@@ -19,7 +21,7 @@
 \renewcommand{\columnfrac}{.31}
 
 % header
-\vspace{-1cm}
+\vspace{-1.5cm}
 \begin{header}
   \begin{minipage} {.13\textwidth}
 	\includegraphics[height=11cm]{uni-logo.eps}
@@ -41,7 +43,7 @@
 
 \begin{poster}
 
-\vspace{-1cm}
+\vspace{-1.1cm}
 \begin{pcolumn}
   \begin{pbox}
     \section*{Motivation}
@@ -49,36 +51,37 @@
 	Experimentally observerd seflorganisation process at high-dose carbon
 	implantations under certain implantation conditions.}
 	\begin{itemize}
-		\item Spherical and lamellar amorphous inclusions at the upper
-		      a/c interface
+		\item Regularly spaced, nanometric spherical and lamellar
+                      amorphous inclusions at the upper a/c interface
 		\begin{center}
 			\includegraphics[width=20cm]{k393abild1_e.eps}
 		\end{center}
-		Cross section TEM image:\\
+		Cross-section TEM bright-field image:\\
 		$180 \, keV$ $C^+ \rightarrow Si$,
-		$T=150 \, ^{\circ} \mathrm{C}$,
+		$T_i=150 \, ^{\circ} \mathrm{C}$,
 		Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
-		black/white: crystalline/amorphous material\\
+		Amorphous inclusions appear white on darker backgrounds\\
 		L: amorphous lamellae, S: spherical amorphous inclusions
 		\item Carbon accumulation in amorphous volumes
 		\begin{center}
 			\includegraphics[width=20cm]{eftem.eps}
 		\end{center}
-		Brightfield TEM and respective EFTEM image:\\
+		Bright-field TEM image and respective EFTEM $C$ map:\\
 		$180 \, keV$ $C^+ \rightarrow Si$,
-		$T=200 \, ^{\circ} \mathrm{C}$,
+		$T_i=200 \, ^{\circ} \mathrm{C}$,
 		Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
 		yellow/blue: high/low concentrations of carbon
 	\end{itemize}
 	{\bf
-	Observed for a number of ion/target combinations for which the
+	Similarly ordered precipitate nanostructures also
+	observed for a number of ion/target combinations for which the
 	material undergoes drastic density change upon amorphisation.}\\
 	{\scriptsize
 	A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.\\
 	E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.\\
 	M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
     \section*{Model}
 	{\bf
@@ -89,23 +92,26 @@
 		\includegraphics[width=20cm]{modell_ng_e.eps}
 	\end{center}
 	\begin{itemize}
-\item supersaturation of $C$ in $c-Si$\\
-      $\rightarrow$ {\bf carbon induced} nucleation of spherical
+\item Supersaturation of $C$ in $c-Si$\\
+      $\rightarrow$ {\bf Carbon induced} nucleation of spherical
       $SiC_x$-precipitates
-\item high interfacial energy between $3C-SiC$ and $c-Si$\\
-      $\rightarrow$ {\bf amourphous} precipitates
+\item High interfacial energy between $3C-SiC$ and $c-Si$\\
+      $\rightarrow$ {\bf Amourphous} precipitates
 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
-      $\rightarrow$ {\bf lateral strain} (black arrows)
-\item implantation range near surface\\
-      $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
-\item reduction of the carbon supersaturation in $c-Si$\\
-      $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
+      $\rightarrow$ {\bf Lateral strain} (black arrows)
+\item Implantation range near surface\\
+      $\rightarrow$ {\bf Ralaxation} of {\bf vertical strain component}
+\item Reduction of the carbon supersaturation in $c-Si$\\
+      $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
       (white arrows)
-\item remaining lateral strain\\
-      $\rightarrow$ {\bf strain induced} lateral amorphisation
+\item Remaining lateral strain\\
+      $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
+\item Absence of crystalline neighbours (structural information)\\
+      $\rightarrow$ {\bf Stabilisation} of amorphous inclusions 
+      {\bf against recrystallisation}
 	\end{itemize}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
     \section*{Simulation}
 	\begin{minipage}[t]{0.5\textwidth}
@@ -142,7 +148,8 @@
     \section*{Simulation algorithm}
     {\bf
     The simulation algorithm consists of the following three parts looped 
-    $s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:}
+    $s$ times corresponding to a dose
+    $D=s/(64\times64\times(3 \, nm)^2)$:}
 	\subsection*{1. Amorphisation/Recrystallisation}
 	\begin{itemize}
 		\item random numbers distributed according to
@@ -196,18 +203,21 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 		\end{itemize}
 	\subsection*{3. Diffusion/Sputtering}
 		\begin{itemize}
-			\item every $d_v$ steps transfer $d_r$ of the
-			      carbon atoms of crystalline volumina to
+			\item every $d_v$ steps transfer of a fraction $d_r$
+			      of carbon atoms from crystalline volumina to
 			      an amorphous neighbour volume
-			\item do the sputter routine after $n$ steps
-			      corresponding to $3 \, nm$ of substrat
-			      removal
+			\item remove $3 \, nm$ surface layer after $n$ loops,
+                              shift remaining cells $3 \, nm$ up and insert
+                              an empty, crystalline $3 \, nm$ bottom layer
 		\end{itemize}
+		\begin{picture}(0,0)(+40,-32)
+			\includegraphics[height=39.2cm]{loop-arrow.eps}
+		\end{picture}%
 		{\bf
 		Simulation parameters $d_v$, $d_r$ and $n$ control the
 		diffusion and sputtering process.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-0.27cm}
   \begin{pbox}
 	\section*{Comparison of experiment and simulation}
 	 \begin{center}
@@ -217,11 +227,12 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 		\includegraphics[width=25cm]{dosis_entwicklung_ng_e_2-2.eps}
 	\end{center}
 	Simulation parameters:\\
-	$p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$.
+	$p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$,
+        $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
 	\\[0.7cm]{\bf Conclusion:}
 	\begin{itemize}
-		\item Essentially conforming formation and growth of the
-		      continuous amorphous layer
+		\item Simulation in good agreement with experimentally observed
+		      formation and growth of the continuous amorphous layer
 		\item Lamellar precipitates and their evolution at the upper
 		      a/c interface with increasing dose is reproduced
 	\end{itemize}
@@ -243,9 +254,11 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 			      implantation conditions between $8$ and
 			      $10 \, at. \%$
 		\end{itemize}
-	\end{minipage}
+	\end{minipage}%
 	\begin{minipage}[t]{0.43\textwidth}
 		\includegraphics[height=15cm]{97_98_ng_e.eps}
+		%\includegraphics[height=13cm]{gitter_e.eps}
+		%\includegraphics[height=15cm=]{test_foo.eps}
 		\begin{itemize}
 			\item Complementarily arranged and alternating sequence
 			      of layers with high and low amount of amorphous
@@ -254,10 +267,9 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 		\end{itemize}
 	\end{minipage}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
-	\section*{Recipe:\\
-	          Thick films of ordered lamellar structure}
+	\section*{Recipe for thick films of ordered lamellae}
 	\begin{minipage}{0.33\textwidth}
 		{\bf Prerequisites:}\\
 		Crystalline silicon target with a nearly constant carbon
@@ -271,54 +283,64 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 	\end{minipage}
 	{\bf Creation:}
 	\begin{itemize}
-		\item multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
+		\item Multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
 		      $Si$ implantation
-		\item $T=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
+		\item $T_i=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
 	\end{itemize}
 	\vspace{1cm}
-	{\bf Stiring up:}\\[0.5cm]
-	2nd $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ implantation step at
+	{\bf Stirring up:}\\[0.5cm]
+	$2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at
 	$150 \, ^{\circ} \mathrm{C}$
 	\begin{itemize}
 		\item This does not significantly change the carbon
 		      concentration in the top $500 \, nm$
-		\item Nearly constant energy loss in the affected depth region
+		\item Nearly constant nuclear energy loss in the top $700 \, nm$
+                      region
 	\end{itemize}
 	\vspace{1cm}
 	{\bf Result:}
 	\vspace{0.7cm}
 	\begin{center}
-		\includegraphics[width=25cm]{multiple_impl_e.eps}
+		\includegraphics[width=25cm]{multiple_impl_e_ver2.eps}
 	\end{center}
 	\begin{itemize}
 		\item Already ordered structures after $100 \times 10^6$ steps
 		      corresponding to a dose of $D=2.7 \times 10^{17} cm^{-2}$
 		\item More defined structures with increasing dose
 	\end{itemize}
-	{\bf\color{blue} Starting point for materials showing strong\\
+	{\bf\color{blue} Starting point for materials showing strong
                         photoluminescence}\\
 	{\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
 	\section*{Conclusions}
 		\begin{itemize}
-			\item Observation of self-organised nanometric
+			\item Observation of selforganised nanometric
 			      precipitates by ion irradiation
-			\item Model proposed describing the seoforganisation
+			\item Model proposed describing the selforganisation
 			      process
-			\item Model implemented to a Monte Carlo simulation code
-			\item Simulation is able to reproduce experimental
-			      observations
+			\item Model implemented in a Monte Carlo simulation code
 			\item Modelling of the complete depth region affected
 			      by the irradiation process
+			\item Simulation is able to reproduce entire amorphous
+			      phase formation
 			\item Precipitation process gets traceable by simulation
 			\item Detailed structural/compositional information
 			      available by simulation
-			\item Recipe proposed for the formation of broad
-			      distributions of lamellar structure
+			\item Recipe proposed for the formation of thick films
+			      of lamellar structure
 		\end{itemize}
   \end{pbox}
+  \vspace{-1.5cm}
+  \begin{pbox}
+	\section*{Publications}
+	 	{\scriptsize
+                F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
+                B. Stritzker. Comp. Mater. Sci. 33 (2005) 310.\\
+	        F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
+                B. Stritzker. Nucl. Instr. and Meth. B 242 (2006) 679.}
+  \end{pbox}
 
 \end{pcolumn}
 \end{poster}
-- 
2.39.5