From c1ed4fc791d1badc1a920c045963cef15b5d4fa4 Mon Sep 17 00:00:00 2001 From: hackbard Date: Wed, 12 Oct 2005 18:06:45 +0000 Subject: [PATCH 01/16] changes to results chapter --- nlsop/diplom/diplomarbeit.tex | 2 +- nlsop/diplom/ergebnisse.tex | 83 +++++++++++++++++++++-------------- 2 files changed, 52 insertions(+), 33 deletions(-) diff --git a/nlsop/diplom/diplomarbeit.tex b/nlsop/diplom/diplomarbeit.tex index 0cbd419..b613cb9 100644 --- a/nlsop/diplom/diplomarbeit.tex +++ b/nlsop/diplom/diplomarbeit.tex @@ -35,7 +35,7 @@ } % hyphenation -\hyphenation{Mon-te"=Car-lo"=Si-mu-la-tions-code Tar-get-atoms} +\hyphenation{Mon-te-Car-lo-Si-mu-la-tions-code Tar-get-atoms} % author & title \author{Frank Zirkelbach} diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 39b19fb..fac0eba 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -239,6 +239,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \clearpage \section{Simulation "uber den gesamten Implantationsbereich} + \label{section:sim_2} Im Folgenden werden die Ergebnisse behandelt, die mit der zweiten Version des Programms berechnet wurden. Hier wird "uber den gesamten Implantationsbereich von $0$ bis $700 nm$ simuliert. @@ -488,46 +489,64 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 at.\%$ Kohlenstoff enth"alt. Lamellare Strukturen werden nicht gebildet. - \subsection{Herstellung grosser Bereiche lamellarer Strukturen durch einen zweiten Implantationsschritt} + Damit scheint die Parameterwahl aus Abbildung \ref{img:var_sim_paramters} a) ideal zu sein. + Wie in der Einleitung erw"ahnt, wurde dieses Ergebnis genau entgegen der Pr"asentationsreihenfolge des Abschnittes \ref{section:sim_2} gesucht. + Gestartet wurde mit einem sinvoll erscheinenden, jedoch mehr oder weniger zuf"allig gew"ahlten Satz von Parametern. + Durch Variation einzelner Parameter konnten deren Einfl"usse auf die Amorphisierung des Targets verstanden und entsprechende Anpassungen der Parameter vorgenommen werden. + Demnach ist nicht ausgeschlossen, dass ein anderer Satz von Parametern existiert, der die experimentell bestimmten Ergebnisse besser reproduziert. + Es k"onnte sein, dass die Wahl der Parameter aus Abbildung \ref{img:var_sim_paramters} a), nur einem lokalen Optimum in dem h"oherdimensionalen Optimierungsproblem entspricht. + Die experimentell bestimmten Ergebnisse werden durch die Simulation jedoch erstaunlich gut reproduziert. + Durch die Wahl der Parameter wird das Zusammenspiel der Amorphisierungs- und Diffusionsmechanismen nachvollziehbar und plausibel erscheinende Erkl"arungen k"onnen daraus abgeleitet werden. + Es wird davon ausgegangen, dass der vorliegende Satz an Parametern aus Abbildung \ref{img:var_sim_paramters} a) optimal ist. - \begin{figure}[h] - \includegraphics[width=12cm]{nel_2mev.eps} - \caption{Durch {\em TRIM} ermittelte nukleare Bremskraft von $2 MeV$ $C^+$ in Silizium.} - \label{img:nel_2mev} - \end{figure} - \begin{figure}[h] - \includegraphics[width=12cm]{impl_2mev.eps} - \caption{Durch {\em TRIM} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.} - \label{img:impl_2mev} - \end{figure} - Im Folgenden soll gepr"uft werden, ob ein zweiter Implantationsschritt einen geeigneten Mechanismus zur Erzeugung breiter lamellarer Bereiche darstellt. + \subsection{Zusammenfassung} + Die zweite Version der Simulation beschreibt den Tiefenbereich von $0$ bis $700 nm$, in dem sich unterhalb der lamellaren Ausscheidungen die durchgehend amorphe $SiC_x$-Schicht befindet. + Die Simulation ist in der Lage die experimentell bestimmte dosisabh"angige Bildung der amorphen Phasen zu reproduzieren. + Ein entsprechender Satz an Simulationsparametern wurde gefunden. + Bis auf einen Tiefenshift der Lage der amorphen Schicht, der durch das verwendete Implantationsprofil der {\em SRIM 2003.26} Version erkl"art werden kann, stimmen Simulation und Ergebnis des Experimentes sehr gut "uberein. + Im Rahmen der Messgenauigkeit werden auch "ahnliche Tiefen f"ur den Beginn der amorphen Einschl"usse in Simulation und experimentellen Befund erkannt. + Lamellare Strukturen entstehen und werden mit zunehmender Dosis sch"arfer. + In diesem Bereich erkennt man in aufeinander folgenden Ebenen, wie in Version 1 der Simulation, eine nahezu komplement"are Anordnung der amorphen und kristallinen Ausscheidungen. + Ursache hierf"ur ist der Diffusionsprozess. + Dies wird durch Untersuchungen der Kohlenstoffkonzentration im gesamten Target belegt, die speziell in diesem Bereich Schwankungen aufweist. + Weiterhin kann daraus eine Schwellkonzentration f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen abgelesen werden. + Die in dieser Version ber"ucksichtigten Sputtereffekte f"uhren zu einer Verschiebung des Kohlenstoffkonzentrationsmaximums. + Die Kohlenstoffkonzentrationen an der vorderen und hinteren Grenzfl"ache stimmen wie im Experiment bis auf $3 at.\%$ "uberein und liegen in der gleichen Gr"o"senordnung wie die experimentell bestimmten Grenzfl"achenkonzentrationen. + Dies zeigt erneut die wichtige Rolle der kohlenstoffinduzierten Amorphisierung im Amorphisierungsprozess auf. + Essentiell f"ur die Bildung lamellarer Strukturen ist die Diffusion, die, wenn sie zu stark abl"auft, die Bildung einer durchgehnd amorphen Schicht verhindert und nur Lamellen entstehen l"asst. + Zu hohe Werte f"ur den Parameter der Druckspannungen f"uhren dagegen zu einer kompletten Amorphisierung des kohlenstoffhaltigen Bereichs im Target. + + \section{Herstellung grosser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation} + + \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.}{img:impl_2mev} + \printimg{h}{width=14cm}{nel_2mev.eps}{Durch {\em SRIM 2003.26} ermittelte nukleare Bremskraft von $2 MeV$ $C^+$ in Silizium.}{img:nel_2mev} + Im Folgenden soll gepr"uft werden, ob ein zweiter Implantationsschritt einen geeigneten Mechanismus zur Erzeugung breiter lamellarer Bereiche darstellt. Die Idee ist folgende. - Als Grundlage dient ein Silizium Target, das wie bisher mit $180 keV$ $C^{+}$ beschossen wird. - Ein entsprechendes Implantationsprofil stellt sich ein. + Als Grundlage dient ein Siliziumtarget, das wie bisher mit $180 keV$ $C^{+}$-Ionen beschossen wird. + Ein Abbildung \ref{img:impl_2mev} entsprechendes Implantationsprofil stellt sich ein. Allerdings soll das Target durchgehend kristallin sein. - Dies l"asst sich experimentell durch Erh"ohung der Targettemeperatur erreichen. + Dies l"asst sich experimentell durch Erh"ohung der Targettemperatur erreichen. + Nach \cite{basic_phys_proc} reicht f"ur eine maximale Dosis von $4,3 \times 10^{17} cm^{-2}$ eine Temperatur von $500 \, ^{\circ} \mathrm{C}$ aus, um Amorphisierung zu verhindern. - Das kristalline Target wird dann mit $2 MeV$ $C^{+}$ bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ implantiert. - Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} zeigen das durch {\em TRIM} ermittelte nukleare Bremskraft- und Implantationsprofil. - Das stark verrauschte nukleare Bremskraftprofil wird f"ur die Simulation in den ersten $1,5 \mu m$ durch eine lineare Regression gen"ahert (gr"une Gerade in Abbildung \ref{img:nel_2mev}). - Sie ist nahzu konstant in dem bisher betrachteten Bereich um das Kohlenstoffmaximum. - St"o"se sind in diesem Bereich demnach gleichwahrscheinlich bez"uglich der Tiefe. - Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff in den bisher relevanten Tiefenbereich zur Ruhe. - - Bei geeigneter Wahl der Ausgangskonzentration wird nicht der komplette kohlenstoffhaltige Bereich amorphisieren. - Die Konzentration sollte idealerweise so hoch sein, dass die kohlenstoffinduzierte Amorphisierung zusammen mit den Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten. + Das kristalline Target wird dann mit $2 MeV$ $C^{+}$-Ionen bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ bestrahlt. + Abbildung \ref{img:nel_2mev} zeigt das durch {\em SRIM 2003.26} ermittelte nukleare Bremskraftprofil. + Die nukleare Bremskraft ist in dem Tiefenbereich zwischen $0$ und $700 nm$ wesentlich flacher als die der $180 keV$-Implantation und nahezu konstant in dem bisher betrachteten Bereich um das Kohlenstoffkonzentrationsmaximum der $180 keV$-Implantation. + St"o"se im Bereich hoher Kohlenstoffkonzentration sind demnach ann"ahernd gleichverteilt bez"uglich der Tiefe. + Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 nm$ herum zur Ruhe. + + Bei geeigneter Wahl der Ausgangskonzentration ist zu erwarten, dass nicht der komplette kohlenstoffhaltige Bereich amorph wird. + Die durch die erste Implantation eingestellte Konzentration sollte idealerweise so hoch sein, dass bei der $2 MeV$-Ionenbestrahlung die kohlenstoffinduzierte Amorphisierung zusammen mit dem Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten. Dies sollte zur Bildung amorpher Lamellen f"uhren. - Wird gen"ugend lang implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei. + Wird gen"ugend lange implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei. - F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abschnitt \ref{subsection:reproduced_dose} "ubernommen, da das gleiche Materialsystem beschrieben wird. - Ausserdem wird das alte Bremskraft- und Implantationsprofil durch das Profil in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. - Im Gegensatz zur nuklearen Bremskraft spielt das Implantationsprofil eine untergeordnete Rolle, weshalb auf ein Anfitten der Kurve verzichtet werden kann. - Es werden nur sehr wenige Ionen im betrachteten Bereich inkorporiert. + F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2} "ubernommen, da das gleiche Materialsystem beschrieben wird. + Ausserdem wird das $180 keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. Auf Grund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 nm$. - Nach Auswertung der {\em TRIM}-Datei trifft das Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters. - Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat, da die nukleare Bremskraft im relevanten Bereich nahezu konstant ist. - Der einzige Unterschied zum Experiment sollte der Tiefenunterschied der amorphen Ausscheidungen sein, nicht aber deren Ausdehnung und Struktur. + Nach Auswertung der {\em SRIM}-Datei trifft ein Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters. + Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat. + Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. + Andererseits kann das nukleare Bremskraftprofil im Bereich der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$ als nahezu konstant angesehen werden. Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten. \begin{figure}[h] -- 2.20.1 From d89c5a4340ffcefbee3ebfb85170226c0ac702aa Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 10:45:30 +0000 Subject: [PATCH 02/16] nearly finished last chapter --- nlsop/diplom/ergebnisse.tex | 63 +++++++++++++++++++++---------------- nlsop/diplom/quellcode.tex | 2 ++ nlsop/diplom/simulation.tex | 4 +-- 3 files changed, 40 insertions(+), 29 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index fac0eba..7d9f552 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -106,7 +106,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die beiden Querschnitte in Abbildung \ref{img:diff_influence} a) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde. Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung. Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen. - Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohelnstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation. + Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation. Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt auf Grund der wachsenden Druckspannungen an. Da diese spannungsinduziert amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden. Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen. @@ -370,6 +370,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat, f"allt sie steil ab. In einer Tiefe von ungef"ahr $570 nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an. Dies entspricht dem Ende der durchgehend amorphen Schicht. + Auff"allig ist, dass hier das Maximum der Kohlenstoffkonzentration in kristallinen Gebieten sehr viel h"oher ist, als das an der vorderen Grenzfl"ache. Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 nm$ wieder in die Gesamtkonzentration "uber. Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 nm$ Tiefe instabil gegen"uber Rekristallisation. @@ -483,7 +484,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist. Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum. Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$. - Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohelnstoffkonzentration eingeht, ist dies nicht weiter verwunderlich. + Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich. Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist. Der Diffusionsprozess verliert somit an Bedeutung. Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 at.\%$ Kohlenstoff enth"alt. @@ -517,6 +518,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Essentiell f"ur die Bildung lamellarer Strukturen ist die Diffusion, die, wenn sie zu stark abl"auft, die Bildung einer durchgehnd amorphen Schicht verhindert und nur Lamellen entstehen l"asst. Zu hohe Werte f"ur den Parameter der Druckspannungen f"uhren dagegen zu einer kompletten Amorphisierung des kohlenstoffhaltigen Bereichs im Target. + \clearpage + \section{Herstellung grosser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation} \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.}{img:impl_2mev} @@ -548,41 +551,47 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. Andererseits kann das nukleare Bremskraftprofil im Bereich der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$ als nahezu konstant angesehen werden. Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten. - - \begin{figure}[h] - \includegraphics[width=12cm]{2nd_impl_4_3.eps} - \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.} - \label{img:2nd_impl_4_3} - \end{figure} - Abbildung \ref{img:2nd_impl_4_3} zeigt die Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$. - Als Ausgangskonfiguration wurde eine Dosis von $4,3 \times 10^{17} cm^{-2}$ von $180 keV$ schnellen Kohlenstoff ins Silizium gew"ahlt. - Es reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ (Abbildung \ref{img:2nd_impl_4_3} $e)$) im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs. + F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern. + Die Kohlenstoffkonzentration wird nicht ver"andert. + Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert haben, aufweisen. + + \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3} + Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen. + F"ur die Ausgangsverteilung wurde ein erster Implantationsschritt mit der Dosis $4,3 \times 10^{17} cm^{-2}$ gew"ahlt. + Wie Abbildung \ref{img:2nd_impl_4_3} e) zeigt, reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs. Diese Ausgangskonzentration ist also nicht geeignet f"ur die Herstellung breiter lamellarer Ausscheidungen. Es ist zu viel Kohlenstoff vorhanden. Der kohlenstoffhaltige Bereich amorphisiert schon vor dem ersten Diffusionsschritt, der notwendig f"ur die Selbstorganisation der lamellaren Ausscheidungen ist. - \begin{figure}[h] - \includegraphics[width=12cm]{2nd_impl_1_1.eps} - \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $100 \times 10^{6}$ entspricht einer implantierten Dosis von $2,71 \times 10^{17} cm^{-2}$.} - \label{img:2nd_impl_1_1} - \end{figure} - In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $20 at. \%$ liegt. - Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim}, bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht. - Das Ergebnis ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt. - Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} $a)$), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind ballistisch entstandedne amorphe Ausscheidungen zu erkennen. + \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1} + In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 at.\%$ liegt. + Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim} bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht. + F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es, die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}. + Das Ergebnis des $MeV$-Implantationsschrittes ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt. + Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} a)), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte amorphe Ausscheidungen zu erkennen. Es hat sich keine durchgehende Schicht gebildet. - Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu Amorphisieren. + Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu amorphisieren. Lamellen sind noch nicht zu erkennen. Auf Grund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert. - Die Diffusionsroutine kann ausgef"uhrt werden, bevor das Target komplett amorphisiert ist. - Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohelnstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht. + Die Diffusion f"uhrt zu einer wirksamen Umverteilung von Kohlenstoff, bevor das Target komplett amorphisiert ist. + Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohlenstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht. Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen. - Man erkennt sehr sch"on die Dosisentwicklung zu immer sch"arfer werdenden Lamellen, deren Tiefenbereich zunimmt (Abbildung \ref{img:2nd_impl_1_1} $b)$-$e)$). - Man kann davon ausgehen, dass bei fortgef"uhrter Implantation, die lamellare Struktur noch sch"arfer wird. + In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden. + Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird. Da kaum Kohelnstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs. - Es k"onnte prinzipiell so lang implantiert werden, bis der kristalline Teil oberhalb der amorphen Lamellen durch Sputtern abgetragen ist. Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten. Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich. - Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von $10$ bis $20 at. \%$ im Implantationsmaximum hat. + Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat. + + F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal. + Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 keV$ reduziert \cite{unknown}. + Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 nm$ im wesentlichen dem Abfall des $180 keV$-Profils entspricht. + + \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 keV$ $C^+$-Implantationsprofils ab einer Tiefe von $500 nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 keV$.}{img:cbox} + Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden. + W"ahlt man eine maximale Konzentration von $10 at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}. + + \printimg{h}{width=15cm}{multiple_impl.eps}{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:broad_l} + Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets, mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung, mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen. diff --git a/nlsop/diplom/quellcode.tex b/nlsop/diplom/quellcode.tex index 3fd93cf..41c2315 100644 --- a/nlsop/diplom/quellcode.tex +++ b/nlsop/diplom/quellcode.tex @@ -75,6 +75,8 @@ Der Quellcode ist auf der beigelegten Compact Disc enthalten. \begin{itemize} \item \begin{verbatim} nlsop_make_cryst.c \end{verbatim} \\ Estellt ein Duplikat eines gespeicherten Ergebnisses wobei alle Zust"ande der Volumen auf \dq Kristallin\dq{} gesetzt werden. + \item \begin{verbatim} nlsop_create_cbox.c \end{verbatim} \\ + Erzeugt ein kristallines Target mit einem plateauf"ormigen Verlauf des Kohlenstoffprofils, das in einer Tiefe von $500 nm$ dem Abfall des Kohlenstoffprofils der $180 keV$-Implantation entspricht. \item \begin{verbatim} parse_trim_collision.c \end{verbatim} \\ Werkzeug zur Auswertung der Datei in der {\em TRIM} die Kollisionen protokolliert. \item \begin{verbatim} dft.c, dft.h \end{verbatim} \\ diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 897ed88..ed7f8bb 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -152,7 +152,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Weiterhin bietet {\em TRIM} die M"oglichkeit eine Datei Namens {\em COLLISION.TXT} anzulegen, in der s"amtliche Sto"skaskaden protokolliert sind. Zu jedem Sto"s sind Koordinaten und Energie"ubertrag angegeben. - Mit dem Programm {\em parse\_trim\_collision} (siehe Anhang \ref{section:hilfsmittel}) kann diese Datei ausgewertet werden. + Mit dem Programm {\em parse\_trim\_collision} (Anhang \ref{section:hilfsmittel}) kann diese Datei ausgewertet werden. Die daraus gewonnen Erkenntnisse sollen im Folgenden diskutiert werden. F"ur diese Statistik wurden die Sto"skaskaden von $8300$ implantierten Ionen verwendet. @@ -537,7 +537,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft. Dazu werden f"ur die unterschiedlichen Verteilungen jeweils 10 Millionen Zufallszahlen zwischen $0$ und $232$ erzeugt und auf die n"achst kleinere ganze Zahl abgerundet. - Ein einfaches Scriptprogramm ({\em random\_parse.sh}, siehe Anhang \ref{section:hilfsmittel}) z"ahlt die H"aufigkeit der einzelnen Zufallszahlen in der Zufallszahlensequenz. + Ein einfaches Scriptprogramm ({\em random\_parse.sh}, Anhang \ref{section:hilfsmittel}) z"ahlt die H"aufigkeit der einzelnen Zufallszahlen in der Zufallszahlensequenz. \printimg{h}{width=13cm}{random.eps}{H"aufigkeit ganzzahliger Zufallszahlen unterschiedlicher Wahrscheinlichkeitsverteilungen. F"ur jede Verteilung wurden 10 Millionen Zufallszahlen ausgew"urfelt.}{img:random_distrib} Abbildung \ref{img:random_distrib} zeigt die H"aufigkeit von Zufallszahlen zwischen $0$ und $232$, abgerundet auf die n"achst kleinere ganze Zahl, f"ur unterschiedliche Wahrscheinlichkeitsverteilungen. -- 2.20.1 From 86675a159738fb508cf9959e275d69f769b84006 Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 14:43:09 +0000 Subject: [PATCH 03/16] finished results chapter --- nlsop/diplom/ergebnisse.tex | 46 ++++++++++++++++++++++++++++++------- 1 file changed, 38 insertions(+), 8 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 7d9f552..cdcbef3 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -434,11 +434,11 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein. Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden. Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet. - Diese bestehen in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. + Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt. Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen. Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen. - In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nmm$ "uber dem Beginn der durchgehend amorphen Schicht. + In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nm$ "uber dem Beginn der durchgehend amorphen Schicht. Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist. Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln. Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden. @@ -471,7 +471,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt. Das Entgegenwirken durch den erh"ohten Einfluss der ballistische Amorphisierung ist sehr gering. - Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} $d)$ der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. + Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt. Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab. Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. @@ -553,7 +553,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten. F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern. Die Kohlenstoffkonzentration wird nicht ver"andert. - Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert haben, aufweisen. + Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert h"atten, aufweisen. \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3} Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen. @@ -566,7 +566,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1} In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 at.\%$ liegt. Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim} bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht. - F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es, die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}. + F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}. Das Ergebnis des $MeV$-Implantationsschrittes ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt. Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} a)), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte amorphe Ausscheidungen zu erkennen. Es hat sich keine durchgehende Schicht gebildet. @@ -592,6 +592,36 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden. W"ahlt man eine maximale Konzentration von $10 at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}. - \printimg{h}{width=15cm}{multiple_impl.eps}{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:broad_l} - Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets, mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung, mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen. - + Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen. + \begin{sidewaysfigure}\centering + \includegraphics[height=13cm]{multiple_impl.eps} + \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in $f)$ von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.} + \label{img:broad_l} + \end{sidewaysfigure} + \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel grossen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} $a)$, $b)$ und $f)$.}{img:broad_ls} + Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden. + Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet. + Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus um den kohlenstoffhaltigen Bereich komplett zu amorphisieren. + Die Gebiete sind noch sehr instabil gegen"uber Rekristallisation. + Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Warscheinlichkeit amorphisieren. + Mit steigender Dosis und somit fortgef"uhrter Diffusion beginnen sich so lamellare Ausscheidungen zu stabilisieren. + Die Organisation und Stabilisierung der lamellaren Ausscheidungen erkennt man bereits bei der doppelten Dosis in Abbildung \ref{img:broad_l} b). + In den Lamellen befindliche amorphe Gebiete werden auf Grund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren. + Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater rekristallisieren. + Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt. + Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) bis f)). + Die Ausscheidungen werden sch"arfer. + + Dies erkennt man auch in Abbildung \ref{img:broad_ls}. + Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}. + F"ur die erste Anzahl an Durchl"aufen ($s=50 \times 10^6$) erkennt man kein Maximum in der Intensit"at ungleich der Ortsfrequenz Null. + Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 nm^{-1}$. + Die Intensit"aten steigen nur langsam mit der Dosis an, was man auch schon aus den Abbildungen \ref{img:broad_l} c) bis f) erahnen kann. + Die Sch"arfe der Ausscheidungen, die bereits in Abbildung \ref{img:broad_l} c) sehr hoch ist, "andert sich kaum noch. + Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen, sofern sie existieren, der unabh"angig von der Dosis ist, hinweist. + Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis. + Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 nm$ an. + Auf Grund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt. + + Die Herstellung breiter Bereiche lamellarer Struktur ist nach dem Simulationsergebnis demnach m"oglich. + Die Ausgangskonfiguration des Targets, welches mit $2 MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein. -- 2.20.1 From 47ac6147b7a00bd9059165f6d04ce08004de4413 Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 16:03:50 +0000 Subject: [PATCH 04/16] finished conclusion & outlook --- nlsop/diplom/zuzsammenfassung_ausblick.tex | 60 +++++++++++----------- 1 file changed, 31 insertions(+), 29 deletions(-) diff --git a/nlsop/diplom/zuzsammenfassung_ausblick.tex b/nlsop/diplom/zuzsammenfassung_ausblick.tex index fb66d8c..2fd8002 100644 --- a/nlsop/diplom/zuzsammenfassung_ausblick.tex +++ b/nlsop/diplom/zuzsammenfassung_ausblick.tex @@ -6,60 +6,62 @@ Diese Ausscheidungen wurden bei Targettemperaturen zwischen $150$ und $400 \, ^{ Unter diesen Bedingungen ist auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium keine Amorphisierung zu erwarten. Tats"achlich ist bekannt, dass reines kristallines Silizium unter diesen Gegebenheiten ionenstrahl-induziert epitaktisch rekristallisiert. Die Amorphisierung wird dem Kohlenstoff zugeschrieben. -Da bei diesen Temepraturen kaum Amorphisierung erwartet wird, m"ussen hohe Dosen implantiert werden. -Der Kohlenstoff beg"unstigt die Amorphisierung. -Man spricht von kohlenstoff-induzierter Amorphisierung. -Aus diesem Grund sind hohe Dosen von einigen $10^{17} cm^{-2}$ notwendig. +Um bei diesen Temperaturen amorphe Ausscheidungen zu erhalten, m"uss eine hohe Dosis implantiert werden. +Man spricht von kohlenstoffinduzierter Amorphisierung. +Es sind Dosen von einigen $10^{17} cm^{-2}$ notwendig. -Ein Modell zur Entstehung der selbstorganisierten amorphen Phasen wurde vorgestellt. -Bei "Uberschreitung einer S"attigungsgrenze von Kohlenstoff in kristallinen Silizium entstehen sph"arische amorphe Ausscheidungen. -Auf Grund der Dichtereduktion "ubt dieses amorphe Gebiet Druckspannungen auf die laterale kristalline Umgebung aus. +Ein Modell zur Entstehung der selbstorganisierten amorphen Phasen wird vorgestellt. +Bei "Uberschreitung einer S"attigungsgrenze von Kohlenstoff in kristallinem Silizium entstehen sph"arische amorphe Ausscheidungen. +Auf Grund der Dichtereduktion im entspannten amorphen Zustand "ubt dieses amorphe Gebiet Druckspannungen auf die laterale kristalline Umgebung aus. Dies beg"unstigt die Amorphisierung in den verspannten Gebieten. -Man spricht von spannungs-induzierter Amorphisierung. -Kohlenstoff diffundiert vom Kristallinen in die amorphen Auscheidungen um die Kohlenstoff"ubers"attigung zu reduzieren. -Die Amorphisierungswahrscheinlichkeit steigt in den amorphen Volumen und deren lateralen Umgebungen. +Dies entspricht der spannungsinduzierten Amorphisierung. +Kohlenstoff diffundiert vom Kristallinen in die amorphen Auscheidungen um die Kohlenstoff"ubers"attigung der kristallinen $Si$-Phase zu reduzieren. +Die Stabilit"at gegen Rekristallisation steigt in den amorphen Volumen und deren lateralen Umgebungen. Gleichzeitig sinkt diese Wahrscheinlichkeit in den kristallinen Gebieten. Es entstehen kohlenstoffreiche lamellare amorphe $SiC_x$-Ausscheidungen. -Die Implementierung einer Monte-Carlo-Simulation entsprechend des vorgestellten Modells wurde diskutiert. -In einer ersten Version wurde bis zu Beginn der durchgehenden amorphen Schicht simuliert. -Nukleare Bremskraft und Implantationsprofil wurden linear gen"ahert. -Die zweite Version umfasst den kompletten Implantationsbereich einschlie"slich der amorphen durchgehenden Schicht. -Hier wurde ein exaktes Bremskraft- und Implantationsprofil verwendet. -Implantationsparameter erm"oglchen die Steuerung des Amorphisierungsprozesses. -Die drei zur Amorphisierung beitragenden Mechanismen ballistische Amorphisierung, kohlenstoff-induzierte Amorphisierung und spannungs-induzierte Amorphisierung k"onnen durch Simulationsparameter gewichtet werden. +Die Implementierung einer Monte-Carlo-Simulation entsprechend des vorgestellten Modells wird diskutiert. +In einer ersten Version wird der Tiefenbereich von der Oberfl"ache des Targets bis zum Beginn der durchgehend amorphen Schicht simuliert. +Nukleare Bremskraft und Implantationsprofil werden linear gen"ahert. +Die zweite Version umfasst den kompletten Implantationsbereich einschlie"slich der durchgehend amorphen Schicht. +Die Simulation soll die Bildung der Schicht zusammen mit der Ausscheidung der Lamellen reproduzieren. +Hier wird ein exaktes Bremskraft- und Implantationsprofil verwendet. +Implantationsparameter erm"oglichen die Steuerung des Amorphisierungsprozesses. +Die drei zur Amorphisierung beitragenden Mechanismen ballistische Amorphisierung, kohlenstoffinduzierte Amorphisierung und spannungsinduzierte Amorphisierung k"onnen durch Simulationsparameter gewichtet werden. Die Diffusion kann durch zwei weitere Parameter beschrieben werden. +Hier liegt der Vorteil der Simulation gegen"uber dem Experiment. +In der Simulation sind diese Parameter unabh"angig voneinander einstellbar, so dass der Einfluss eines jeden Mechanismus oder Prozesses auf den Selbstorganisationsvorgang frei untersucht werden kann. Bei der Implementierung wurde darauf geachtet, dass ein Durchlauf exakt einem implantierten Ion entspricht. -Somit kann versucht werden, eine experimentell bestimmte Dosisenticklung zu reproduzieren. -Nach Beenden einer Simulation k"onnen die Kohlenstoffkonzentration, die Spannungsfelder und der genaue amorph/kristalline Zustand leicht untersucht werden. +Somit kann versucht werden, eine experimentell bestimmte Dosisentwicklung zu reproduzieren. +Nach Beenden einer Simulation k"onnen die Kohlenstoffkonzentration, die Spannungsfelder und der genaue amorph/kristalline Zustand leicht dargestellt werden. In Ergebnissen der ersten Version konnte gezeigt werden, dass eine selbstorganisierte Bildung lamellarer amorpher $SiC_x$-Ausscheidungen mit Hilfe dieses Modells reproduziert werden kann. Dabei fiel auf, dass die kohlenstoff-induzierte Amorphisierung eine weitaus gr"o"sere Rolle als die rein ballistische Amorphisierung einnimmt. -Energiegefilterte TEM-Aufnahmen, die besagen, dass die amorphen Gebiete eine sehr hohe Kohlenstoffkonzentration haben werden durch die Simulation best"atigt. -Mit Hilfe der Simulation k"onnen noch weitere Aussagen "uber die Verteilung des Kohlenstoffs angestellt werden. +Die aus EFTEM gewonnene Aussage, dass die amorphen Gebiete eine sehr hohe Kohlenstoffkonzentration haben, wird durch die Simulation best"atigt. +Mit Hilfe der Simulation k"onnen noch weitere Aussagen "uber die Verteilung des Kohlenstoffs getroffen werden. Eine genaue Lage des Kohlenstoffs in den amorphen und kristallinen Gebieten kann angegeben werden. Dadurch wird der Selbstorganisationsprozess nachvollziehbar. Amorphe und kristalline Gebiete sind in aufeinander folgenden Ebenen komplement"ar angeordnet. Da sich grosse und kleine amorphe Gebiete abwechseln und die amorphen Gebiete auf Grund der Diffusion sehr kohlenstoffreich sind, schwankt die Kohlenstoffkonzentration im Bereich der lamellaren Ausscheidungen. -Mit der zweiten Version wird der gesamte Implantationsbereich abgedeckt. -Man findet ein Satz von Simulationsparametern, der die experimentell beobachtete Dosisentwicklung ziemlich gut reproduziert. -Man erkennt die Bildung einer amorphen durchgehenden Schicht aus einzelnen amorphen Ausscheidungen. +Mit der zweiten Version wird der gesamte durch den Ionenbeschuss modifizierte Tiefenbereich abgedeckt. +Man findet einen Satz von Simulationsparametern, der die experimentell beobachtete Dosisentwicklung gut reproduziert. +Man erkennt die Bildung einer durchgehend amorphen Schicht ausgehend von einzelnen amorphen Ausscheidungen. Mit Erh"ohung der Dosis w"achst die Dicke dieser Schicht an. Gleichzeitig entstehen selbstorganisierte lamellare Ausscheidungen an der vorderen Grenzfl"ache der Schicht. Die Grenzfl"achen und die Lamellen werden bei fortgesetzter Implantation sch"arfer und strukturierter. Auch hier ist die kohlenstoff-induzierte Amorphisierung der wichtigste Mechanismus der zur Amorphisierung beitr"agt. -Auf Ver"anderung, der die Diffusion und die spannungs-induzierte Amorphisierung beschreibenden Parameter, reagiert das System sensibel. -Diffusion ist einerseits notwendig f"ur die lamellare Ordnung der amorphen Ausscheidungen, zu hohe Werte f"uhren andererseits jedoch zu einer kompletten lamellaren Amorphisierung des Targets, so dass sich keine durchgehende Schicht bildet. +Auf eine Ver"anderung der die Diffusion und die spannungsinduzierte Amorphisierung beschreibenden Parameter reagiert das System sensibel. +Diffusion ist einerseits notwendig f"ur die lamellare Ordnung der amorphen Ausscheidungen, eine leicht aggressivere Diffusion f"uhrt andererseits jedoch zu einer kompletten lamellaren Amorphisierung des Targets, so dass sich keine durchgehende Schicht bildet. Zu hohe Werte f"ur den Parameter der Druckspannungen verursachen eine nahezu komplette Amorphisierung des kohlenstoffhaltigen Bereichs. -Wie in der ersen Version des Programms f"allt auf, dass die amorphen und kristallinen Volumen in aufeinanderfolgenden Ebenen im Tiefenbereich der lamellaren Ausscheidungen komplement"ar angeordnet sind. +Wie in der ersten Version des Programms f"allt auf, dass die amorphen und kristallinen Volumina in aufeinanderfolgenden Ebenen im Tiefenbereich der lamellaren Ausscheidungen komplement"ar angeordnet sind. Dies "aussert sich in Schwankungen der Kohlenstoffkonzentration im lamellaren Tiefenbereich. -Weiterhin ist es durch die Simulation m"oglich eine Vorhersage zu machen, wie sich durch einen zweiten Implantationsschritt breite selbstorganisierte Bereiche herstellen lassen. +Weiterhin ist es durch die Simulation m"oglich, eine Vorhersage zu machen, wie sich durch einen zweiten oder mehrere Implantationsschritte breite selbstorganisierte Bereiche herstellen lassen. Das Modell kann demnach die Bildung der selbstorganisierten lamellaren Ausscheidungen erkl"aren. Die Einf"uhrung lateraller Spannungen als Amorphisierungsmechanismus steht nicht im Widerspruch zur Bildung der durchgehenden Schicht, da deren Entstehung gemeinsam mit den lamellaren Ausscheidungen von der Simulation reproduziert wird. Mit Hilfe weiterer Implantationen anderer Ion-Target-Kombinationen k"onnte man die Abh"angigkeit der Simulationsparameter vom verwendeten Materialsystem untersuchen. Dadurch k"onnte die Simulation zu einem universellen Programm zur Amorphisierung jedes Materialsystems erweitert werden. -Ein Zusammenhang zwischen den, die Amorphisierung beschreibenden Parameter, und den Materialkonstanten k"onnte ausserdem Aufschluss "uber die Amorphisierungsmechanismen liefern. +Ein Zusammenhang zwischen den die Amorphisierung beschreibenden Parameter und den Materialkonstanten k"onnte ausserdem Aufschluss "uber die Amorphisierungsmechanismen liefern. -- 2.20.1 From 7be6b486f3e8edb31602f59b7eaa9af780ffba4c Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 18:05:41 +0000 Subject: [PATCH 05/16] typos fixed 1-4 --- nlsop/diplom/ergebnisse.tex | 8 ++++---- nlsop/diplom/exp_befunde.tex | 16 ++++++++-------- nlsop/diplom/modell.tex | 12 ++++++------ nlsop/diplom/simulation.tex | 4 ++-- nlsop/diplom/zuzsammenfassung_ausblick.tex | 2 +- 5 files changed, 21 insertions(+), 21 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index cdcbef3..28554e2 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -383,7 +383,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 at.\&$. Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 at.\%$ gut "uberein. Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist. - Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehenden amorphen $SiC_x$-Schicht. + Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht. \begin{table}[h] \begin{center} @@ -550,7 +550,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat. Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. Andererseits kann das nukleare Bremskraftprofil im Bereich der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$ als nahezu konstant angesehen werden. - Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten. + Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden au"serdem die Diffusionsparameter beibehalten. F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern. Die Kohlenstoffkonzentration wird nicht ver"andert. Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert h"atten, aufweisen. @@ -578,11 +578,11 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen. In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden. Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird. - Da kaum Kohelnstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs. + Da kaum Kohlenstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs. Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten. Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich. - Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat. + Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat. F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal. Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 keV$ reduziert \cite{unknown}. diff --git a/nlsop/diplom/exp_befunde.tex b/nlsop/diplom/exp_befunde.tex index e76121d..43a74a3 100644 --- a/nlsop/diplom/exp_befunde.tex +++ b/nlsop/diplom/exp_befunde.tex @@ -1,7 +1,7 @@ \chapter{Experimentelle Befunde} \label{chapter:exp_befunde} -Gegenstand dieser Arbeit ist die Umsetzung eines Modells, welches den Selbstorganisationsvorgang von lamellaren und sph"arischen $SiC_x$-Ausscheidungen an der vorderen Grenzfl"ache zur durchgehenden amorphen $SiC_x$-Schicht bei Hochdosis-Kohlenstoff-Implantation in Silizium erkl"aren soll. +Gegenstand dieser Arbeit ist die Umsetzung eines Modells, welches den Selbstorganisationsvorgang von lamellaren und sph"arischen $SiC_x$-Ausscheidungen an der vorderen Grenzfl"ache zur durchgehend amorphen $SiC_x$-Schicht bei Hochdosis-Kohlenstoff-Implantation in Silizium erkl"aren soll. Neben Kohlenstoffimplantation in Silizium wurden solche Ausscheidungen auch in Hochdosis-Sauerstoffimplantation in Silizium, $Ar^+$ in Saphir und $Si^+$ in $SiC$ \cite{van_ommen,specht,ishimaru} gefunden. Allen Systemen gemeinsam ist eine drastische Dichtereduktion von mehr als $3-10\%$ des Targetmaterials bei der Amorphisierung, worauf im n"achsten Kapitel genauer eingegangen wird. @@ -12,7 +12,7 @@ Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\a \section{Lage und Ausdehnung amorpher Phasen} - \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV \quad C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} + \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV$ $C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme einer mit $4,3 \times 10^{17} cm^{-2}$ $180 keV \, C^{+}$-inplantierten Probe. Die hellen Gebiete sind amorph, dunkle Gebiete kristallin. In einer Tiefe von ungef"ahr $300 nm$ beginnt die durchgehende amorphe Schicht. @@ -25,7 +25,7 @@ Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\a \printimg{h}{width=10cm}{a-d.eps}{Mittels TEM bestimmte Position und Ausdehnung amorpher Phasen in bei $150 \, ^{\circ} \mathrm{C}$ implantierten Proben in Abh"angigkeit von der implantierten Dosis. \cite{maik_da}}{img:lua_vs_d} \printimg{h}{width=15cm}{temdosisai1.eps}{Hellfeld-TEM-Abbildung der Schichtstruktur der bei $150 \, ^{\circ} \mathrm{C}$ implantierter Proben mit Dosen von: $a)$ $1,0$, $b)$ $2,1$, $c)$ $3,3$ und $d)$ $4,3 \times 10^{17} cm^{-2}$. \cite{maik_da}}{img:temdosis} - Die Lage und Ausdehnung der Lamellen sowie der durchgehenden amorphen Schicht ist abh"angig von der implantierten Dosis. + Die Lage und Ausdehnung der Lamellen, sowie der durchgehend amorphen Schicht, ist abh"angig von der implantierten Dosis. Abbildung \ref{img:lua_vs_d} zeigt die in \cite{maik_da} mittels TEM bestimmte Position und Ausdehnung amorpher Phasen unter denselben Implantationsbedingungen abh"angig von der Dosis. In Abbildung \ref{img:temdosis} sind die dazugeh"origen Hellfeld-TEM-Abbildungen zu den ersten vier Dosen abgebildet. Die mit $R_{max}$ gekennzeichnete Linie in Abbildung \ref{img:lua_vs_d} gibt die Position des Kohlenstoffkonzentrationsmaximums an, welches f"ur kleine Dosen mittels {\em TRIM} und f"ur hohe Dosen durch RBS- und TEM-Messungen bestimmt wurde. @@ -33,25 +33,25 @@ Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\a Stattdessen kann man zahlreiche $3 nm$ gro"se, teilweise zusammenwachsende amorphe Einschl"usse erkennen. F"ur Dosen oberhalb $1,0 \times 10^{17} cm^{-2}$ entstehen durchgehende amorphe Schichten. Gut zu erkennen ist, dass sich die, mit steigender Dosis anwachsende durchgehende Schicht um das Kohlenstoffverteilungsmaximum erstreckt. - Wie man in Abbildung \ref{img:temdosis} gut erkennen kann, bilden sich die lamellaren Ausscheidungen an der vorderen Grenzfl"ache zur durchgehenden amorphen Schicht erst ab einer Dosis von $3,3 \times 10^{17} cm^{-2}$ und werden mit steigender Dosis sch"arfer. + Wie man in Abbildung \ref{img:temdosis} gut erkennen kann, bilden sich die lamellaren Ausscheidungen an der vorderen Grenzfl"ache zur durchgehend amorphen Schicht erst ab einer Dosis von $3,3 \times 10^{17} cm^{-2}$ und werden mit steigender Dosis sch"arfer. \section{Temperaturabh"angigkeit} - Die Position und Ausdehnung der amorphen Phasen ist ausserdem abh"angig von der Implantationstemeperatur. + Die Position und Ausdehnung der amorphen Phasen ist au"serdem abh"angig von der Implantationstemperatur. F"ur die Bildung durchgehender amorpher Schichten und lamellarer Ausscheidungen an der Grenzfl"ache muss die Implantationstemperatur hoch genug sein, um eine komplette Amorphisierung der Targetoberfl"ache, und gleichzeitig niedrig genug, um die Kristallisation amorpher Ausscheidungen zu kubischen $3C-SiC$-Pr"azipitaten zu verhindern. F"ur Kohlenstoff in Silizium sind Temperaturen zwischen $150$ und $400 \, ^{\circ} \mathrm{C}$ geeignet. \printimg{h}{width=10cm}{a-t.eps}{Schematischer Aufbau des implantierten Schichtsystems f"ur $180 keV$ $C^+$"=Implantationen in $(100)Si$ mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ in Abh"angigkeit von der Temperatur. \cite{maik_da}}{img:lua_vs_t} Abbildung \ref{img:lua_vs_t} zeigt die Position und Ausdehnung der strukturell verschiedenen Bereiche f"ur $180 keV \, C^+$-implantierte Proben mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ abh"angig von der Implantationstemperatur. Die Dicke der durchgehenden Schicht nimmt mit steigender Temperatur ab. - Dies deutet auf eine erleichterte Rekristallisation bereits amorphisierten Siliziums beziehungsweise erschwerte Amorphisierung kristallinen Siliziums bei h"oheren Temperaturen hin. + Dies deutet auf eine erleichterte Rekristallisation bereits amorphisierten Siliziums, beziehungsweise erschwerte Amorphisierung kristallinen Siliziums, bei h"oheren Temperaturen hin. Auff"allig ist weiterhin die Ausdehnung der amorphen Schicht um das Kohlenstoffverteilungsmaximum. Die Kohlenstoffkonzentrationen an der vorderen Grenzfl"ache f"ur $150 \, ^{\circ} \mathrm{C}$ betr"agt $15 at.\%$, bei $200 \, ^{\circ} \mathrm{C}$ $20 at.\%$ und bei $250 \, ^{\circ} \mathrm{C}$ $25 at.\%$. - Dies weist auf einen Beitrag des Kohlenstoffs zur Amorphisierung hin, der f"ur h"ohere Temperaturen auf Grund der erschwerten Amorphisierung ansteigen muss um Amorphisierung zu beg"unstigen. + Dies weist auf einen Beitrag des Kohlenstoffs zur Amorphisierung hin, der f"ur h"ohere Temperaturen auf Grund der erschwerten Amorphisierung ansteigen muss, um Amorphisierung zu beg"unstigen. \section{Kohlenstoffverteilung} Im letzten Abschnitt wurde deutlich, dass die Amorphisierung stark abh"angig von der Implantationstemperatur ist. Da in den hier verwendeten Temperaturen zwischen $150$ bis $250 \, ^{\circ} \mathrm{C}$ f"ur niedrige Dosen kaum Amorphisierung zu erwarten ist \cite{linnross}, muss sehr viel Kohlenstoff implantiert werden, was letztendlich zur Nukleation kohlenstoffreicher amorpher $SiC_x$-Ausscheidungen f"uhrt \cite{kennedy}. \printimg{h}{width=15cm}{eftem.eps}{$a)$ Hellfeld- und $b)$ Elementverteilungsaufnahme der vorderen Grenzschicht einer mit $4,3 \times 10^{17} cm^{-2}$ bei $200 \, ^{\circ} \mathrm{C}$ implantierten Probe. Amorphe Bereiche in der Hellfeldaufnahme erscheinen hell, hohe Kohlenstoffkonzentrationen in der Elementverteilungsaufnahme sind gelb, niedrige blau. \cite{maik_da}}{img:eftem} - Dies wird durch die Gegen"uberstellung (Abbildung \ref{img:eftem}) einer Hellfeldaufnahme mit einer zugeh"origen, durch energiegefiltertes TEM gewonnene Elementverteilungsaufnahme einer bei $200 \, ^{\circ} \mathrm{C}$ und sonst gleichen Bedingungen implantierten Probe best"atigt. + Dies wird durch die Gegen"uberstellung (Abbildung \ref{img:eftem}) einer Hellfeldaufnahme mit einer zugeh"origen, durch energiegefiltertes TEM gewonnenen Elementverteilungsaufnahme, einer bei $200 \, ^{\circ} \mathrm{C}$ und sonst gleichen Bedingungen implantierten Probe, best"atigt. Die lamellaren amorphen Bereiche weisen eine erh"ohte Kohlenstoffkonzentration im Gegensatz zu den kristallinen Bereichen auf. diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index 7b6fa8b..eb63242 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -6,10 +6,10 @@ Im Folgenden soll auf das Modell zur Bildung dieser geordneten amorphen Ausscheidungen eingegangen werden. Es wurde erstmals in \cite{basic_phys_proc} vorgestellt. Die Idee des Modells ist schematisch in Abbildung \ref{img:modell} gezeigt. - \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu gerodneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell} + \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell} % alternativ model1_s_german.eps - Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}. + Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}. Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ unter den gegebenen Bedingungen ionenstrahlinduziert epitaktisch rekristallisiert, w"ahrend rein thermische Rekristallisation von amorphen Silizium ($a-Si$) erst oberhalb $550 \, ^{\circ} \mathrm{C}$ erfolgt \cite{csepregi}. Zuf"allig amorphisierte Gebiete werden demnach mit hoher Wahrscheinlichkeit sehr schnell rekristallisieren. Die rein zuf"allige Amorphisierung, f"ur die immer eine geringe Wahrscheinlichkeit besteht, bezeichnet man als ballistische Amorphisierung. @@ -21,11 +21,11 @@ Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt. Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist. Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind. - Bei bis zu $5$ st"undigen Tempervorg"angen bei $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen zeigt. - Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinen Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt. + Bei bis zu f"unfst"undigen Tempervorg"angen bei $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen, zeigt. + Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinem Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt. Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet. - Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischen Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}. + Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}. Eine entsprechende geringere Dichte wird f"ur unterst"ochiometrisches amorphes $SiC_x$ im Vergleich zu kristallinem Silizium angenommen. Die amorphen Gebiete sind demnach bestrebt sich auszudehnen und "uben Druckspannungen auf die kristalline Umgebung aus. Diese sind in Abbildung \ref{img:modell} durch die Pfeile dargestellt. @@ -40,7 +40,7 @@ Da die Lamellen aus einzelnen sph"arischen $a-SiC_x$-Ausscheidungen hervorgehen, ist zu erwarten, dass die Kohlenstoffkonzentration lateral eine Modulation entlang der Lamellen aufweist. Die Modulation sollte allerdings schwach sein, wie aus folgenden "Uberlegungen zur Diffusion folgt. - Die amorphen Gebiete dienen als Senke f"ur Kohlenstoff, der von der kristallinen Umgebung in die amorphe Ausscheidung diffundieren kann, um so die "Ubers"attigung mit Kohelnstoff in den kristallinen Gebieten zu reduzieren. + Die amorphen Gebiete dienen als Senke f"ur Kohlenstoff, der von der kristallinen Umgebung in die amorphe Ausscheidung diffundieren kann, um so die "Ubers"attigung mit Kohlenstoff in den kristallinen Gebieten zu reduzieren. Die L"oslichkeit von Kohlenstoff in kristallinen Silizium ($c-Si$) bei Raumtemperatur ist nahezu Null \cite{bean}. Die amorphen Gebiete reichern sich mit Kohlenstoff an und erh"ohen wiederum die lateralen Spannungen auf die Umgebung. Mit zunehmender Dosis bilden sich so durchgehende kohlenstoffreiche amorphe Lamellen. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index ed7f8bb..a655db8 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -8,7 +8,7 @@ Der Simulationscode wurde auf Computern der {\em IA32}-Rechnerarchitektur mit de Ziel der Simulation ist die Validierung des Modells anhand der experimentellen Ergebnisse, wie sie in Abbildung \ref{img:xtem_img} vorliegen. Es wurden zwei Versionen der Simulation erstellt, die unterschiedliche Tiefenbereiche abdecken. -Die erste Version beschreibt den Bereich von der Oberfl"ache des Targets bis zum Beginn der durchgehenden amorphen $SiC_x$-Schicht, also den Tiefenbereich von $0$ bis $300 nm$. +Die erste Version beschreibt den Bereich von der Oberfl"ache des Targets bis zum Beginn der durchgehend amorphen $SiC_x$-Schicht, also den Tiefenbereich von $0$ bis $300 nm$. Nachdem eine Beschreibung der Bildung lamellarer amorpher Ausscheidungen mit dieser Version sehr gut funktioniert hat, wurde eine zweite Version entwickelt, die den gesamten Implantationsbereich betrachtet. Auf weitere Unterschiede in den zwei Versionen wird in einem gesonderten Abschnitt genauer eingegangen. @@ -140,7 +140,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren. In Abbildung \ref{img:trim_impl} ist das f"ur diese Simulation verwendete, von einer neueren {\em TRIM}-Version ({\em SRIM 2003.26}) berechnete Implantationsprofil abgebildet. - Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohelnstoffs. + Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohlenstoffs. Das Implantationsmaximum liegt hier bei ungef"ahr $530 nm$. Auff"allig ist eine Verschiebung des Maximums um $30 nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}. Dies ist auf eine Ver"anderung in der elektronischen Bremskrfat zuru"ckzuf"uhren. diff --git a/nlsop/diplom/zuzsammenfassung_ausblick.tex b/nlsop/diplom/zuzsammenfassung_ausblick.tex index 2fd8002..72fe8a1 100644 --- a/nlsop/diplom/zuzsammenfassung_ausblick.tex +++ b/nlsop/diplom/zuzsammenfassung_ausblick.tex @@ -63,5 +63,5 @@ Die Einf"uhrung lateraller Spannungen als Amorphisierungsmechanismus steht nicht Mit Hilfe weiterer Implantationen anderer Ion-Target-Kombinationen k"onnte man die Abh"angigkeit der Simulationsparameter vom verwendeten Materialsystem untersuchen. Dadurch k"onnte die Simulation zu einem universellen Programm zur Amorphisierung jedes Materialsystems erweitert werden. -Ein Zusammenhang zwischen den die Amorphisierung beschreibenden Parameter und den Materialkonstanten k"onnte ausserdem Aufschluss "uber die Amorphisierungsmechanismen liefern. +Ein Zusammenhang zwischen den die Amorphisierung beschreibenden Parameter und den Materialkonstanten k"onnte au"serdem Aufschluss "uber die Amorphisierungsmechanismen liefern. -- 2.20.1 From e325c497b2718d04fdfedc9886412bc270bd537f Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 20:11:05 +0000 Subject: [PATCH 06/16] more updates (typos) --- nlsop/diplom/einleitung.tex | 2 +- nlsop/diplom/ergebnisse.tex | 184 ++++++++++----------- nlsop/diplom/exp_befunde.tex | 24 +-- nlsop/diplom/grundlagen.tex | 14 +- nlsop/diplom/modell.tex | 6 +- nlsop/diplom/simulation.tex | 42 ++--- nlsop/diplom/zuzsammenfassung_ausblick.tex | 2 +- 7 files changed, 137 insertions(+), 137 deletions(-) diff --git a/nlsop/diplom/einleitung.tex b/nlsop/diplom/einleitung.tex index bd6cfca..726a9c3 100644 --- a/nlsop/diplom/einleitung.tex +++ b/nlsop/diplom/einleitung.tex @@ -16,7 +16,7 @@ Da sehr viele solcher Teilchen in den Festk"orper geschossen werden, erwartet ma Eine eher unerwartete Antwort des Systems auf die "au"sere Stimulation ist die Selbstorganisation der Struktur der bestrahlten Oberfl"ache beziehungsweise des bestrahlten Oberfl"achenvolumens. Erstaunlicherweise wurden schon eine ganze Reihe solcher Selbstorganisationsph"anomene beobachtet. Bei der Bestrahlung d"unner $NiO$-Schichten mit schnellen und schweren Ionen erkennt man eine periodische Rissbildung senkrecht zur projezierten Einfallsrichtung des Ionenstrahls \cite{bolse}. -Bei fortgef"uhrter Implantation bilden sich $100 nm$ dicke und $1 \mu m$ hohe $NiO$-Lamellen aus, die einen Abstand von $1-3 \mu m$ und die selbe Orientierung wie die Risse besitzen. +Bei fortgef"uhrter Implantation bilden sich $100 \, nm$ dicke und $1 \, \mu m$ hohe $NiO$-Lamellen aus, die einen Abstand von $1-3 \, \mu m$ und die selbe Orientierung wie die Risse besitzen. Dieser Effekt wird auf das kurzzeitige Schmelzen des Materials in der Umgebung der Teilchenbahn des Ions zur"uckgef"uhrt. Ein weiteres Beispiel f"ur einen Selbstorganisationsvorgang ist die Entstehung von Riffeln auf der Oberfl"ache des Taregts, die sich abh"angig vom Einfallswinkel der Ionen, senkrecht beziehungsweise parallel zur Projektion des Ionenstrahls auf die Oberfl"ache orientieren. Diese Beobachtung kann durch die Bradley-Harper-Theorie beschrieben werden \cite{bradley_harper}. diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 28554e2..f55b4d6 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -4,13 +4,13 @@ Im Folgenden werden die Ergebnisse der Simulation vorgestellt. Dabei werden Simulationsergebnisse mit experimentellen Ergebnissen aus \cite{maik_da} verglichen. -Durch Variation der Simulationsparameter wird dar"uberhinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht. -Hierbei wird vor allem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet. +Durch Variation der Simulationsparameter wird dar"uber hinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht. +Hierbei wird vorallem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet. Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung, k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden. Diese Information ist experimentell schwer zug"anglich. -Zun"achst werden die Ergebnisse der Simulationen bis $300 nm$ Tiefe vorgestellt. +Zun"achst werden die Ergebnisse der Simulationen bis $300 \, nm$ Tiefe vorgestellt. Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich diskutiert. \section{Simulation bis 300 nm Tiefe} @@ -29,14 +29,14 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ist ein Einfluss der weiter entfernten Zellen vernachl"assigbar, so l"asst sich ein Abbruchradius f"ur die Behandlung der Spannungen definieren. Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig. - Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 nm$ entspricht, zeigt eine gr"ossere Menge an amorphen Gebieten, die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an. + Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 \, nm$ entspricht, zeigt eine gr"o"sere Menge an amorphen Gebieten, die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an. Dies ist in Abbildung \ref{img:first_sims} a) und b) zu erkennen. Aus diesem Grund wurde der Abbruchradius f"ur alle weiteren Simulationen auf $r=5$ Volumen gesetzt. - \printimg{h}{width=15cm}{first_sims.eps}{Cross-Section verschiedener Simulationsergebnisse. Simulationsparameter (wenn nicht anderst angegeben): $p_b=0,01$, $p_c=0,05$, $p_s=0,05$, $r=5$, $d_v=100$, $d_r=0,5$, $s=3 \times 10^5$. Variierte Parameter: $b)$ $r=10$, $c)$ $p_b=0,05$, $p_s=0,1$.}{img:first_sims} + \printimg{h}{width=15cm}{first_sims.eps}{Cross-Section verschiedener Simulationsergebnisse. Simulationsparameter (wenn nicht anderst angegeben): $p_b=0,01$, $p_c=0,05$, $p_s=0,05$, $r=5$, $d_v=100$, $d_r=0,5$, $s=3 \times 10^5$. Variierte Parameter: b) $r=10$, c) $p_b=0,05$, d) $p_s=0,1$.}{img:first_sims} Die Simulationen wurden zun"achst mit sehr geringen Schrittzahlen (zwischen $2$ und $4 \times 10^{5}$ Schritten) durchgef"uhrt. Voraussetzung f"ur die Entstehung amorpher Gebiete bei dieser geringen Schrittzahl sind hohe Werte f"ur die zur Amorphisierung beitragenden Simulationsparameter $p_b$, $p_c$ und $p_s$ (Gr"o"senordnungsbereich $10^{-2}$). - Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsinduzierten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"osseren Menge an amorphen Gebieten. + Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsinduzierten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"o"seren Menge an amorphen Gebieten. Eine klare Lamellenbildung ist unter diesen Bedingungen nicht zu erkennen. Macht man die Parameter jedoch sehr viel kleiner und erh"oht im Gegenzug die Schrittzahl, so erwartet man, dass zuf"allig amorphisierte Zellen ohne amorphe Nachbarn mit aller Wahrscheinlichkeit im Falle eines Sto"ses rekristallisieren werden. @@ -66,21 +66,21 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Tats"achlich k"onnen Parameter eingestellt werden, die die experimentell gefundene Ordnung zuzfriedenstellend reproduzieren. Abbildung \ref{img:tem_sim_comp} zeigt den Vergleich zwischen Simulationsergebnis und dem experimentellen Befund aus Abbildung \ref{img:xtem_img}. Wie man erkennt, ist die Simulation in der Lage lamellare Strukturen zu erzeugen. - Diese sind im Tiefenbereich von $200$ bis $300 nm$ zu erkennen. - Dies entspricht etwa dem Tiefenbereich, in dem auch mit Cross-Section TEM lamellare Ausscheidungen f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$ bei $180 keV$ $C^+$-Implantation gefunden werden. + Diese sind im Tiefenbereich von $200$ bis $300 \, nm$ zu erkennen. + Dies entspricht etwa dem Tiefenbereich, in dem auch mit Cross-Section TEM lamellare Ausscheidungen f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$ bei $180 \, keV$ $C^+$-Implantation gefunden werden. Durch einfaches Abz"ahlen der Lamellen in diesem Tiefenbereich am Rand der TEM-Aufnahme beziehungsweise des Simulationsergebnisses erkennt man, dass auch die Anzahl der Lamellen pro Tiefenintervall recht gut reproduziert wird. Desweiteren stimmen sogar die durchschnittlichen L"angen der Lamellen in Experiment und Simulation "uberein. Eine objektive Methode der Messung der \dq Lamellarigkeit\dq{} stellt die Fouriertransformation dar. Hierzu wurde das Programm {\em dft} (kurz f"ur {\bf d}iscrete {\bf f}ourier {\bf t}ransform) geschrieben. Dieses schneidet die untersten $50 \times 50$ beziehungsweise $64 \times 64$ Bildpunkte der Querschnittsansicht aus und wendet darauf eine $2d$-Fouriertransformation an. - Dabei wird die Intensit"at des fouriertransformierten Bildes skaliert, um Bildpunkte ausserhalb der Ortsfrequenz Null besser erkennen zu k"onnen. + Dabei wird die Intensit"at des fouriertransformierten Bildes skaliert, um Bildpunkte au"serhalb der Ortsfrequenz Null besser erkennen zu k"onnen. - \printimg{h}{width=8cm}{sim_tem_cmp_dft.eps}{Vergleich der Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. $a)$ Simulation, $b)$ Experiment.}{img:dft_tem_sim_cmp} + \printimg{h}{width=8cm}{sim_tem_cmp_dft.eps}{Vergleich der Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. a) Simulation, b) Experiment.}{img:dft_tem_sim_cmp} Abbildung \ref{img:dft_tem_sim_cmp} zeigt die Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. Die horizontalen Lamellen f"uhren in der Fouriertransformierten erwartungsgem"a"s zu vertikalen Streifen. - Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $y$-Richtung. + Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 \, nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $y$-Richtung. Durch die Intensit"atsskalierung lassen sich Linescans gut miteinander vergleichen, da deren Intensit"atsverlauf in der selben Gr"o"senordnung liegt. \printimg{h}{width=12cm}{tem_cmp_ls.eps}{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.}{img:tem_cmp_ls} Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}. @@ -98,8 +98,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Im Folgenden werden die Diffusionsparameter variiert um deren Auswirkungen auf die Ausscheidungsanordnung sichtbar zu machen. Da die kohlenstoffinduzierte Amorphisierung den wahrscheinlich wichtigsten Beitrag zur Amorphisierung liefert, liegt es auf der Hand, dass die Kohlenstoffdiffusion erheblichen Einfluss auf den Selbstorganisationsvorgang hat. - \printimg{h}{width=13cm}{diff_einfluss.eps}{Vergleich von Simulationen mit unterschiedlicher Diffusionsrate $d_r$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $s=20 \times 10^6$. Variierte Diffusion: $a)$ $d_r^z=d_r^{x,y}=0,2$, $b)$ $d_r^z=d_r^{x,y}=0,5$ $c)$ $d_r^z=0$, $d_r^{x,y}=0,5$. Die Abbildung zeigt die Querschnitte $a)$ - $c)$ und deren Fouriertransformierte $d)$ - $f)$.}{img:diff_influence} - \printimg{h}{width=13cm}{diff_einfluss_ls.eps}{Linescan "uber die Orstfrequenz $f_x=0$ der Fouriertransformierten aus \ref{img:diff_influence} mit $a)$ $d_r^z=d_r^{x,y}=0,5$, $b)$ $d_r^z=d_r^{x,y}=0,2$ und $c)$ $d_r^z=0$, $d_r^{x,y}=0,5$.}{img:diff_influence_ls} + \printimg{h}{width=13cm}{diff_einfluss.eps}{Vergleich von Simulationen mit unterschiedlicher Diffusionsrate $d_r$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $s=20 \times 10^6$. Variierte Diffusion: a) $d_r^z=d_r^{x,y}=0,2$, b) $d_r^z=d_r^{x,y}=0,5$, c) $d_r^z=0$, $d_r^{x,y}=0,5$. Die Abbildung zeigt die Querschnitte a) - c) und deren Fouriertransformierte d) - f).}{img:diff_influence} + \printimg{h}{width=13cm}{diff_einfluss_ls.eps}{Linescan "uber die Orstfrequenz $f_x=0$ der Fouriertransformierten aus \ref{img:diff_influence} mit a) $d_r^z=d_r^{x,y}=0,5$, b) $d_r^z=d_r^{x,y}=0,2$ und c) $d_r^z=0$, $d_r^{x,y}=0,5$.}{img:diff_influence_ls} Abbildung \ref{img:diff_influence} zeigt den Vergleich von Ergebnissen mit unterschiedlicher Diffusionsrate $d_r$. Zus"atzlich kann die Diffusion in $z$-Richtung unterdr"uckt werden ($d_r^z=0$). Unter der Querschnittsansicht ist die jeweilige Fouriertransformierte abgebildet. @@ -113,25 +113,25 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Das Ergebnis zeigt die Notwendigkeit der lokalen Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung. Weiterhin erkennt man einen Zusammenhang zwischen der Diffusionsrate $d_r$ und dem Tiefenintervall, in dem sich lamellare Strukturen gebildet haben. - Die Erh"ohung der Diffusionsrate von $d_r=0,2$ auf $d_r=0,5$ hat eine Vergr"osserung des Tiefenintervalls von ungef"ahr $60$ auf $150 nm$ zur Folge. + Die Erh"ohung der Diffusionsrate von $d_r=0,2$ auf $d_r=0,5$ hat eine Vergr"o"serung des Tiefenintervalls von ungef"ahr $60$ auf $150 \, nm$ zur Folge. Bei hoher Diffusionsrate diffundiert der Kohlenstoff schneller in amorphe Volumina. Dies stabilisiert die amorphe Ausscheidung. Geringe Diffusionsraten verhindern ein schnelles Anh"aufen von Kohlenstoff in den amorphen Volumina. Die amorphen Ausscheidungen sind nicht sehr stabil und werden mit hoher Wahrscheinlichkeit rekristallisieren. Dies "au"sert sich auch in einer kleineren Anzahl an amorphen Gebieten insgesamt, f"ur die kleinere Rate $d_r=0,2$. - Stabile amorphe Ausscheidungen treten erst ab einer Tiefe von ungef"ahr $240 nm$ auf. + Stabile amorphe Ausscheidungen treten erst ab einer Tiefe von ungef"ahr $240 \, nm$ auf. Hier ist die mittlere Kohlenstoffkonzentration hoch genug, um bei der hier herrschenden nuklearen Bremskraft etwas Amorphes zu erhalten. Abbildung \ref{img:diff_influence_ls} zeigt die Linescans der fouriertransformierten Cross-Sections aus Abbildung \ref{img:diff_influence}. Abbildung \ref{img:diff_influence_ls} c) geh"ort zur Simulation ohne Diffusion in $z$-Richtung. - Der Linescan zeigt kein Maximum ausser bei der Ortsfrequenz Null. + Der Linescan zeigt kein Maximum au"ser bei der Ortsfrequenz Null. Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigten Querschnitt. Es haben sich keine lamellare Ausscheidungen gebildet. Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erhaelt deutlich lamellare Ausscheidungen. - Dies "aussert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null. - Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. - Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 nm$. - Dies entspricht einer Anzahl von ungef"ahr $17$ Lamellen in einem Tiefenbereich von $150 nm$. + Dies "au"sert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null. + Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. + Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 \, nm$. + Dies entspricht einer Anzahl von ungef"ahr $17$ Lamellen in einem Tiefenbereich von $150 \, nm$. Eine "ahnlich grosse Zahl erh"alt man tats"achlich durch Abz"ahlen der Lamellen am linken Rand der Cross-Section aus Abbildung \ref{img:diff_influence} b). Die Fouriertransformierte stellt also ein geeignetes Mittel zur objektiven Messung der \dq Lamellarigkeit\dq{} dar. Auff"allig ist das Vorkommen von zwei ausgepr"agten Maxima in Abbildung \ref{img:diff_influence_ls} a). @@ -148,16 +148,16 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht. Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt. - Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 nm$ mit zunehmenden $d_r$. + Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 \, nm$ mit zunehmenden $d_r$. Ausserdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen. Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$. Dies liegt wiederum an der schnelleren Diffusion, die eine aggressivere Anh"aufung von Kohlenstoff selbst in Tiefen geringerer Kohlenstoffkonzentration bewirkt. - In Abbildung \ref{img:dv_ls} sind die Linescans der fouriertransformierten Cross-Sections $a)$ und $d)$ aus Abbildung \ref{img:dv_influence} zu sehen. + In Abbildung \ref{img:dv_ls} sind die Linescans der fouriertransformierten Cross-Sections a) und d) aus Abbildung \ref{img:dv_influence} zu sehen. Die Zunahme der Periodenl"ange macht sich hier durch die Verschiebung des Intensit"atsmaximums zu einer geringeren Frequenz bemerkbar. - W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 nm^{-1}$ Peaks hoher Intensit"at zeigt, erkennt man diese f"ur $d_v=10$ (rot) erst bei h"oheren Frequenzen. - Die durch Regression bestimmten Intensit"atsmaxima liegen bei $f_z \approx 0,106 nm^{-1}$ (blau) und $f_z \approx 0,114 nm^{-1}$ (rot). - Diese entsprechen unngef"ahr den Wellenl"angen $9,4 nm$ und $8,8 nm$. + W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 \, nm^{-1}$ Peaks hoher Intensit"at zeigt, erkennt man diese f"ur $d_v=10$ (rot) erst bei h"oheren Frequenzen. + Die durch Regression bestimmten Intensit"atsmaxima liegen bei $f_z \approx 0,106 \, nm^{-1}$ (blau) und $f_z \approx 0,114 \, nm^{-1}$ (rot). + Diese entsprechen unngef"ahr den Wellenl"angen $9,4 \, nm$ und $8,8 \, nm$. Dieses Ergebnis einer unterschiedlich groben Verteilung der Lamellen unterstreicht ebenfalls die Bedeutung einer effizienten Diffusion f"ur die Anordnung des Kohlenstoffs in wohlseparierte Lamellen. Physikalisch gesehen entspricht ein gro"ses $d_v$ einer Barriere f"ur den Einbau von Kohlenstoff in eine Lamelle. @@ -166,7 +166,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \subsection{Einfluss der Druckspannungen} Im Folgenden soll der Einfluss der Druckspannungen auf den Selbstorganisationsprozess diskutiert werden. - \printimg{h}{width=15cm}{high_to_low_a.eps}{Simulationsergebnisse f"ur verschiedene $p_s$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$. Variierter Parameter: $a)$ $p_s=0,001$, $b)$ $p_s=0,002$, $c)$ $p_s=0,003$, $d)$ $p_s=0,004$.}{img:p_s_influence} + \printimg{h}{width=15cm}{high_to_low_a.eps}{Simulationsergebnisse f"ur verschiedene $p_s$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$. Variierter Parameter: a) $p_s=0,001$, b) $p_s=0,002$, c) $p_s=0,003$, d) $p_s=0,004$.}{img:p_s_influence} In Abbildung \ref{img:p_s_influence} sind Simulationergebnisse mit variierten Druckspannungsparametern $p_s$ zu sehen. Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden kleiner. Gleichzeitig wird auch der laterale Durchmesser der amorphen Lamellen kleiner. @@ -177,7 +177,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Da f"ur kleine $p_s$ zwar einzelne amorphe Zellen gebildet werden, aber keine ganzen Lamellen entstehen, ist zu schlussfolgern, dass selbst ein neu entstandenes amorphes Gebiet direkt neben einer Ausscheidung nicht mehr durch die Druckspannungen allein stabilisiert werden kann. Es wird nur amorph bleiben, wenn vor dem n"achsten Sto"s genug Kohlenstoff durch den Diffusionsprozess gewonnen wird und eine Stabilisierung auf Grund der kohlenstoffinduzierten Amorphisierungswahrscheinlichkeit ausreicht. - \printimg{h}{width=12cm}{ps_einfluss_ls.eps}{Linescan der fouriertransformierten Cross-Sections aus Abbildung \ref{img:p_s_influence} von Simulationen mit $b)$ $p_s=0,002$, $c)$ $p_s=0,003$ und $d)$ $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$.}{img:p_s_per} + \printimg{h}{width=12cm}{ps_einfluss_ls.eps}{Linescan der fouriertransformierten Cross-Sections aus Abbildung \ref{img:p_s_influence} von Simulationen mit b) $p_s=0,002$, c) $p_s=0,003$ und d) $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$.}{img:p_s_per} In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$, $p_s=0,003$ und $p_s=0,004$ zu sehen (Abbildung \ref{img:p_s_influence} (b,c,d)). Zun"achst f"allt das sch"arfere Maximum bei der Ortsfrequenz Null f"ur h"ohere Werte von $p_s$ auf. Dies h"angt mit dem fouriertransformierten Tiefenbereich zusammen. @@ -204,14 +204,14 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die amorphen Gebiete entziehen den anliegenden Ebenen den Kohlenstoff, womit dort die Amophisierungswahrscheinlichkeit sinkt. Die Tatsache, dass sich der Kohlenstoff in den amorphen Gebieten befindet, kann man durch Vergleich mit der Kohlenstoffverteilung erkennen. Auch das Gebiet hoher Druckspannungen stimmt ann"ahernd mit den amorphen Gebiet "uberein. - Es f"allt aber auf, dass die Ausdehnung der amorphen Gebiete etwas gr"osser als das Gebiet mit hoher Kohlenstoffkonzentration ist, und dass die Druckspannungen auch noch im Randgebiet der kristallinen Volumina existieren. + Es f"allt aber auf, dass die Ausdehnung der amorphen Gebiete etwas gr"o"ser als das Gebiet mit hoher Kohlenstoffkonzentration ist, und dass die Druckspannungen auch noch im Randgebiet der kristallinen Volumina existieren. Das amorphe Randgebiet ist auf Grund der Druckspannungen trotz des niedrigen Kohlenstoffgehalts amorph. In den kristallinen Gebieten der amorph/kristallinen Grenzfl"ache reicht auch das Spannungsfeld nicht mehr aus, um den amorphen Zustand zu stabilisieren. \printimg{h}{width=15cm}{ac_cconc_ver1.eps}{Querschnittsansicht und Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen. Abgebildet ist der Kohlenstoff in amorphen und kristallinen Gebieten (schwarz), in kristallinen Gebieten (rot) und in amorphen Gebieten (gr"un). Simulationsparameter wie in \ref{img:tem_sim_comp}.}{img:c_distrib} Die komplement"are Anordnung der amorph/kristallinen Gebiete in aufeinander folgenden Ebenen wird nochmals in Abbildung \ref{img:c_distrib} deutlich. Abgebildet ist die Querschnittsansicht und ein zugeh"origes Kohlenstofftiefenprofil der Simulation aus Abschnitt \ref{subsection:tem_sim_cmp}. - Bis zu einer Tiefe von $160 nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphen Zellen existieren. + Bis zu einer Tiefe von $160 \, nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphen Zellen existieren. Die wenigen amorphen Zellen die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch auf Grund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat. Der lineare Anstieg der Kohlenstoffkonzentration in den kristallinen und den gesamten Gebieten im nicht lamellaren Bereich ist eine Folge des linear gen"aherten Implantationsprofils. Ein linearer Anstieg l"asst sich auch f"ur die Konzentration in den amorphen Gebieten erkennen. @@ -242,15 +242,15 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \label{section:sim_2} Im Folgenden werden die Ergebnisse behandelt, die mit der zweiten Version des Programms berechnet wurden. - Hier wird "uber den gesamten Implantationsbereich von $0$ bis $700 nm$ simuliert. + Hier wird "uber den gesamten Implantationsbereich von $0$ bis $700 \, nm$ simuliert. In diesem Bereich befindet sich auch die experimentell gefundene durchgehend amorphe $SiC_x$-Schicht. Nun stellt sich die Frage, ob Simulationsparameter existieren, die sowhohl die Lamellenbildung als auch die durchgehend amorphe Schicht reproduzieren. Dabei soll die Ausdehnung und Lage der Schicht abh"angig von der Dosis mit dem Experiment "ubereinstimmen. - Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 nm$ auf Null abgefallen sind, kann der Sputtervorgang problemlos ber"ucksichtigt werden. + Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 \, nm$ auf Null abgefallen sind, kann der Sputtervorgang problemlos ber"ucksichtigt werden. Jeder Simulationsdurchlauf entspricht tats"achlich einem implantierten Ion, da die mittlere Anzahl von St"o"sen, die ein Ion im Target erf"ahrt, ausgef"uhrt wird. Sto"skoordinaten werden entsprechend der nuklearen Bremskraft gew"ahlt, der Einbau des Kohlenstoffs erfolgt gem"a"s des Implantationsprofils. - Die Sputterroutine wird gestartet, sobald die implantierte Dosis der Dosis entspricht, die $3 nm$ Abtrag zur Folge hat. + Die Sputterroutine wird gestartet, sobald die implantierte Dosis der Dosis entspricht, die $3 \, nm$ Abtrag zur Folge hat. Zun"achst wird ein Paramtersatz vorgestellt, der die oberen Bedingungen ann"ahernd erf"ullt. Dieser Satz von Parametern wurde durch systematische Variation einzelner Parameter und Feststellung seiner Auswirkung auf das Simulationsergebnis entwickelt. @@ -279,32 +279,32 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis In der in Abbildung \ref{img:dose_devel} a) dargestellten XTEM-Aufnahme erscheint der Bereich h"ochster Gittersch"adigung dunkel. Die dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren. - Zus"atzlich hierzu zeigen detaillierte TEM-Untersuchungen \cite{maik_da}, dass hier etwa $3 nm$ gro"se amorphe Einschl"usse auftreten, die teilweise zusammenwachsen. + Zus"atzlich hierzu zeigen detaillierte TEM-Untersuchungen \cite{maik_da}, dass hier etwa $3 \, nm$ gro"se amorphe Einschl"usse auftreten, die teilweise zusammenwachsen. In den TEM-Aufnahmen f"ur h"ohere Dosen wurden die Proben so im Mikroskop orientiert, dass die kristallinen Bereiche in Bragg-Orientierung stehen und auf Grund des Beugungskontrastes im wesentlichen dunkel erscheinen, amorphe Schichten dagegen sehr hell. F"ur diese Dosen sind die XTEM-Aufnahmen direkt mit den Simulationsergebnissen visuell vergleichbar. Nach einer Dosis von $1,0 \times 10^{17} cm^{-2}$ hat sich noch keine durchgehend amorphe Schicht gebildet. Bis auf eine geringe Differenz in der Tiefenposition des Bandes amorpher Ausscheidungen wird das experimentelle Ergebnis von der Simulation sehr gut reproduziert. - Die etwas gr"ossere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis ($1,0 \times 10^{17} cm^{-2}$) und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$). + Die etwas gr"o"sere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis ($1,0 \times 10^{17} cm^{-2}$) und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$). Die Tatsache, dass sich bei dieser geringen Dosis weder im Experiment noch in der Simulation eine durchgehend amorphe Schicht gebildet hat, spricht daf"ur, dass die vorliegenden Amorphisierungsmechanismen nicht f"ur die Bildung einer durchgehenden Schicht ausreichen. - Die meisten amorphen Einschl"usse haben sich nahe dem Maximum des Kohlenstoffprofils bei $500 nm$ und nicht nahe dem Maximum der nuklearen Bremskraft bei $400 nm$ gebildet. + Die meisten amorphen Einschl"usse haben sich nahe dem Maximum des Kohlenstoffprofils bei $500 \, nm$ und nicht nahe dem Maximum der nuklearen Bremskraft bei $400 \, nm$ gebildet. Dies spricht daf"ur, dass die kohlenstoffinduzierte Amorphisierung eine wichtige Rolle im Amorphisierungsprozess "ubernimmt. - Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $b)$) hat sich sowohl in Simulation als auch im Experiment eine durchgehend amorphe $SiC_x$-Schicht gebildet. + Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} b)) hat sich sowohl in Simulation als auch im Experiment eine durchgehend amorphe $SiC_x$-Schicht gebildet. Allerdings ist die durchgehend amorphe Schicht im Experiment viel d"unner und liegt in erster N"aherung in der oberen H"alfte des Tiefenbereichs, in dem die Simulation eine geschlossene amorphe Schicht ergibt. In der unteren H"alfte dieses Bereichs zeigt die XTEM-Aufnahme wieder besonders dunkle Kontraste, so dass hier wohl eine besonders hohe Dichte von Kristalldefekten und m"oglicherweise wieder einzelne amorphe Ausscheidungen vorliegen, aber keine durchgehend amorphe Schicht. Beide Bereiche zusammen sind etwa so dick wie die simulierte amorphe Schicht. - Die Tiefenpositionen unterscheiden sich um $30 nm$. + Die Tiefenpositionen unterscheiden sich um $30 \, nm$. Vorallem an der vorderen Grenzfl"ache der amorphen Schicht zeigt die Simulation in "Ubereinstimmung mit dem Experiment individuelle amorphe Volumina ohne Lamellencharakter. - Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} $a)$) ist die Schichtdicke im Experiment auf $180 nm$ angewachsen. + Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} a)) ist die Schichtdicke im Experiment auf $180 \, nm$ angewachsen. Dasselbe gilt f"ur die Simulation. - Wieder f"allt die Differenz in der Tiefenposition von ungef"ahr $40 nm$ zwischen Simulation und Experiment auf. + Wieder f"allt die Differenz in der Tiefenposition von ungef"ahr $40 \, nm$ zwischen Simulation und Experiment auf. Ausserdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache. Diese lamellaren Strukturen erkennt man ebenfalls im Experiment. - In Abbildung \ref{img:dose_devel2} $b)$ ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 nm$ angewachsen. - Die lamellare Struktur wird deutlicher und der Tiefenbereich, in dem sie vorkommt, gr"osser. + In Abbildung \ref{img:dose_devel2} b) ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 \, nm$ angewachsen. + Die lamellare Struktur wird deutlicher und der Tiefenbereich, in dem sie vorkommt, gr"o"ser. Ausserdem werden die amorph/kristallinen Grenzfl"achen sch"arfer. Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein. Zum einen w"achst die Schichtdicke im gleichem Ma"se an. @@ -312,7 +312,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis. Auf Grund der wichtigen Rolle der kohlenstoffinduzierten Amorphisierung kann die Differenz der Tiefenposition der amorphen Ausscheidungen beziehungsweise der durchgehend amorphen Schicht erkl"art werden. - Die Ursache liegt an dem um $30 nm$ verschobenen Maximum im Kohlenstoffprofil der verwendeten {\em SRIM 2003.26} Version zur {\em TRIM 92} Version, welche besser zu den experimentellen Ergebnissen passt. + Die Ursache liegt an dem um $30 \, nm$ verschobenen Maximum im Kohlenstoffprofil der verwendeten {\em SRIM 2003.26} Version zur {\em TRIM 92} Version, welche besser zu den experimentellen Ergebnissen passt. Der Tiefenschift der Ausscheidungen in der Simulation entspricht ziemlich genau der Differenz der Kohlenstoffmaxima der zwei {\em TRIM} Versionen. Zusammenfassend ist zu sagen, dass trotz einiger Unterschiede, was die Ausdehnung der amorphen Schicht bei der Dosis $2,1 \times 10^{17} cm^{-2}$ und den Tiefenshift f"ur alle Dosen angeht, die Simulation das Experiment recht gut beschreibt. @@ -320,7 +320,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Bei Erh"ohung der Dosis bildet sich eine durchgehende Schicht ohne Vorhandensein von lamellaren Strukturen. Diese bilden sich erst nach weiterer Erh"ohung der Dosis. Gleichzeitig dehnt sich die durchgehende Schicht aus. - Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich, in dem sie auftreten, gr"osser. + Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich, in dem sie auftreten, gr"o"ser. \subsection{Kohlenstoffverteilung} @@ -330,20 +330,20 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Auff"allig ist die Verschiebung des Kohlenstoffmaximums mit steigender Dosis. Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren. - \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{$a)$ Querschnittsaufnahme und $b)$ Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In $a)$ sind helle Gebiete amorph, dunkle Gebiete kristallin. In $b)$ ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2} + \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{a) Querschnittsaufnahme und b) Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In a) sind helle Gebiete amorph, dunkle Gebiete kristallin. In b) ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2} In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil gezeigt. %Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten. Die Kohlenstoffkonzentration steigt entsprechend dem Implantationsprofil an. - Zwischen $0$ und $250 nm$ entspricht die Konzentration in den amorphen Gebieten genau der Konzentration in den kristallinen Gebieten. + Zwischen $0$ und $250 \, nm$ entspricht die Konzentration in den amorphen Gebieten genau der Konzentration in den kristallinen Gebieten. Die Tatsache, dass stabile Ausscheidungen ihrer kristallinen Umgebung Kohlenstoff entzogen h"atten und somit das Konzentrationsprofil in den amorphen und kristallinen Gebieten im Gegensatz zum Gesamtprofil ver"andert h"atten, spricht daf"ur, dass die Ausscheidungen in diesem Tiefenbereich rein ballistisch amorphisierte Gebiete sind, die sehr wahrscheinlich mit fortgef"uhrter Bestrahlung rekristallisieren, noch bevor sie sich durch Kohlenstoffdiffusion gegen"uber Rekristallisation stabilisieren k"onnen. - %Ab einer Tiefe von $150 nm$ sind amorphe Ausscheidungen zu erkennen. + %Ab einer Tiefe von $150 \, nm$ sind amorphe Ausscheidungen zu erkennen. %Der Kohlenstoffgehalt in den kristallinen Volumen sinkt. %Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten. - Ab einer Tiefe von $250 nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt. + Ab einer Tiefe von $250 \, nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt. In diesem Tiefenbereich existieren Ausscheidungen, die nicht unmittelbar rekristallisieren und so Kohlenstoff durch den Diffusionsprozess gewinnen k"onnen, der zur weiteren Stabilisierung f"uhrt. - Ab einer Tiefe von $350 nm$ haben sich lamellare amorphe Ausscheidungen gebildet. + Ab einer Tiefe von $350 \, nm$ haben sich lamellare amorphe Ausscheidungen gebildet. Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb der Gesamtkonzentration liegt. Die Ursache daf"ur ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen. Es wechseln sich Ebenen mit hohen und niedrigen amorphen Anteil ab. @@ -358,21 +358,21 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem grossen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren. Demnach erh"alt man Maxima in der Kohlenstoffkonzentration der kristallinen Gebiete genau bei den Maxima f"ur die Gesamtkonzentration und der Konzentration der amorphen Gebiete. Diese Maxima sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert. - Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen. - Dies stimmt sehr gut mit dem experimentell bestimmten Wert von $?? at.\%$ \cite{unknown} "uberein. + Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen. + Dies stimmt sehr gut mit dem experimentell bestimmten Wert von $?? \, at.\%$ \cite{unknown} "uberein. - In einer Tiefe von $400 nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten schlagartig auf Null ab. + In einer Tiefe von $400 \, nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten schlagartig auf Null ab. Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten. Es existieren keine kristallinen Gebiete mehr. Hier beginnt die durchgehend amorphe Schicht. Die Konzentration in den amorphen Gebieten entspricht genau der Gesamtkonzentration. - Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat, f"allt sie steil ab. - In einer Tiefe von ungef"ahr $570 nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an. + Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 \, nm$ erreicht hat, f"allt sie steil ab. + In einer Tiefe von ungef"ahr $570 \, nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an. Dies entspricht dem Ende der durchgehend amorphen Schicht. Auff"allig ist, dass hier das Maximum der Kohlenstoffkonzentration in kristallinen Gebieten sehr viel h"oher ist, als das an der vorderen Grenzfl"ache. - Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 nm$ wieder in die Gesamtkonzentration "uber. - Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 nm$ Tiefe instabil gegen"uber Rekristallisation. + Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 \, nm$ wieder in die Gesamtkonzentration "uber. + Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 \, nm$ Tiefe instabil gegen"uber Rekristallisation. Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache der durchgehend amorphen Schicht f"ur Experiment und Simulation in Abh"angigkeit von der Dosis zusammen. Experimentell wird dies durch die Kombination der Messung des Kohlenstofftiefenprofils mittels Rutherford-R"uckstreu-Spektroskopie und der Bestimmung der Tiefe der Grenzfl"achen mittels Transmissionselektronenmikroskopie realisiert. @@ -380,8 +380,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Zuerst bestimmt man visuell die $z$-Koordinaten der Grenzfl"achen mit der {\em NLSOP Standalone} Version (Anhang \ref{section:sav}). Das selbe Programm liefert auch die zugeh"origen Kohlenstoffkonzentrationsprofile, in denen man die zugeh"origen Konzentrationen ablesen kann. - Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 at.\&$. - Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 at.\%$ gut "uberein. + Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 \, at.\&$. + Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \, at.\%$ gut "uberein. Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist. Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht. @@ -422,7 +422,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \subsection{Position und Ausdehnung der amorphen Phase} - \printimg{!h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden $x-y$-Schnitten in der Ebene $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} $b)$).}{img:z_zplus1_ver2} + \printimg{!h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden $x-y$-Schnitten in der Ebene $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} b)).}{img:z_zplus1_ver2} Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ in einem Tiefenbereich mit lamellaren Strukturen. Sie best"atigt die Vermutung der nahezu komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich. Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor. @@ -432,13 +432,13 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet. Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum. Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein. - Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden. + Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 \, nm$ tiefer vorzufinden. Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet. Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt. - Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen. + Demnach muss mindestens $23\, \%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen. Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen. - In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nm$ "uber dem Beginn der durchgehend amorphen Schicht. + In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 \, nm$ "uber dem Beginn der durchgehend amorphen Schicht. Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist. Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln. Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden. @@ -474,20 +474,20 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt. Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab. - Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. + Mit knapp $120 \, nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. Sie erstreckt sich weiterhin um das Kohlenstoffmaximum. - Lamellare Strukturen sind, ausser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen. + Lamellare Strukturen sind, au"ser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen. An diesem Ergebnis erkennt man wieder sehr gut, dass die kohlenstoffinduzierte Amorphisierung den wichtigsten Amorphisierungsmechanismus darstellt. Der Einfluss der spannungsinduzierten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} e) zu sehen. Hier wurde der Parameter $p_s$ erh"oht. Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist. Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum. - Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$. + Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 \, at. \%$. Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich. Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist. Der Diffusionsprozess verliert somit an Bedeutung. - Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 at.\%$ Kohlenstoff enth"alt. + Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 \, at.\%$ Kohlenstoff enth"alt. Lamellare Strukturen werden nicht gebildet. Damit scheint die Parameterwahl aus Abbildung \ref{img:var_sim_paramters} a) ideal zu sein. @@ -502,7 +502,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \subsection{Zusammenfassung} - Die zweite Version der Simulation beschreibt den Tiefenbereich von $0$ bis $700 nm$, in dem sich unterhalb der lamellaren Ausscheidungen die durchgehend amorphe $SiC_x$-Schicht befindet. + Die zweite Version der Simulation beschreibt den Tiefenbereich von $0$ bis $700 \, nm$, in dem sich unterhalb der lamellaren Ausscheidungen die durchgehend amorphe $SiC_x$-Schicht befindet. Die Simulation ist in der Lage die experimentell bestimmte dosisabh"angige Bildung der amorphen Phasen zu reproduzieren. Ein entsprechender Satz an Simulationsparametern wurde gefunden. Bis auf einen Tiefenshift der Lage der amorphen Schicht, der durch das verwendete Implantationsprofil der {\em SRIM 2003.26} Version erkl"art werden kann, stimmen Simulation und Ergebnis des Experimentes sehr gut "uberein. @@ -513,7 +513,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Dies wird durch Untersuchungen der Kohlenstoffkonzentration im gesamten Target belegt, die speziell in diesem Bereich Schwankungen aufweist. Weiterhin kann daraus eine Schwellkonzentration f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen abgelesen werden. Die in dieser Version ber"ucksichtigten Sputtereffekte f"uhren zu einer Verschiebung des Kohlenstoffkonzentrationsmaximums. - Die Kohlenstoffkonzentrationen an der vorderen und hinteren Grenzfl"ache stimmen wie im Experiment bis auf $3 at.\%$ "uberein und liegen in der gleichen Gr"o"senordnung wie die experimentell bestimmten Grenzfl"achenkonzentrationen. + Die Kohlenstoffkonzentrationen an der vorderen und hinteren Grenzfl"ache stimmen wie im Experiment bis auf $3 \, at.\%$ "uberein und liegen in der gleichen Gr"o"senordnung wie die experimentell bestimmten Grenzfl"achenkonzentrationen. Dies zeigt erneut die wichtige Rolle der kohlenstoffinduzierten Amorphisierung im Amorphisierungsprozess auf. Essentiell f"ur die Bildung lamellarer Strukturen ist die Diffusion, die, wenn sie zu stark abl"auft, die Bildung einer durchgehnd amorphen Schicht verhindert und nur Lamellen entstehen l"asst. Zu hohe Werte f"ur den Parameter der Druckspannungen f"uhren dagegen zu einer kompletten Amorphisierung des kohlenstoffhaltigen Bereichs im Target. @@ -522,30 +522,30 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \section{Herstellung grosser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation} - \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.}{img:impl_2mev} - \printimg{h}{width=14cm}{nel_2mev.eps}{Durch {\em SRIM 2003.26} ermittelte nukleare Bremskraft von $2 MeV$ $C^+$ in Silizium.}{img:nel_2mev} + \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 \, MeV$ $C^+$ in Silizium.}{img:impl_2mev} + \printimg{h}{width=14cm}{nel_2mev.eps}{Durch {\em SRIM 2003.26} ermittelte nukleare Bremskraft von $2 \, MeV$ $C^+$ in Silizium.}{img:nel_2mev} Im Folgenden soll gepr"uft werden, ob ein zweiter Implantationsschritt einen geeigneten Mechanismus zur Erzeugung breiter lamellarer Bereiche darstellt. Die Idee ist folgende. - Als Grundlage dient ein Siliziumtarget, das wie bisher mit $180 keV$ $C^{+}$-Ionen beschossen wird. + Als Grundlage dient ein Siliziumtarget, das wie bisher mit $180 \, keV$ $C^{+}$-Ionen beschossen wird. Ein Abbildung \ref{img:impl_2mev} entsprechendes Implantationsprofil stellt sich ein. Allerdings soll das Target durchgehend kristallin sein. Dies l"asst sich experimentell durch Erh"ohung der Targettemperatur erreichen. Nach \cite{basic_phys_proc} reicht f"ur eine maximale Dosis von $4,3 \times 10^{17} cm^{-2}$ eine Temperatur von $500 \, ^{\circ} \mathrm{C}$ aus, um Amorphisierung zu verhindern. - Das kristalline Target wird dann mit $2 MeV$ $C^{+}$-Ionen bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ bestrahlt. + Das kristalline Target wird dann mit $2 \, MeV$ $C^{+}$-Ionen bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ bestrahlt. Abbildung \ref{img:nel_2mev} zeigt das durch {\em SRIM 2003.26} ermittelte nukleare Bremskraftprofil. - Die nukleare Bremskraft ist in dem Tiefenbereich zwischen $0$ und $700 nm$ wesentlich flacher als die der $180 keV$-Implantation und nahezu konstant in dem bisher betrachteten Bereich um das Kohlenstoffkonzentrationsmaximum der $180 keV$-Implantation. + Die nukleare Bremskraft ist in dem Tiefenbereich zwischen $0$ und $700 \, nm$ wesentlich flacher als die der $180 \, keV$-Implantation und nahezu konstant in dem bisher betrachteten Bereich um das Kohlenstoffkonzentrationsmaximum der $180 \, keV$-Implantation. St"o"se im Bereich hoher Kohlenstoffkonzentration sind demnach ann"ahernd gleichverteilt bez"uglich der Tiefe. - Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 nm$ herum zur Ruhe. + Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 \, nm$ herum zur Ruhe. Bei geeigneter Wahl der Ausgangskonzentration ist zu erwarten, dass nicht der komplette kohlenstoffhaltige Bereich amorph wird. - Die durch die erste Implantation eingestellte Konzentration sollte idealerweise so hoch sein, dass bei der $2 MeV$-Ionenbestrahlung die kohlenstoffinduzierte Amorphisierung zusammen mit dem Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten. + Die durch die erste Implantation eingestellte Konzentration sollte idealerweise so hoch sein, dass bei der $2 \, MeV$-Ionenbestrahlung die kohlenstoffinduzierte Amorphisierung zusammen mit dem Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten. Dies sollte zur Bildung amorpher Lamellen f"uhren. Wird gen"ugend lange implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei. F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2} "ubernommen, da das gleiche Materialsystem beschrieben wird. - Ausserdem wird das $180 keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. - Auf Grund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 nm$. + Ausserdem wird das $180 \, keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. + Auf Grund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 \, nm$. Nach Auswertung der {\em SRIM}-Datei trifft ein Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters. Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat. Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. @@ -555,16 +555,16 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Kohlenstoffkonzentration wird nicht ver"andert. Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert h"atten, aufweisen. - \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3} - Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen. + \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen in $180 \, keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3} + Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen. F"ur die Ausgangsverteilung wurde ein erster Implantationsschritt mit der Dosis $4,3 \times 10^{17} cm^{-2}$ gew"ahlt. Wie Abbildung \ref{img:2nd_impl_4_3} e) zeigt, reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs. Diese Ausgangskonzentration ist also nicht geeignet f"ur die Herstellung breiter lamellarer Ausscheidungen. Es ist zu viel Kohlenstoff vorhanden. Der kohlenstoffhaltige Bereich amorphisiert schon vor dem ersten Diffusionsschritt, der notwendig f"ur die Selbstorganisation der lamellaren Ausscheidungen ist. - \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1} - In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 at.\%$ liegt. + \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen in $180 \, keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1} + In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 \, at.\%$ liegt. Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim} bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht. F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}. Das Ergebnis des $MeV$-Implantationsschrittes ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt. @@ -578,27 +578,27 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen. In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden. Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird. - Da kaum Kohlenstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs. + Da kaum Kohlenstoff der $2 \, MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs. Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten. Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich. - Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat. + Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 \, at. \%$ im Implantationsmaximum hat. F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal. - Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 keV$ reduziert \cite{unknown}. - Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 nm$ im wesentlichen dem Abfall des $180 keV$-Profils entspricht. + Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 \, keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 \, keV$ reduziert \cite{unknown}. + Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 \, nm$ im wesentlichen dem Abfall des $180 \, keV$-Profils entspricht. - \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 keV$ $C^+$-Implantationsprofils ab einer Tiefe von $500 nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 keV$.}{img:cbox} + \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 \, keV$ $C^+$"=Implantationsprofils ab einer Tiefe von $500 \, nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 \, keV$.}{img:cbox} Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden. - W"ahlt man eine maximale Konzentration von $10 at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}. + W"ahlt man eine maximale Konzentration von $10 \, at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}. - Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen. + Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 \, MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen. \begin{sidewaysfigure}\centering \includegraphics[height=13cm]{multiple_impl.eps} - \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in $f)$ von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.} + \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$"=Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in f) von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.} \label{img:broad_l} \end{sidewaysfigure} - \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel grossen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} $a)$, $b)$ und $f)$.}{img:broad_ls} + \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel grossen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} a), b) und f).}{img:broad_ls} Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden. Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet. Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus um den kohlenstoffhaltigen Bereich komplett zu amorphisieren. @@ -615,13 +615,13 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Dies erkennt man auch in Abbildung \ref{img:broad_ls}. Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}. F"ur die erste Anzahl an Durchl"aufen ($s=50 \times 10^6$) erkennt man kein Maximum in der Intensit"at ungleich der Ortsfrequenz Null. - Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 nm^{-1}$. + Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 \, nm^{-1}$. Die Intensit"aten steigen nur langsam mit der Dosis an, was man auch schon aus den Abbildungen \ref{img:broad_l} c) bis f) erahnen kann. Die Sch"arfe der Ausscheidungen, die bereits in Abbildung \ref{img:broad_l} c) sehr hoch ist, "andert sich kaum noch. Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen, sofern sie existieren, der unabh"angig von der Dosis ist, hinweist. Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis. - Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 nm$ an. + Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 \, nm$ an. Auf Grund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt. Die Herstellung breiter Bereiche lamellarer Struktur ist nach dem Simulationsergebnis demnach m"oglich. - Die Ausgangskonfiguration des Targets, welches mit $2 MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein. + Die Ausgangskonfiguration des Targets, welches mit $2 \, MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein. diff --git a/nlsop/diplom/exp_befunde.tex b/nlsop/diplom/exp_befunde.tex index 43a74a3..1f5c100 100644 --- a/nlsop/diplom/exp_befunde.tex +++ b/nlsop/diplom/exp_befunde.tex @@ -3,23 +3,23 @@ Gegenstand dieser Arbeit ist die Umsetzung eines Modells, welches den Selbstorganisationsvorgang von lamellaren und sph"arischen $SiC_x$-Ausscheidungen an der vorderen Grenzfl"ache zur durchgehend amorphen $SiC_x$-Schicht bei Hochdosis-Kohlenstoff-Implantation in Silizium erkl"aren soll. Neben Kohlenstoffimplantation in Silizium wurden solche Ausscheidungen auch in Hochdosis-Sauerstoffimplantation in Silizium, $Ar^+$ in Saphir und $Si^+$ in $SiC$ \cite{van_ommen,specht,ishimaru} gefunden. -Allen Systemen gemeinsam ist eine drastische Dichtereduktion von mehr als $3-10\%$ des Targetmaterials bei der Amorphisierung, worauf im n"achsten Kapitel genauer eingegangen wird. +Allen Systemen gemeinsam ist eine drastische Dichtereduktion von mehr als $3-10 \, \%$ des Targetmaterials bei der Amorphisierung, worauf im n"achsten Kapitel genauer eingegangen wird. Die Entstehung solcher Ausscheidungen beobachtet man nur unter bestimmten Implantationsbedingungen. Im Folgenden sollen einige der experimentellen Ergebnisse bez"uglich der Bildung der geordneten Ausscheidungen aus \cite{maik_da} zusammengefasst werden. -Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\alpha = 7^{\circ}$ und einer Dosisrate von $\dot{D} = 10 \mu A cm^{-2}$ in einem Temperaturbereich von $150$ bis $250 \, ^{\circ} \mathrm{C}$ in $(100)$ $Si$ f"ur verschiedene Dosen oberhalb von $1,0 \times 10^{17} cm^{-2}$ durchgef"uhrt und untersucht. +Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von $\alpha = 7^{\circ}$ und einer Dosisrate von $\dot{D} = 10 \, \mu A cm^{-2}$ in einem Temperaturbereich von $150$ bis $250 \, ^{\circ} \mathrm{C}$ in $(100)$ $Si$ f"ur verschiedene Dosen oberhalb von $1,0 \times 10^{17} cm^{-2}$ durchgef"uhrt und untersucht. \section{Lage und Ausdehnung amorpher Phasen} - \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV$ $C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} - Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme einer mit $4,3 \times 10^{17} cm^{-2}$ $180 keV \, C^{+}$-inplantierten Probe. + \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 \, keV$ $C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} + Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme einer mit $4,3 \times 10^{17} cm^{-2}$ $180 \, keV \, C^{+}$-inplantierten Probe. Die hellen Gebiete sind amorph, dunkle Gebiete kristallin. - In einer Tiefe von ungef"ahr $300 nm$ beginnt die durchgehende amorphe Schicht. + In einer Tiefe von ungef"ahr $300 \, nm$ beginnt die durchgehende amorphe Schicht. An der vorderen Grenzfl"ache sind die lamellaren und sph"arischen $SiC_x$-Ausscheidungen zu erkennen. - Diese erstrecken sich "uber einen Tiefenbereich von ca. $100 nm$. + Diese erstrecken sich "uber einen Tiefenbereich von ca. $100 \, nm$. Die Lamellen sind parallel zur Targetoberfl"ache ausgerichtet. - Die H"ohe der Ausscheidungen betr"agt ungef"ahr $3 nm$. + Die H"ohe der Ausscheidungen betr"agt ungef"ahr $3 \, nm$. Im rechten Teil von Abbildung \ref{img:xtem_img} sieht man einen vergr"o"serten Ausschnitt der vorderen Grenzfl"ache. Man erkennt die regelm"a"sige Anordnung der lamellaren Ausscheidungen ($L$) in Abst"anden, die ungef"ahr der H"ohe der Ausscheidungen selbst entsprechen. @@ -30,7 +30,7 @@ Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\a In Abbildung \ref{img:temdosis} sind die dazugeh"origen Hellfeld-TEM-Abbildungen zu den ersten vier Dosen abgebildet. Die mit $R_{max}$ gekennzeichnete Linie in Abbildung \ref{img:lua_vs_d} gibt die Position des Kohlenstoffkonzentrationsmaximums an, welches f"ur kleine Dosen mittels {\em TRIM} und f"ur hohe Dosen durch RBS- und TEM-Messungen bestimmt wurde. F"ur die kleinste Dosis von $1,0 \times 10^{17} cm^{-2}$ wird keine durchgehende amorphe Schicht beobachtet. - Stattdessen kann man zahlreiche $3 nm$ gro"se, teilweise zusammenwachsende amorphe Einschl"usse erkennen. + Stattdessen kann man zahlreiche $3 \, nm$ gro"se, teilweise zusammenwachsende amorphe Einschl"usse erkennen. F"ur Dosen oberhalb $1,0 \times 10^{17} cm^{-2}$ entstehen durchgehende amorphe Schichten. Gut zu erkennen ist, dass sich die, mit steigender Dosis anwachsende durchgehende Schicht um das Kohlenstoffverteilungsmaximum erstreckt. Wie man in Abbildung \ref{img:temdosis} gut erkennen kann, bilden sich die lamellaren Ausscheidungen an der vorderen Grenzfl"ache zur durchgehend amorphen Schicht erst ab einer Dosis von $3,3 \times 10^{17} cm^{-2}$ und werden mit steigender Dosis sch"arfer. @@ -40,18 +40,18 @@ Es wurden Implantationen von Ionen der Energie $180 keV$ in einem Winkel von $\a Die Position und Ausdehnung der amorphen Phasen ist au"serdem abh"angig von der Implantationstemperatur. F"ur die Bildung durchgehender amorpher Schichten und lamellarer Ausscheidungen an der Grenzfl"ache muss die Implantationstemperatur hoch genug sein, um eine komplette Amorphisierung der Targetoberfl"ache, und gleichzeitig niedrig genug, um die Kristallisation amorpher Ausscheidungen zu kubischen $3C-SiC$-Pr"azipitaten zu verhindern. F"ur Kohlenstoff in Silizium sind Temperaturen zwischen $150$ und $400 \, ^{\circ} \mathrm{C}$ geeignet. - \printimg{h}{width=10cm}{a-t.eps}{Schematischer Aufbau des implantierten Schichtsystems f"ur $180 keV$ $C^+$"=Implantationen in $(100)Si$ mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ in Abh"angigkeit von der Temperatur. \cite{maik_da}}{img:lua_vs_t} - Abbildung \ref{img:lua_vs_t} zeigt die Position und Ausdehnung der strukturell verschiedenen Bereiche f"ur $180 keV \, C^+$-implantierte Proben mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ abh"angig von der Implantationstemperatur. + \printimg{h}{width=10cm}{a-t.eps}{Schematischer Aufbau des implantierten Schichtsystems f"ur $180 \, keV$ $C^+$"=Implantationen in $(100)Si$ mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ in Abh"angigkeit von der Temperatur. \cite{maik_da}}{img:lua_vs_t} + Abbildung \ref{img:lua_vs_t} zeigt die Position und Ausdehnung der strukturell verschiedenen Bereiche f"ur $180 \, keV \, C^+$-implantierte Proben mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ abh"angig von der Implantationstemperatur. Die Dicke der durchgehenden Schicht nimmt mit steigender Temperatur ab. Dies deutet auf eine erleichterte Rekristallisation bereits amorphisierten Siliziums, beziehungsweise erschwerte Amorphisierung kristallinen Siliziums, bei h"oheren Temperaturen hin. Auff"allig ist weiterhin die Ausdehnung der amorphen Schicht um das Kohlenstoffverteilungsmaximum. - Die Kohlenstoffkonzentrationen an der vorderen Grenzfl"ache f"ur $150 \, ^{\circ} \mathrm{C}$ betr"agt $15 at.\%$, bei $200 \, ^{\circ} \mathrm{C}$ $20 at.\%$ und bei $250 \, ^{\circ} \mathrm{C}$ $25 at.\%$. + Die Kohlenstoffkonzentrationen an der vorderen Grenzfl"ache f"ur $150 \, ^{\circ} \mathrm{C}$ betr"agt $15 \, at.\%$, bei $200 \, ^{\circ} \mathrm{C}$ $20 \, at.\%$ und bei $250 \, ^{\circ} \mathrm{C}$ $25 \, at.\%$. Dies weist auf einen Beitrag des Kohlenstoffs zur Amorphisierung hin, der f"ur h"ohere Temperaturen auf Grund der erschwerten Amorphisierung ansteigen muss, um Amorphisierung zu beg"unstigen. \section{Kohlenstoffverteilung} Im letzten Abschnitt wurde deutlich, dass die Amorphisierung stark abh"angig von der Implantationstemperatur ist. Da in den hier verwendeten Temperaturen zwischen $150$ bis $250 \, ^{\circ} \mathrm{C}$ f"ur niedrige Dosen kaum Amorphisierung zu erwarten ist \cite{linnross}, muss sehr viel Kohlenstoff implantiert werden, was letztendlich zur Nukleation kohlenstoffreicher amorpher $SiC_x$-Ausscheidungen f"uhrt \cite{kennedy}. - \printimg{h}{width=15cm}{eftem.eps}{$a)$ Hellfeld- und $b)$ Elementverteilungsaufnahme der vorderen Grenzschicht einer mit $4,3 \times 10^{17} cm^{-2}$ bei $200 \, ^{\circ} \mathrm{C}$ implantierten Probe. Amorphe Bereiche in der Hellfeldaufnahme erscheinen hell, hohe Kohlenstoffkonzentrationen in der Elementverteilungsaufnahme sind gelb, niedrige blau. \cite{maik_da}}{img:eftem} + \printimg{h}{width=15cm}{eftem.eps}{a) Hellfeld- und b) Elementverteilungsaufnahme der vorderen Grenzschicht einer mit $4,3 \times 10^{17} cm^{-2}$ bei $200 \, ^{\circ} \mathrm{C}$ implantierten Probe. Amorphe Bereiche in der Hellfeldaufnahme erscheinen hell, hohe Kohlenstoffkonzentrationen in der Elementverteilungsaufnahme sind gelb, niedrige blau. \cite{maik_da}}{img:eftem} Dies wird durch die Gegen"uberstellung (Abbildung \ref{img:eftem}) einer Hellfeldaufnahme mit einer zugeh"origen, durch energiegefiltertes TEM gewonnenen Elementverteilungsaufnahme, einer bei $200 \, ^{\circ} \mathrm{C}$ und sonst gleichen Bedingungen implantierten Probe, best"atigt. Die lamellaren amorphen Bereiche weisen eine erh"ohte Kohlenstoffkonzentration im Gegensatz zu den kristallinen Bereichen auf. diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex index 13286f7..7fa8344 100644 --- a/nlsop/diplom/grundlagen.tex +++ b/nlsop/diplom/grundlagen.tex @@ -30,7 +30,7 @@ \subsection{Erzeugung gleichverteilter Pseudozufallszahlen} \label{subsection:rand_gen} - Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode \cite{knuth,nr}, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3, \ldots$ aus dem Intervall $I = [0,m-1]$ generiert. + Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode \cite{knuth,nr}, welche eine Sequenz von ganzen Zahlen $I_j$ aus dem Intervall $I = [0,m-1]$ generiert. Dabei gilt folgende Vorschrift: \begin{equation} \label{eq:kon_m} I_{j+1} = ( a I_{j} + c ) \, mod \, m @@ -326,8 +326,8 @@ Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets. Die elektronische Bremskraft ist abh"angig von der Energie der Ionen. Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen. - Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden. - F"ur hohe, nichtrelativistische Energien (kleiner $10 Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden. + Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden. + F"ur hohe, nichtrelativistische Energien (kleiner $10 \, Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden. Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien. F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden. @@ -372,7 +372,7 @@ Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet. Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen. - F"ur niedrige Ionenenergien (kleiner $0,1 Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren. + F"ur niedrige Ionenenergien (kleiner $0,1 \, Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren. Diese ist gegeben durch den mittleren Abstand der Targetatome. \begin{equation} l = N^{- \frac{1}{3}} @@ -423,7 +423,7 @@ \subsubsection{Modell der kritischen Energiedichte} - Bei niedrigen Implantationstemperaturen, typischerweise kleiner $85 K$, kommt es beim Erreichen einer kritischen Energiedichte $e_c$ f"ur die in einem nuklearen Sto"s deponierte Energie in Silizium zur Amorphisierung \cite{vook}. + Bei niedrigen Implantationstemperaturen, typischerweise kleiner $85 \, K$, kommt es beim Erreichen einer kritischen Energiedichte $e_c$ f"ur die in einem nuklearen Sto"s deponierte Energie in Silizium zur Amorphisierung \cite{vook}. In diesem Fall ergibt sich die Amorphisierungsdosis $D_0$ aus der nuklearen Bremskraft $S_n$ zu: \begin{equation} @@ -434,7 +434,7 @@ Bei hohen Temperaturen finden Ausheilvorg"ange statt, was eine Erh"ohung der Amorphisierungsdosis zur Folge hat. Das Amorphisierungsmodell nach Morehead und Crowder \cite{morehead_crowder} geht von einer erh"ohten Konzentration an Leerstellen im Zentrum und einer erh"ohten Konzentration an Zwischengitteratomen im Randbereich einer Sto"skaskade aus. - W"ahrend der Abklingzeit der Sto"skaskade ($\sim 10^{-9} s$) k"onnen Leerstellen durch thermische Diffusion aus dem Zentrum der Sto"skaskade herauswandern und mit Zwischengitteratomen rekombinieren. + W"ahrend der Abklingzeit der Sto"skaskade ($\sim 10^{-9} \, s$) k"onnen Leerstellen durch thermische Diffusion aus dem Zentrum der Sto"skaskade herauswandern und mit Zwischengitteratomen rekombinieren. Dies hat eine Verkleinerung des zentralen, amorph werdenden Volumens zur Folge. Der Vorgang ist abh"angig von der Implantationstemperatur, welche die Diffusionsl"ange der Leerstellen bestimmt und der nuklearen Bremskraft, die das direkte Sch"adigungsvolumen festlegt. Die Amorphisierungsdosis lautet somit @@ -442,7 +442,7 @@ \begin{equation} D(T) = D_0 \Big[ 1 - C \, exp\Big( - \frac{E_{diff}}{2 k_B T} \Big) \Big] \quad \textrm{,} \end{equation} - wobei $D_0 = \frac{E_d n}{S_n}$ die Amorphisierungsdosis f"ur $T \rightarrow 0 K$, $C = const. \, S_n^{-\frac{1}{2}}$, $E_{diff}$ die Aktivierungsenergie f"ur Leerstellendiffusion, $E_d$ die Atomverlagerungsenergie und $n$ die atomare Dichte ist. + wobei $D_0 = \frac{E_d n}{S_n}$ die Amorphisierungsdosis f"ur $T \rightarrow 0 \, K$, $C = const. \, S_n^{-\frac{1}{2}}$, $E_{diff}$ die Aktivierungsenergie f"ur Leerstellendiffusion, $E_d$ die Atomverlagerungsenergie und $n$ die atomare Dichte ist. \subsubsection{Das "Uberlappungsmodell} diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index eb63242..f254c1b 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -16,8 +16,8 @@ Aus dem vorherigen Kapitel ist bekannt, dass die Implantation unter den oben genannten Bedingungen bei sehr hohen Dosen zur Bildung von amorphen Phasen f"uhrt. Die Amorphisierung bei den gegebenen Temperaturen oberhalb $130 \, ^{\circ} \mathrm{C}$ muss also dem Vorhandensein von Kohlenstoff zugeschrieben werden, der die amorphe Phase stabilisiert \cite{kennedy}. - Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \textrm{\AA}$) erkl"aren. - Auf Grund des Unterschiedes von fast $20\%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird. + Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \, \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \, \textrm{\AA}$) erkl"aren. + Auf Grund des Unterschiedes von fast $20\, \%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} \, J cm^{-2}$ abgesch"atzt wird. Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt. Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist. Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind. @@ -25,7 +25,7 @@ Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinem Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt. Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet. - Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}. + Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\, \%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}. Eine entsprechende geringere Dichte wird f"ur unterst"ochiometrisches amorphes $SiC_x$ im Vergleich zu kristallinem Silizium angenommen. Die amorphen Gebiete sind demnach bestrebt sich auszudehnen und "uben Druckspannungen auf die kristalline Umgebung aus. Diese sind in Abbildung \ref{img:modell} durch die Pfeile dargestellt. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index a655db8..833c2e5 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -8,7 +8,7 @@ Der Simulationscode wurde auf Computern der {\em IA32}-Rechnerarchitektur mit de Ziel der Simulation ist die Validierung des Modells anhand der experimentellen Ergebnisse, wie sie in Abbildung \ref{img:xtem_img} vorliegen. Es wurden zwei Versionen der Simulation erstellt, die unterschiedliche Tiefenbereiche abdecken. -Die erste Version beschreibt den Bereich von der Oberfl"ache des Targets bis zum Beginn der durchgehend amorphen $SiC_x$-Schicht, also den Tiefenbereich von $0$ bis $300 nm$. +Die erste Version beschreibt den Bereich von der Oberfl"ache des Targets bis zum Beginn der durchgehend amorphen $SiC_x$-Schicht, also den Tiefenbereich von $0$ bis $300 \, nm$. Nachdem eine Beschreibung der Bildung lamellarer amorpher Ausscheidungen mit dieser Version sehr gut funktioniert hat, wurde eine zweite Version entwickelt, die den gesamten Implantationsbereich betrachtet. Auf weitere Unterschiede in den zwei Versionen wird in einem gesonderten Abschnitt genauer eingegangen. @@ -27,8 +27,8 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \subsection{Unterteilung des Targets} \label{subsection:unterteilung} - Wie in Abbildung \ref{img:sim_gitter} zu sehen ist, wird das Target in W"urfel mit der Seitenl"ange $a = 3 nm$ zerlegt. - \printimg{h}{width=12cm}{gitter_oZ.eps}{Unterteilung des Targets in W"urfel mit $3 nm$ Kantenl"ange. Jedes Volumen ist entwerder amorph (rot) oder kristallin (blau) und protokolliert die lokale Kohlenstoffkonzentration.}{img:sim_gitter} + Wie in Abbildung \ref{img:sim_gitter} zu sehen ist, wird das Target in W"urfel mit der Seitenl"ange $a = 3 \, nm$ zerlegt. + \printimg{h}{width=12cm}{gitter_oZ.eps}{Unterteilung des Targets in W"urfel mit $3 \, nm$ Kantenl"ange. Jedes Volumen ist entwerder amorph (rot) oder kristallin (blau) und protokolliert die lokale Kohlenstoffkonzentration.}{img:sim_gitter} Die Anzahl der W"urfel in $x$, $y$ und $z$ Richtung ist frei einstellbar. Ein solches Volumen kann durch den Ortsvektor $\vec{r}(k,l,m)$, wobei $k$, $l$ und $m$ ganze Zahlen sind, addressiert werden. Jeder W"urfel hat entweder den Zustand amorph (rot), oder ist kristallin (blau). @@ -43,7 +43,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden. Kristalline W"urfel sind schwarz und amorphe "Wurfel wei"s dargestellt. F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnittezu mitteln. - Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 nm$ pr"aparierten Proben der Fall. + Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall. \subsection{Amorphisierung und Rekristallisation} \label{subsection:a_and_r} @@ -115,8 +115,8 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \subsection{Sputtern} - Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. - Auf Grund der Unterteilung des Targets in W"urfel mit der Seitenl"ange $3 nm$ muss diese Sputterrate in Einheiten einer Dosis, welche $3 nm$ sputtert, angegeben werden. + Es wird von einer, "uber der Oberfl"ache gleichm"a"sig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. + Auf Grund der Unterteilung des Targets in W"urfel mit der Seitenl"ange $3 \, nm$ muss diese Sputterrate in Einheiten einer Dosis, welche $3 \, nm$ sputtert, angegeben werden. Jedesmal, nachdem das Programm diese Dosis durchlaufen hat, wird die Sputterroutine aufgerufen, welche die oberste Targetebene abtr"agt. \section{Statistik von Sto"sprozessen} @@ -129,11 +129,11 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \subsection{Implantationsprofil und nukleare Bremskraft} - \printimg{h}{width=13cm}{trim92_2.eps}{Von {\em TRIM 92} ermittelte Reichweitenverteilung und tiefenabh"angige Bremskr"afte f"ur $180 keV$ $C^+ \rightarrow Si$.}{img:bk_impl_p} - \printimg{!h}{width=12cm}{trim_impl.eps}{Durch {\em SRIM 2003.26} berechnetes Implantationsprofil f"ur $180 keV$ $C^+ \rightarrow Si$.}{img:trim_impl} + \printimg{h}{width=13cm}{trim92_2.eps}{Von {\em TRIM 92} ermittelte Reichweitenverteilung und tiefenabh"angige Bremskr"afte f"ur $180 \, keV$ $C^+ \rightarrow Si$.}{img:bk_impl_p} + \printimg{!h}{width=12cm}{trim_impl.eps}{Durch {\em SRIM 2003.26} berechnetes Implantationsprofil f"ur $180 \, keV$ $C^+ \rightarrow Si$.}{img:trim_impl} Abbildung \ref{img:bk_impl_p} zeigt die von {\em TRIM 92} ermittelte nukleare Bremskraft sowie das Kohlenstoffkonzentrationsprofil f"ur die in dieser Arbeit verwendeten Parameter. - Die gestrichelte Linie markiert das Ionenprofilmaximum bei $500 nm$. + Die gestrichelte Linie markiert das Ionenprofilmaximum bei $500 \, nm$. Sputtereffekte und Abweichungen auf Grund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden von {\em TRIM} allerdings nicht ber"ucksichtigt. Die Profile werden von {\em TRIM} selbst in separate Dateien geschrieben. @@ -141,9 +141,9 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. In Abbildung \ref{img:trim_impl} ist das f"ur diese Simulation verwendete, von einer neueren {\em TRIM}-Version ({\em SRIM 2003.26}) berechnete Implantationsprofil abgebildet. Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohlenstoffs. - Das Implantationsmaximum liegt hier bei ungef"ahr $530 nm$. - Auff"allig ist eine Verschiebung des Maximums um $30 nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}. - Dies ist auf eine Ver"anderung in der elektronischen Bremskrfat zuru"ckzuf"uhren. + Das Implantationsmaximum liegt hier bei ungef"ahr $530 \, nm$. + Auff"allig ist eine Verschiebung des Maximums um $30 \, nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}. + Dies ist auf eine Ver"anderung in der elektronischen Bremskraft zuru"ckzuf"uhren. \clearpage @@ -168,15 +168,15 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Sie ist proportional zur Anzahl der Kollisionen in dieser Tiefe. Durch die h"ohere Anzahl der St"o"se im Maximum der nuklearen Bremskraft steigt die Wahrscheinlichkeit f"ur ein Ion in diesem Tiefenbereich zu amorphisieren. - \printimg{h}{width=12cm}{trim_nel.eps}{Durch {\em SRIM 2003.26} berechneter nuklearer Energieverlust f"ur $180 keV$ $C^+ \rightarrow Si$.}{img:trim_nel} + \printimg{h}{width=12cm}{trim_nel.eps}{Durch {\em SRIM 2003.26} berechneter nuklearer Energieverlust f"ur $180 \, keV$ $C^+ \rightarrow Si$.}{img:trim_nel} Zum Vergleich zeigt Abbildung \ref{img:trim_nel} die von {\em SRIM 2003.26} selbst berechnete nukleare Bremskraft. Wie zu erwarten entspricht sie ungef"ahr dem Verlauf der in Abbildung \ref{img:trim_coll} gezeigten Energieabgabe. Daher wird dieses Profil f"ur {\em NLSOP} zur Verteilung der Kollisionen im Taregt verwendet. - Ein implantiertes Ion und dadurch entstandene Recoils verursachen durchschnittlich eine Anzahl von $1088$ Kollisionen, bis alle Teilchen bis auf Energien unterhalb der Verlagerungsenergie f"ur $Si$ Atome von $15 eV$ \cite{ziegler_biersack_littmark} abgesunken sind. + Ein implantiertes Ion und dadurch entstandene Recoils verursachen durchschnittlich eine Anzahl von $1088$ Kollisionen, bis alle Teilchen bis auf Energien unterhalb der Verlagerungsenergie f"ur $Si$ Atome von $15 \, eV$ \cite{ziegler_biersack_littmark} abgesunken sind. Die Zahl der getroffenen W"urfel, also Volumina in denen ein Ion mindestens eine Kollision verursacht, ist sehr viel geringer. Das Auswertungsprogramm {\em parse\_trim\_collision} z"ahlt durchschnittlich $75$ getroffene Volumina pro implantiertem Ion. - Genauer gesagt z"ahlt das Programm die Anzahl der Ebenen mit $3 nm$ H"ohe in denen Kollisionen verursacht werden. + Genauer gesagt z"ahlt das Programm die Anzahl der Ebenen mit $3 \, nm$ H"ohe in denen Kollisionen verursacht werden. Teilchenbahnen parallel zur Targetoberfl"ache verf"alschen diese Zahl. Ausserdem werden mehrmalige Durchl"aufe der Ebenen nicht mitgez"ahlt. Man sollte weiterhin beachten, dass Volumina in denen selbst nur eine Kollision stattfindet mitgez"ahlt werden, was allerdings nur sehr unwahrscheinlich zur Amorphisierung f"uhren wird. @@ -463,7 +463,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Als Relikt bleibt die Option die Diffusion auch vom Kristallinen ins Amorphe in $z$-Richtung auszuschalten. Setzt sich die Diffusionsrate aus einem Beitrag $d_r^{x,y}$ f"ur Diffusion in der Ebene und einem Beitrag $d_r^z$ f"ur Diffusion in $z$-Richtung zusammen, so kann durch diese Option $d_r^z = 0$ gesetzt werden. - Die Sputterroutine wird nach der Dosis, die einem Abtrag von einer Ebene von Zellen ($3 nm$) entspricht, ausgef"uhrt und bewirkt, dass diese oberste Ebene entfernt wird. + Die Sputterroutine wird nach der Dosis, die einem Abtrag von einer Ebene von Zellen ($3 \, nm$) entspricht, ausgef"uhrt und bewirkt, dass diese oberste Ebene entfernt wird. Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben: \begin{equation} S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.} @@ -478,7 +478,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Daher wird das Sputtern nur in Simulationen "uber gro"se Tiefenbereiche ber"ucksichtigt. Die Sputterrate kann durch {\em TRIM} beziehungsweise Messungen des Kohlenstoffprofils bestimmt werden. - Bei den gegebenen Bedingungen werden ungef"ahr $50 nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen \cite{basic_phys_proc}. + Bei den gegebenen Bedingungen werden ungef"ahr $50 \, nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen \cite{basic_phys_proc}. \section{Simulierte Tiefenbereiche} \label{section:sim_tiefenbereich} @@ -486,7 +486,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Wie bereits erw"ahnt wurden zwei verschiedene Versionen des Programms entwickelt. Sie simulieren zwei unterschiedlich gro"se Tiefenbereiche, welche im Folgenden Simulationsfenster genannt werden. Da in erster Linie der Selbstorganisationsprozess der lamellaren Ausscheidungen an der vorderen Grenzfl"ache der amorphen $SiC_x$-Schicht simuliert werden soll, behandelt die erste Version den Tiefenbereich von der Oberfl"ache bis zum Beginn der durchgehend amorphen Schicht. - Dies entspricht einer Tiefe von ungef"ahr $300 nm$ und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung. + Dies entspricht einer Tiefe von ungef"ahr $300 \, nm$ und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung. Wie in Abbildung \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung, als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden. Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens, in dem ein Sto"sprozess beziehungsweise eine Konzentrationserh"ohung stattfindet. @@ -497,8 +497,8 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Dasselbe betrifft die Wahl der Tiefenkoordinate f"ur den Einbau des Kohlenstoffatoms. Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend, wird eine Verteilung entsprechend dem linear gen"aherte Implantationsprofil verwendet. Ausserdem wird nicht nach jedem Durchlauf ein Ion im Simulationsbereich zur Ruhe kommen. - Da das Maximum der Reichweitenverteilung sehr viel tiefer liegt, werden die meisten Ionen ausserhalb des Simulationsfensters liegen bleiben. - Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Kohlenstoffverteilungskurvekurve $c_C(z)$ bis $300 nm$ zur Fl"ache der gesamten Kohlenstoffverteilungskurve ist. + Da das Maximum der Reichweitenverteilung sehr viel tiefer liegt, werden die meisten Ionen au"serhalb des Simulationsfensters liegen bleiben. + Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Kohlenstoffverteilungskurvekurve $c_C(z)$ bis $300 \, nm$ zur Fl"ache der gesamten Kohlenstoffverteilungskurve ist. \begin{equation} n_c < n \frac{\int_0^{300 nm} c_C(z) dz}{\int_0^{\infty} c_C(z) dz} \end{equation} @@ -510,7 +510,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ grossem Target und Diffusion alle $100$ Schritte betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. In der zweiten Version wird die gesamte Implantationstiefe simuliert. - Das Simulationsfenster geht von $0-700 nm$. + Das Simulationsfenster geht von $0-700 \, nm$. Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung. Die Tiefenkoordinaten f"ur den Sto"sprozess und die Kohlenstoffinkorporation werden, wie in Abschnitt \ref{subsection:a_r_step} beschrieben, nach der Verwerfungsmethode entsprechend dem nuklearen Bremskraftprofil und der Reichweitenverteilung gewonnen. diff --git a/nlsop/diplom/zuzsammenfassung_ausblick.tex b/nlsop/diplom/zuzsammenfassung_ausblick.tex index 72fe8a1..ebab5fb 100644 --- a/nlsop/diplom/zuzsammenfassung_ausblick.tex +++ b/nlsop/diplom/zuzsammenfassung_ausblick.tex @@ -55,7 +55,7 @@ Auf eine Ver"anderung der die Diffusion und die spannungsinduzierte Amorphisieru Diffusion ist einerseits notwendig f"ur die lamellare Ordnung der amorphen Ausscheidungen, eine leicht aggressivere Diffusion f"uhrt andererseits jedoch zu einer kompletten lamellaren Amorphisierung des Targets, so dass sich keine durchgehende Schicht bildet. Zu hohe Werte f"ur den Parameter der Druckspannungen verursachen eine nahezu komplette Amorphisierung des kohlenstoffhaltigen Bereichs. Wie in der ersten Version des Programms f"allt auf, dass die amorphen und kristallinen Volumina in aufeinanderfolgenden Ebenen im Tiefenbereich der lamellaren Ausscheidungen komplement"ar angeordnet sind. -Dies "aussert sich in Schwankungen der Kohlenstoffkonzentration im lamellaren Tiefenbereich. +Dies "au"sert sich in Schwankungen der Kohlenstoffkonzentration im lamellaren Tiefenbereich. Weiterhin ist es durch die Simulation m"oglich, eine Vorhersage zu machen, wie sich durch einen zweiten oder mehrere Implantationsschritte breite selbstorganisierte Bereiche herstellen lassen. Das Modell kann demnach die Bildung der selbstorganisierten lamellaren Ausscheidungen erkl"aren. -- 2.20.1 From 13e7cd67748bbf10f618b70fefce999c127682fc Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 20:34:16 +0000 Subject: [PATCH 07/16] more fixed typos --- nlsop/diplom/danksagung.tex | 2 +- nlsop/diplom/ergebnisse.tex | 25 +++++++++++++------------ 2 files changed, 14 insertions(+), 13 deletions(-) diff --git a/nlsop/diplom/danksagung.tex b/nlsop/diplom/danksagung.tex index cccea95..c483e34 100644 --- a/nlsop/diplom/danksagung.tex +++ b/nlsop/diplom/danksagung.tex @@ -8,7 +8,7 @@ Insbesondere gilt meinem Dank \item \emph{Herrn Prof. Dr. Bernd Stritzker} f"ur die M"oglichkeit diese Arbeit an seinem Lehrstuhl durchf"uhren zu k"onnen, \item \emph{Herrn Priv.-Doz. Dr. habil. Volker Eyert} f"ur die Bereitschaft sich dieser Arbeit als Zweitkorrektor anzunehmen, \item \emph{Herrn Priv.-Doz. Dr. habil. J"org K. N. Lindner} f"ur die Vergabe des interessanten Themas, die engagierte Betreuung und Unterst"utzung, sowie die Durchsicht dieses Skripts, - \item \emph{Herrn Dipl.-Phys. Maik H"aberlen} f"ur die Betreuung und vorallem den Ansto"s zu diesem Thema, und + \item \emph{Herrn Dipl.-Phys. Maik H"aberlen} f"ur die Betreuung und vor allem den Ansto"s zu diesem Thema, und \item \emph{Herrn Dipl.-Phys. Ralf Utermann} f"ur einen tempor"aren Zugang zum Rechencluster des Physik Instituts. \end{itemize} diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index f55b4d6..ece9fb1 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -5,7 +5,7 @@ Im Folgenden werden die Ergebnisse der Simulation vorgestellt. Dabei werden Simulationsergebnisse mit experimentellen Ergebnissen aus \cite{maik_da} verglichen. Durch Variation der Simulationsparameter wird dar"uber hinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht. -Hierbei wird vorallem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet. +Hierbei wird vor allem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet. Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung, k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden. Diese Information ist experimentell schwer zug"anglich. @@ -29,7 +29,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ist ein Einfluss der weiter entfernten Zellen vernachl"assigbar, so l"asst sich ein Abbruchradius f"ur die Behandlung der Spannungen definieren. Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig. - Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 \, nm$ entspricht, zeigt eine gr"o"sere Menge an amorphen Gebieten, die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an. + Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 \, nm$ entspricht, zeigt eine gr"o"sere Menge an amorphen Gebieten. + Die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an. Dies ist in Abbildung \ref{img:first_sims} a) und b) zu erkennen. Aus diesem Grund wurde der Abbruchradius f"ur alle weiteren Simulationen auf $r=5$ Volumen gesetzt. \printimg{h}{width=15cm}{first_sims.eps}{Cross-Section verschiedener Simulationsergebnisse. Simulationsparameter (wenn nicht anderst angegeben): $p_b=0,01$, $p_c=0,05$, $p_s=0,05$, $r=5$, $d_v=100$, $d_r=0,5$, $s=3 \times 10^5$. Variierte Parameter: b) $r=10$, c) $p_b=0,05$, d) $p_s=0,1$.}{img:first_sims} @@ -44,7 +45,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Dies f"uhrt zu einer Stabilisierung und gef"orderten Ausbildung lamellarer amorpher $SiC_x$-Ausscheidungen. F"ur den Selbstorganisationsprozess sind daher eine h"ohere Schrittzahl und kleinere Werte der erw"ahnten, zur Amorphisierung beitragenden Simulationsparameter gefordert. Das System erreicht so nicht bereits nach einer kurzen Schrittfolge seine Endkonfiguration, die stark von der Statistik der einzelnen Amorphisierungsprozesse gepr"agt ist. - Anstelledessen stellt sich im System sukzessive eine Ordnung ein, die unter den gegebenen Regeln m"oglichst stabil ist. + Anstelle dessen stellt sich im System sukzessive eine Ordnung ein, die unter den gegebenen Regeln m"oglichst stabil ist. Die Notwendigkeit der niedrigen Amorphisierungsparameter, welche eine fr"uhe komplette Amorphisierung des Targets verhindern, steht im Einklang mit den Beobachtungen aus \cite{lindner_appl_phys}. Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung. @@ -90,7 +91,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Bei genauerem Hinsehen erkennt man aber drei Ortsfrequenzen mit lokalem Maximum in der Intensit"at. Im Linescan der Simulation erkennt man auch Maxima nahe dieser Frequenzen. - Im Folgenden wird die Fouriertransformation vorallem zum Vergleich zwischen Simulationsergebnissen verwendet. + Im Folgenden wird die Fouriertransformation vor allem zum Vergleich zwischen Simulationsergebnissen verwendet. \subsection{Notwendigkeit der Diffusion} \label{subsection:ess_diff} @@ -125,8 +126,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Abbildung \ref{img:diff_influence_ls} zeigt die Linescans der fouriertransformierten Cross-Sections aus Abbildung \ref{img:diff_influence}. Abbildung \ref{img:diff_influence_ls} c) geh"ort zur Simulation ohne Diffusion in $z$-Richtung. Der Linescan zeigt kein Maximum au"ser bei der Ortsfrequenz Null. - Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigten Querschnitt. - Es haben sich keine lamellare Ausscheidungen gebildet. + Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigtem Querschnitt. + Es haben sich keine lamellaren Ausscheidungen gebildet. Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erhaelt deutlich lamellare Ausscheidungen. Dies "au"sert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null. Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. @@ -143,7 +144,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess. Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten. In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet. - Erstaunlichwerweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben. + Erstaunlicherweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben. Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist. Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht. Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt. @@ -211,7 +212,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \printimg{h}{width=15cm}{ac_cconc_ver1.eps}{Querschnittsansicht und Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen. Abgebildet ist der Kohlenstoff in amorphen und kristallinen Gebieten (schwarz), in kristallinen Gebieten (rot) und in amorphen Gebieten (gr"un). Simulationsparameter wie in \ref{img:tem_sim_comp}.}{img:c_distrib} Die komplement"are Anordnung der amorph/kristallinen Gebiete in aufeinander folgenden Ebenen wird nochmals in Abbildung \ref{img:c_distrib} deutlich. Abgebildet ist die Querschnittsansicht und ein zugeh"origes Kohlenstofftiefenprofil der Simulation aus Abschnitt \ref{subsection:tem_sim_cmp}. - Bis zu einer Tiefe von $160 \, nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphen Zellen existieren. + Bis zu einer Tiefe von $160 \, nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphe Zellen existieren. Die wenigen amorphen Zellen die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch auf Grund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat. Der lineare Anstieg der Kohlenstoffkonzentration in den kristallinen und den gesamten Gebieten im nicht lamellaren Bereich ist eine Folge des linear gen"aherten Implantationsprofils. Ein linearer Anstieg l"asst sich auch f"ur die Konzentration in den amorphen Gebieten erkennen. @@ -244,7 +245,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Im Folgenden werden die Ergebnisse behandelt, die mit der zweiten Version des Programms berechnet wurden. Hier wird "uber den gesamten Implantationsbereich von $0$ bis $700 \, nm$ simuliert. In diesem Bereich befindet sich auch die experimentell gefundene durchgehend amorphe $SiC_x$-Schicht. - Nun stellt sich die Frage, ob Simulationsparameter existieren, die sowhohl die Lamellenbildung als auch die durchgehend amorphe Schicht reproduzieren. + Nun stellt sich die Frage, ob Simulationsparameter existieren, die sowohl die Lamellenbildung als auch die durchgehend amorphe Schicht reproduzieren. Dabei soll die Ausdehnung und Lage der Schicht abh"angig von der Dosis mit dem Experiment "ubereinstimmen. Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 \, nm$ auf Null abgefallen sind, kann der Sputtervorgang problemlos ber"ucksichtigt werden. @@ -295,7 +296,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis In der unteren H"alfte dieses Bereichs zeigt die XTEM-Aufnahme wieder besonders dunkle Kontraste, so dass hier wohl eine besonders hohe Dichte von Kristalldefekten und m"oglicherweise wieder einzelne amorphe Ausscheidungen vorliegen, aber keine durchgehend amorphe Schicht. Beide Bereiche zusammen sind etwa so dick wie die simulierte amorphe Schicht. Die Tiefenpositionen unterscheiden sich um $30 \, nm$. - Vorallem an der vorderen Grenzfl"ache der amorphen Schicht zeigt die Simulation in "Ubereinstimmung mit dem Experiment individuelle amorphe Volumina ohne Lamellencharakter. + Vor allem an der vorderen Grenzfl"ache der amorphen Schicht zeigt die Simulation in "Ubereinstimmung mit dem Experiment individuelle amorphe Volumina ohne Lamellencharakter. Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} a)) ist die Schichtdicke im Experiment auf $180 \, nm$ angewachsen. Dasselbe gilt f"ur die Simulation. @@ -331,7 +332,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren. \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{a) Querschnittsaufnahme und b) Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In a) sind helle Gebiete amorph, dunkle Gebiete kristallin. In b) ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2} - In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil gezeigt. + In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil abgebildet. %Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten. Die Kohlenstoffkonzentration steigt entsprechend dem Implantationsprofil an. @@ -469,7 +470,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die allgemein h"ohere Wahrscheinlichkeit der Amorphisierung beg"unstigt eine komplette Amorphisierung im lamellaren Bereich. Da gleichzeitig die Rekristallisationswahrscheinlichkeit sinkt, haben die ballistisch amorphisierten Gebiete eine h"ohere Chance, sich durch implantierten beziehungsweise diffundierten Kohlenstoff zu stabilisieren. Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt. - Das Entgegenwirken durch den erh"ohten Einfluss der ballistische Amorphisierung ist sehr gering. + Das Entgegenwirken durch den erh"ohten Einfluss der ballistischen Amorphisierung ist sehr gering. Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt. -- 2.20.1 From f023d2a17f52080b0699ec057f763614c4d8d6e9 Mon Sep 17 00:00:00 2001 From: hackbard Date: Thu, 13 Oct 2005 20:56:32 +0000 Subject: [PATCH 08/16] more typo updates --- nlsop/diplom/ergebnisse.tex | 14 +++++++------- nlsop/diplom/simulation.tex | 4 ++-- nlsop/diplom/zuzsammenfassung_ausblick.tex | 2 +- 3 files changed, 10 insertions(+), 10 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index ece9fb1..78b56e9 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -86,7 +86,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \printimg{h}{width=12cm}{tem_cmp_ls.eps}{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.}{img:tem_cmp_ls} Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}. F"ur den Vergleich mit der TEM-Aufnahme wurde der linke Teil der Aufnahme abgeschnitten und auf $100$ Bildpunkte in der H"ohe skaliert. - Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe mittlere Helligkeit, was ein grosses Maxima bei der Ortsfrequenz Null zur Folge hat. + Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe mittlere Helligkeit, was ein gro"ses Maxima bei der Ortsfrequenz Null zur Folge hat. Daher sind Maxima anderer Frequenzen schlecht zu erkennen. Bei genauerem Hinsehen erkennt man aber drei Ortsfrequenzen mit lokalem Maximum in der Intensit"at. Im Linescan der Simulation erkennt man auch Maxima nahe dieser Frequenzen. @@ -133,7 +133,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 \, nm$. Dies entspricht einer Anzahl von ungef"ahr $17$ Lamellen in einem Tiefenbereich von $150 \, nm$. - Eine "ahnlich grosse Zahl erh"alt man tats"achlich durch Abz"ahlen der Lamellen am linken Rand der Cross-Section aus Abbildung \ref{img:diff_influence} b). + Eine "ahnlich gro"se Zahl erh"alt man tats"achlich durch Abz"ahlen der Lamellen am linken Rand der Cross-Section aus Abbildung \ref{img:diff_influence} b). Die Fouriertransformierte stellt also ein geeignetes Mittel zur objektiven Messung der \dq Lamellarigkeit\dq{} dar. Auff"allig ist das Vorkommen von zwei ausgepr"agten Maxima in Abbildung \ref{img:diff_influence_ls} a). Die Lamellenstrukturen in Abbildung \ref{img:diff_influence} a) setzen sich demnach wesentlich aus "Uberlagerungen von Ortswellen dieser zwei Frequenzen zusammen. @@ -144,7 +144,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess. Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten. In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet. - Erstaunlicherweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben. + Erstaunlicherweise scheint dieser Parameter keinen allzu gro"sen Einfluss auf das Ergebnis zu haben. Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist. Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht. Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt. @@ -356,7 +356,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht vorhanden ist. Diese charakteristische Konzentration wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen im Gegensatz zu einzelnen stabilen Ausscheidungen ben"otig. Die Schwankungen und eine weiter ansteigende Differenz zum Gesamtprofil erkennt man ebenfalls in der Konzentration in den kristallinen Gebieten. - Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem grossen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren. + Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem gro"sen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren. Demnach erh"alt man Maxima in der Kohlenstoffkonzentration der kristallinen Gebiete genau bei den Maxima f"ur die Gesamtkonzentration und der Konzentration der amorphen Gebiete. Diese Maxima sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert. Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen. @@ -472,7 +472,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt. Das Entgegenwirken durch den erh"ohten Einfluss der ballistischen Amorphisierung ist sehr gering. - Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. + Im Hinblick auf die zu gro"se amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert. Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt. Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab. Mit knapp $120 \, nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$. @@ -521,7 +521,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \clearpage - \section{Herstellung grosser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation} + \section{Herstellung gro"ser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation} \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 \, MeV$ $C^+$ in Silizium.}{img:impl_2mev} \printimg{h}{width=14cm}{nel_2mev.eps}{Durch {\em SRIM 2003.26} ermittelte nukleare Bremskraft von $2 \, MeV$ $C^+$ in Silizium.}{img:nel_2mev} @@ -599,7 +599,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$"=Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in f) von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.} \label{img:broad_l} \end{sidewaysfigure} - \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel grossen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} a), b) und f).}{img:broad_ls} + \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel gro"sen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} a), b) und f).}{img:broad_ls} Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden. Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet. Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus um den kohlenstoffhaltigen Bereich komplett zu amorphisieren. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 833c2e5..b1c9eed 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -456,7 +456,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt. Hier sei angemerkt, dass die Simulation prinzipiell auch Diffusion von Kohlenstoff innerhalb kristalliner Volumina behandeln kann. - Die erste Idee war, dass Kohlenstoff in kristalline Gebiete diffundieren kann, die bereits einen grossen Anteil ihres Kohlenstoffs an einen amorphen Nachbarn abgegeben haben. + Die erste Idee war, dass Kohlenstoff in kristalline Gebiete diffundieren kann, die bereits einen gro"sen Anteil ihres Kohlenstoffs an einen amorphen Nachbarn abgegeben haben. Da jedoch das Konzentrationsprofil durch Diffusionsprozesse nicht ver"andert wird \cite{goetz}, wurde die rein kristalline Diffusion in $z$-Richtung ausgeschlossen. %Da weiterhin die Implantationsprofile von experimentellen Messungen und {\em TRIM}-Simulationen recht gut "ubereinstimmen, kann Diffusion in $z$-Richtung tats"achlich ausgeschlossen werden. Eine Vorzugsrichtung der Diffusion ist unphysikalisch, weshalb die gesamte Diffusion innerhalb kristalliner Gebiete in den folgenden Simulationen ausgeschlossen wurde. @@ -507,7 +507,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Der Diffusionsprozess ist uneingeschr"ankt m"oglich. In der ersten Version wurde der Einfluss der amorph/kristallinen Struktur direkter Nachbarn auf die Rekristallisation nach \eqref{eq:p_ac_genau} noch nicht beachtet. Die Rekristallisationswahrscheinlichkeit ergibt sich hier aus \eqref{eq:p_ac_local}. - Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ grossem Target und Diffusion alle $100$ Schritte betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. + Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target und Diffusion alle $100$ Schritte betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. In der zweiten Version wird die gesamte Implantationstiefe simuliert. Das Simulationsfenster geht von $0-700 \, nm$. diff --git a/nlsop/diplom/zuzsammenfassung_ausblick.tex b/nlsop/diplom/zuzsammenfassung_ausblick.tex index ebab5fb..7b8d6a0 100644 --- a/nlsop/diplom/zuzsammenfassung_ausblick.tex +++ b/nlsop/diplom/zuzsammenfassung_ausblick.tex @@ -42,7 +42,7 @@ Mit Hilfe der Simulation k"onnen noch weitere Aussagen "uber die Verteilung des Eine genaue Lage des Kohlenstoffs in den amorphen und kristallinen Gebieten kann angegeben werden. Dadurch wird der Selbstorganisationsprozess nachvollziehbar. Amorphe und kristalline Gebiete sind in aufeinander folgenden Ebenen komplement"ar angeordnet. -Da sich grosse und kleine amorphe Gebiete abwechseln und die amorphen Gebiete auf Grund der Diffusion sehr kohlenstoffreich sind, schwankt die Kohlenstoffkonzentration im Bereich der lamellaren Ausscheidungen. +Da sich gro"se und kleine amorphe Gebiete abwechseln und die amorphen Gebiete auf Grund der Diffusion sehr kohlenstoffreich sind, schwankt die Kohlenstoffkonzentration im Bereich der lamellaren Ausscheidungen. Mit der zweiten Version wird der gesamte durch den Ionenbeschuss modifizierte Tiefenbereich abgedeckt. Man findet einen Satz von Simulationsparametern, der die experimentell beobachtete Dosisentwicklung gut reproduziert. -- 2.20.1 From 68547923050fde44c192069ae2bd4a94a19c6eff Mon Sep 17 00:00:00 2001 From: hackbard Date: Mon, 17 Oct 2005 14:29:25 +0000 Subject: [PATCH 09/16] more updates --- nlsop/diplom/ergebnisse.tex | 80 +++++++++++----------- nlsop/diplom/exp_befunde.tex | 2 +- nlsop/diplom/grundlagen.tex | 8 +-- nlsop/diplom/modell.tex | 8 +-- nlsop/diplom/quellcode.tex | 6 +- nlsop/diplom/simulation.tex | 35 +++++----- nlsop/diplom/zuzsammenfassung_ausblick.tex | 6 +- 7 files changed, 75 insertions(+), 70 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 78b56e9..0b99a2b 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -5,9 +5,9 @@ Im Folgenden werden die Ergebnisse der Simulation vorgestellt. Dabei werden Simulationsergebnisse mit experimentellen Ergebnissen aus \cite{maik_da} verglichen. Durch Variation der Simulationsparameter wird dar"uber hinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht. -Hierbei wird vor allem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet. +Hierbei wird vor allem der Einfluss einzelner Simulationsparameter, wie Diffusion und St"arke der Druckspannungen, auf den Selbstorganisationsprozess betrachtet. -Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung, k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden. +Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden. Diese Information ist experimentell schwer zug"anglich. Zun"achst werden die Ergebnisse der Simulationen bis $300 \, nm$ Tiefe vorgestellt. @@ -15,17 +15,17 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \section{Simulation bis 300 nm Tiefe} - Erste Simulationen wurden mit {\em NLSOP} Version 1 in einem begrenzten Tiefenbereich durchgef"uhrt, um festzustellen, ob mit dem Modell und der verwendeten Monte-Carlo-Implementierung "uberhaupt geordnete Lamellenstrukturen reproduziert werden k"onnen und welche Prozesse dabei entscheidend sind. + Erste Simulationen werden mit {\em NLSOP} Version 1 in einem begrenzten Tiefenbereich durchgef"uhrt um festzustellen, ob mit dem Modell und der verwendeten Monte-Carlo-Implementierung "uberhaupt geordnete Lamellenstrukturen reproduziert werden k"onnen und welche Prozesse dabei entscheidend sind. Daf"ur ist eine genaue Kenntnis der Dosis nicht wichtig. Desweiteren kommt es hier nicht auf die exakte Tiefenposition der Ausscheidungen an, weshalb Sputtereffekte vernachl"assigt werden k"onnen. - In jedem Durchlauf wird nur ein Sto"sprozess, der zur Amorphisierung beziehungsweise Rekristallisation eines Targetvolumens f"uhren kann betrachtet. + In jedem Durchlauf wird nur ein Sto"sprozess, der zur Amorphisierung beziehungsweise Rekristallisation eines Targetvolumens f"uhren kann, betrachtet. Diffusion des Kohlenstoffs von kristallinen in amorphe Gebiete findet statt. Sputtereffekte k"onnen wegen fehlender Information "uber Kohlenstoffgehalt und die amorph/kristalline Struktur in tieferen Ebenen nicht beachtet werden. \subsection{Erste Simulationsdurchl"aufe} - In ersten Simulationen wurde zun"achst untersucht, "uber welche Entfernung von einer benachbarten Zelle die von den amorphen Nachbarzellen ausgehenden Spannungen ber"ucksichtigt werden m"ussen. + In ersten Simulationen wird zun"achst untersucht, "uber welche Entfernung von einer benachbarten Zelle, die von den amorphen Nachbarzellen ausgehenden Spannungen ber"ucksichtigt werden m"ussen. Ist ein Einfluss der weiter entfernten Zellen vernachl"assigbar, so l"asst sich ein Abbruchradius f"ur die Behandlung der Spannungen definieren. Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig. @@ -48,7 +48,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Anstelle dessen stellt sich im System sukzessive eine Ordnung ein, die unter den gegebenen Regeln m"oglichst stabil ist. Die Notwendigkeit der niedrigen Amorphisierungsparameter, welche eine fr"uhe komplette Amorphisierung des Targets verhindern, steht im Einklang mit den Beobachtungen aus \cite{lindner_appl_phys}. - Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung. + Aufgrund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung. Die Ursache des stattfindenden Amorphisierungsprozesses liegt an der erh"ohten Kohlenstoffkonzentration mit steigender Dosis. Es handelt sich um kohlenstoffinduzierte Amorphisierung. @@ -64,7 +64,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Zun"achst wird nach einem Satz von Parametern gesucht, der die experimentellen Ergebnisse reproduziert. Davon ausgehend k"onnen dann einzelne Parameter variiert und ihre Auswirkungen studiert werden. - Tats"achlich k"onnen Parameter eingestellt werden, die die experimentell gefundene Ordnung zuzfriedenstellend reproduzieren. + Tats"achlich k"onnen Parameter eingestellt werden, die die experimentell gefundene Ordnung zufriedenstellend reproduzieren. Abbildung \ref{img:tem_sim_comp} zeigt den Vergleich zwischen Simulationsergebnis und dem experimentellen Befund aus Abbildung \ref{img:xtem_img}. Wie man erkennt, ist die Simulation in der Lage lamellare Strukturen zu erzeugen. Diese sind im Tiefenbereich von $200$ bis $300 \, nm$ zu erkennen. @@ -81,7 +81,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Abbildung \ref{img:dft_tem_sim_cmp} zeigt die Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. Die horizontalen Lamellen f"uhren in der Fouriertransformierten erwartungsgem"a"s zu vertikalen Streifen. - Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 \, nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $y$-Richtung. + Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 \, nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $z$-Richtung. Durch die Intensit"atsskalierung lassen sich Linescans gut miteinander vergleichen, da deren Intensit"atsverlauf in der selben Gr"o"senordnung liegt. \printimg{h}{width=12cm}{tem_cmp_ls.eps}{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.}{img:tem_cmp_ls} Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}. @@ -108,7 +108,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung. Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen. Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation. - Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt auf Grund der wachsenden Druckspannungen an. + Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt aufgrund der wachsenden Druckspannungen an. Da diese spannungsinduziert amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden. Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen. Das Ergebnis zeigt die Notwendigkeit der lokalen Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung. @@ -128,7 +128,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Der Linescan zeigt kein Maximum au"ser bei der Ortsfrequenz Null. Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigtem Querschnitt. Es haben sich keine lamellaren Ausscheidungen gebildet. - Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erhaelt deutlich lamellare Ausscheidungen. + Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erh"alt deutlich lamellare Ausscheidungen. Dies "au"sert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null. Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 \, nm$. @@ -141,8 +141,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \printimg{h}{width=15cm}{low_to_high_dv.eps}{Simulationsergebnisse f"ur a) $d_v=10$, b) $d_v=100$, c) $d_v=1000$, d) $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_influence} \printimg{h}{width=13cm}{ls_dv_cmp.eps}{Linescan der fouriertransformierten Cross-Sections von Simulationen mit $d_v=10$ und $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_ls} - Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess. - Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten. + Neben der Diffusionsrate $d_r$ beschreibt der Simulationsparameter $d_v$ den Diffusionsprozess. + Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte) und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten. In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet. Erstaunlicherweise scheint dieser Parameter keinen allzu gro"sen Einfluss auf das Ergebnis zu haben. Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist. @@ -150,7 +150,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt. Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 \, nm$ mit zunehmenden $d_r$. - Ausserdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen. + Au"serdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen. Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$. Dies liegt wiederum an der schnelleren Diffusion, die eine aggressivere Anh"aufung von Kohlenstoff selbst in Tiefen geringerer Kohlenstoffkonzentration bewirkt. @@ -158,7 +158,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Zunahme der Periodenl"ange macht sich hier durch die Verschiebung des Intensit"atsmaximums zu einer geringeren Frequenz bemerkbar. W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 \, nm^{-1}$ Peaks hoher Intensit"at zeigt, erkennt man diese f"ur $d_v=10$ (rot) erst bei h"oheren Frequenzen. Die durch Regression bestimmten Intensit"atsmaxima liegen bei $f_z \approx 0,106 \, nm^{-1}$ (blau) und $f_z \approx 0,114 \, nm^{-1}$ (rot). - Diese entsprechen unngef"ahr den Wellenl"angen $9,4 \, nm$ und $8,8 \, nm$. + Diese entsprechen ungef"ahr den Wellenl"angen $9,4 \, nm$ und $8,8 \, nm$. Dieses Ergebnis einer unterschiedlich groben Verteilung der Lamellen unterstreicht ebenfalls die Bedeutung einer effizienten Diffusion f"ur die Anordnung des Kohlenstoffs in wohlseparierte Lamellen. Physikalisch gesehen entspricht ein gro"ses $d_v$ einer Barriere f"ur den Einbau von Kohlenstoff in eine Lamelle. @@ -169,14 +169,14 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Im Folgenden soll der Einfluss der Druckspannungen auf den Selbstorganisationsprozess diskutiert werden. \printimg{h}{width=15cm}{high_to_low_a.eps}{Simulationsergebnisse f"ur verschiedene $p_s$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$. Variierter Parameter: a) $p_s=0,001$, b) $p_s=0,002$, c) $p_s=0,003$, d) $p_s=0,004$.}{img:p_s_influence} In Abbildung \ref{img:p_s_influence} sind Simulationergebnisse mit variierten Druckspannungsparametern $p_s$ zu sehen. - Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden kleiner. + Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden, kleiner. Gleichzeitig wird auch der laterale Durchmesser der amorphen Lamellen kleiner. Diese Beobachtungen illustrieren den Mechanismus der spannungsinduzierten Amorphisierung. - Da kleinere $p_s$ eine kleinere Amorphisierungswahrscheinlichkeit der kristallinen Nachbarschaft zur Folge haben entstehen weniger amorphe Gebiete. + Da kleinere $p_s$ eine kleinere Amorphisierungswahrscheinlichkeit der kristallinen Nachbarschaft zur Folge haben, entstehen weniger amorphe Gebiete. Die Druckspannungen fallen quadratisch mit der Entfernung ab. Ein zuf"allig amorphisiertes Gebiet, das nicht direkt an eine Ausscheidung angrenzt, wird daher viel wahrscheinlicher rekristallisieren als eins in der direkten Nachbarschaft zu einer weiteren amorphen Zelle. Da f"ur kleine $p_s$ zwar einzelne amorphe Zellen gebildet werden, aber keine ganzen Lamellen entstehen, ist zu schlussfolgern, dass selbst ein neu entstandenes amorphes Gebiet direkt neben einer Ausscheidung nicht mehr durch die Druckspannungen allein stabilisiert werden kann. - Es wird nur amorph bleiben, wenn vor dem n"achsten Sto"s genug Kohlenstoff durch den Diffusionsprozess gewonnen wird und eine Stabilisierung auf Grund der kohlenstoffinduzierten Amorphisierungswahrscheinlichkeit ausreicht. + Es wird nur amorph bleiben, wenn vor dem n"achsten Sto"s genug Kohlenstoff durch den Diffusionsprozess gewonnen wird und eine Stabilisierung aufgrund der kohlenstoffinduzierten Amorphisierungswahrscheinlichkeit ausreicht. \printimg{h}{width=12cm}{ps_einfluss_ls.eps}{Linescan der fouriertransformierten Cross-Sections aus Abbildung \ref{img:p_s_influence} von Simulationen mit b) $p_s=0,002$, c) $p_s=0,003$ und d) $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$.}{img:p_s_per} In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$, $p_s=0,003$ und $p_s=0,004$ zu sehen (Abbildung \ref{img:p_s_influence} (b,c,d)). @@ -206,24 +206,26 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die Tatsache, dass sich der Kohlenstoff in den amorphen Gebieten befindet, kann man durch Vergleich mit der Kohlenstoffverteilung erkennen. Auch das Gebiet hoher Druckspannungen stimmt ann"ahernd mit den amorphen Gebiet "uberein. Es f"allt aber auf, dass die Ausdehnung der amorphen Gebiete etwas gr"o"ser als das Gebiet mit hoher Kohlenstoffkonzentration ist, und dass die Druckspannungen auch noch im Randgebiet der kristallinen Volumina existieren. - Das amorphe Randgebiet ist auf Grund der Druckspannungen trotz des niedrigen Kohlenstoffgehalts amorph. + Das amorphe Randgebiet ist aufgrund der Druckspannungen trotz des niedrigen Kohlenstoffgehalts amorph. In den kristallinen Gebieten der amorph/kristallinen Grenzfl"ache reicht auch das Spannungsfeld nicht mehr aus, um den amorphen Zustand zu stabilisieren. \printimg{h}{width=15cm}{ac_cconc_ver1.eps}{Querschnittsansicht und Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen. Abgebildet ist der Kohlenstoff in amorphen und kristallinen Gebieten (schwarz), in kristallinen Gebieten (rot) und in amorphen Gebieten (gr"un). Simulationsparameter wie in \ref{img:tem_sim_comp}.}{img:c_distrib} Die komplement"are Anordnung der amorph/kristallinen Gebiete in aufeinander folgenden Ebenen wird nochmals in Abbildung \ref{img:c_distrib} deutlich. Abgebildet ist die Querschnittsansicht und ein zugeh"origes Kohlenstofftiefenprofil der Simulation aus Abschnitt \ref{subsection:tem_sim_cmp}. Bis zu einer Tiefe von $160 \, nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphe Zellen existieren. - Die wenigen amorphen Zellen die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch auf Grund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat. + Die wenigen amorphen Zellen, die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch aufgrund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat. Der lineare Anstieg der Kohlenstoffkonzentration in den kristallinen und den gesamten Gebieten im nicht lamellaren Bereich ist eine Folge des linear gen"aherten Implantationsprofils. Ein linearer Anstieg l"asst sich auch f"ur die Konzentration in den amorphen Gebieten erkennen. Dies ist offensichtlich, da proportional zur Tiefe der Kohlenstoff zunimmt, der dann in amorphe Zellen diffundieren kann. + Da f"ur jedes amorphe Volumen bis zu sechs Nachbarn, sofern sie kristallin sind, als Kohlenstoffdonator zur Verf"ugung stehen, ist die Steigung der Konzentration im Amorphen weitaus h"oher als die im Kristallinen. Weiterhin f"allt auf, dass die Fluktuation um diesen linearen Verlauf kurz vor Beginn der lamellaren Ausscheidungen zunimmt. - Dies l"asst sich durch die zunehmende Existenz von amorphen Ausscheidungen, die meist nur noch von einer kristallinen Ebene voneinader getrennt sind erkl"aren. + Dies l"asst sich durch die zunehmende Existenz von amorphen Ausscheidungen, die meist nur noch von einer kristallinen Ebene voneinader getrennt sind, erkl"aren. Diese Ausscheidungen konkurrieren um den zur Verf"ugung stehenden Kohlenstoff aus dieser kristallinen Ebene. Mit Beginn der amorphen Lamellen sinkt der Kohlenstoffgehalt in den kristallinen Gebieten, da viel amorphe Umgebung, in die der Kohlenstoff diffundiert, vorhanden ist. Die Schwankungen der Kohlenstoffkonzentration in der Gesamtheit der Gebiete h"angt mit der komplement"aren Anordnung der amorphen Gebiete in aufeinander folgenden Ebenen zusammen. Man erkennt, dass abwechselnd Ebenen mit gro"sen und kleinen amorphen Anteil vorliegen. Die Konzentration in den amorphen Gebieten s"attigt im lamellaren Bereich. + Hier (mehr amorphes mit tiefe im l-bereich?) \ldots \subsection{Zusammenfassung} @@ -281,7 +283,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis In der in Abbildung \ref{img:dose_devel} a) dargestellten XTEM-Aufnahme erscheint der Bereich h"ochster Gittersch"adigung dunkel. Die dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren. Zus"atzlich hierzu zeigen detaillierte TEM-Untersuchungen \cite{maik_da}, dass hier etwa $3 \, nm$ gro"se amorphe Einschl"usse auftreten, die teilweise zusammenwachsen. - In den TEM-Aufnahmen f"ur h"ohere Dosen wurden die Proben so im Mikroskop orientiert, dass die kristallinen Bereiche in Bragg-Orientierung stehen und auf Grund des Beugungskontrastes im wesentlichen dunkel erscheinen, amorphe Schichten dagegen sehr hell. + In den TEM-Aufnahmen f"ur h"ohere Dosen wurden die Proben so im Mikroskop orientiert, dass die kristallinen Bereiche in Bragg-Orientierung stehen und aufgrund des Beugungskontrastes im wesentlichen dunkel erscheinen, amorphe Schichten dagegen sehr hell. F"ur diese Dosen sind die XTEM-Aufnahmen direkt mit den Simulationsergebnissen visuell vergleichbar. Nach einer Dosis von $1,0 \times 10^{17} cm^{-2}$ hat sich noch keine durchgehend amorphe Schicht gebildet. @@ -301,18 +303,18 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} a)) ist die Schichtdicke im Experiment auf $180 \, nm$ angewachsen. Dasselbe gilt f"ur die Simulation. Wieder f"allt die Differenz in der Tiefenposition von ungef"ahr $40 \, nm$ zwischen Simulation und Experiment auf. - Ausserdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache. + Au"serdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache. Diese lamellaren Strukturen erkennt man ebenfalls im Experiment. In Abbildung \ref{img:dose_devel2} b) ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 \, nm$ angewachsen. Die lamellare Struktur wird deutlicher und der Tiefenbereich, in dem sie vorkommt, gr"o"ser. - Ausserdem werden die amorph/kristallinen Grenzfl"achen sch"arfer. + Au"serdem werden die amorph/kristallinen Grenzfl"achen sch"arfer. Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein. Zum einen w"achst die Schichtdicke im gleichem Ma"se an. Weiterhin werden die lamellaren Strukturen besser erkennbar und ihre Ausdehnung in $z$-Richtung steigt an. Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis. - Auf Grund der wichtigen Rolle der kohlenstoffinduzierten Amorphisierung kann die Differenz der Tiefenposition der amorphen Ausscheidungen beziehungsweise der durchgehend amorphen Schicht erkl"art werden. + Aufgrund der wichtigen Rolle der kohlenstoffinduzierten Amorphisierung kann die Differenz der Tiefenposition der amorphen Ausscheidungen, beziehungsweise der durchgehend amorphen Schicht, erkl"art werden. Die Ursache liegt an dem um $30 \, nm$ verschobenen Maximum im Kohlenstoffprofil der verwendeten {\em SRIM 2003.26} Version zur {\em TRIM 92} Version, welche besser zu den experimentellen Ergebnissen passt. Der Tiefenschift der Ausscheidungen in der Simulation entspricht ziemlich genau der Differenz der Kohlenstoffmaxima der zwei {\em TRIM} Versionen. @@ -332,7 +334,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren. \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{a) Querschnittsaufnahme und b) Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In a) sind helle Gebiete amorph, dunkle Gebiete kristallin. In b) ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2} - In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil abgebildet. + In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origen Implantationsprofil abgebildet. %Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten. Die Kohlenstoffkonzentration steigt entsprechend dem Implantationsprofil an. @@ -351,10 +353,10 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ein h"oherer Anteil an amorphen Gebieten in einer Ebene bewirkt nicht nur das Ansteigen der Gesamtkonzentration an Kohlenstoff in dieser Ebene, sondern auch das der amorphen Gebiete, da mehr Senken f"ur den Kohlenstoff vorhanden sind. Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion. Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff. - Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht w"ahrend sie in der Nachbarebene kleiner wird. + Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht, w"ahrend sie in der Nachbarebene kleiner wird. Die lamellaren Strukturen entstehen. - Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht vorhanden ist. - Diese charakteristische Konzentration wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen im Gegensatz zu einzelnen stabilen Ausscheidungen ben"otig. + Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht, vorhanden ist. + Diese charakteristische Konzentration wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen, im Gegensatz zu einzelnen stabilen Ausscheidungen, ben"otig. Die Schwankungen und eine weiter ansteigende Differenz zum Gesamtprofil erkennt man ebenfalls in der Konzentration in den kristallinen Gebieten. Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem gro"sen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren. Demnach erh"alt man Maxima in der Kohlenstoffkonzentration der kristallinen Gebiete genau bei den Maxima f"ur die Gesamtkonzentration und der Konzentration der amorphen Gebiete. @@ -381,7 +383,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Zuerst bestimmt man visuell die $z$-Koordinaten der Grenzfl"achen mit der {\em NLSOP Standalone} Version (Anhang \ref{section:sav}). Das selbe Programm liefert auch die zugeh"origen Kohlenstoffkonzentrationsprofile, in denen man die zugeh"origen Konzentrationen ablesen kann. - Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 \, at.\&$. + Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 \, at.\%$. Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \, at.\%$ gut "uberein. Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist. Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht. @@ -433,7 +435,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet. Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum. Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein. - Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 \, nm$ tiefer vorzufinden. + Aufgrund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 \, nm$ tiefer vorzufinden. Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet. Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets. Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt. @@ -442,7 +444,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 \, nm$ "uber dem Beginn der durchgehend amorphen Schicht. Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist. Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln. - Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden. + Daher muss gerade f"ur kleine Dosen ein gro"ser Fehler angenommen werden. \subsection{Variation der Simulationsparameter} @@ -458,9 +460,9 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Die hohe Diffusionsrate des Kohlenstoffs bewirkt, dass selbst im Implantationsmaximum zuf"allig amorph gewordene Gebiete ihren kristallinen Nachbarebenen zu schnell den Kohlenstoff entziehen. Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehend amorphen $SiC_x$-Schicht. Die Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen kristallinen Gebieten ist daher zu klein. - Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht sowie der Bildung der Lamellen. + Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht, sowie der Bildung der Lamellen. - Der Versuch die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} c) abgebildet. + Der Versuch, die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen, ist in \ref{img:var_sim_paramters} c) abgebildet. Dazu wurde der Einfluss der ballistischen Amorphisierung $p_b$ erh"oht. Da das nukleare Bremskraftmaximum vor dem Maximum der Kohlenstoffkonzentration liegt (Abbildungen \ref{img:trim_nel}/\ref{img:trim_impl}), sollte sich eine st"arkere Amorphisierung im oberen Fall des Implantationsprofils ergeben. Dies ist auch tats"achlich feststellbar. @@ -537,7 +539,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Abbildung \ref{img:nel_2mev} zeigt das durch {\em SRIM 2003.26} ermittelte nukleare Bremskraftprofil. Die nukleare Bremskraft ist in dem Tiefenbereich zwischen $0$ und $700 \, nm$ wesentlich flacher als die der $180 \, keV$-Implantation und nahezu konstant in dem bisher betrachteten Bereich um das Kohlenstoffkonzentrationsmaximum der $180 \, keV$-Implantation. St"o"se im Bereich hoher Kohlenstoffkonzentration sind demnach ann"ahernd gleichverteilt bez"uglich der Tiefe. - Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 \, nm$ herum zur Ruhe. + Aufgrund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 \, nm$ herum zur Ruhe. Bei geeigneter Wahl der Ausgangskonzentration ist zu erwarten, dass nicht der komplette kohlenstoffhaltige Bereich amorph wird. Die durch die erste Implantation eingestellte Konzentration sollte idealerweise so hoch sein, dass bei der $2 \, MeV$-Ionenbestrahlung die kohlenstoffinduzierte Amorphisierung zusammen mit dem Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten. @@ -545,8 +547,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Wird gen"ugend lange implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei. F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2} "ubernommen, da das gleiche Materialsystem beschrieben wird. - Ausserdem wird das $180 \, keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. - Auf Grund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 \, nm$. + Au"serdem wird das $180 \, keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt. + Aufgrund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 \, nm$. Nach Auswertung der {\em SRIM}-Datei trifft ein Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters. Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat. Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. @@ -573,7 +575,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Es hat sich keine durchgehende Schicht gebildet. Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu amorphisieren. Lamellen sind noch nicht zu erkennen. - Auf Grund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert. + Aufgrund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert. Die Diffusion f"uhrt zu einer wirksamen Umverteilung von Kohlenstoff, bevor das Target komplett amorphisiert ist. Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohlenstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht. Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen. @@ -607,7 +609,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Warscheinlichkeit amorphisieren. Mit steigender Dosis und somit fortgef"uhrter Diffusion beginnen sich so lamellare Ausscheidungen zu stabilisieren. Die Organisation und Stabilisierung der lamellaren Ausscheidungen erkennt man bereits bei der doppelten Dosis in Abbildung \ref{img:broad_l} b). - In den Lamellen befindliche amorphe Gebiete werden auf Grund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren. + In den Lamellen befindliche amorphe Gebiete werden aufgrund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren. Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater rekristallisieren. Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt. Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) bis f)). @@ -622,7 +624,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen, sofern sie existieren, der unabh"angig von der Dosis ist, hinweist. Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis. Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 \, nm$ an. - Auf Grund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt. + Aufgrund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt. Die Herstellung breiter Bereiche lamellarer Struktur ist nach dem Simulationsergebnis demnach m"oglich. Die Ausgangskonfiguration des Targets, welches mit $2 \, MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein. diff --git a/nlsop/diplom/exp_befunde.tex b/nlsop/diplom/exp_befunde.tex index 1f5c100..232a000 100644 --- a/nlsop/diplom/exp_befunde.tex +++ b/nlsop/diplom/exp_befunde.tex @@ -46,7 +46,7 @@ Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von Dies deutet auf eine erleichterte Rekristallisation bereits amorphisierten Siliziums, beziehungsweise erschwerte Amorphisierung kristallinen Siliziums, bei h"oheren Temperaturen hin. Auff"allig ist weiterhin die Ausdehnung der amorphen Schicht um das Kohlenstoffverteilungsmaximum. Die Kohlenstoffkonzentrationen an der vorderen Grenzfl"ache f"ur $150 \, ^{\circ} \mathrm{C}$ betr"agt $15 \, at.\%$, bei $200 \, ^{\circ} \mathrm{C}$ $20 \, at.\%$ und bei $250 \, ^{\circ} \mathrm{C}$ $25 \, at.\%$. - Dies weist auf einen Beitrag des Kohlenstoffs zur Amorphisierung hin, der f"ur h"ohere Temperaturen auf Grund der erschwerten Amorphisierung ansteigen muss, um Amorphisierung zu beg"unstigen. + Dies weist auf einen Beitrag des Kohlenstoffs zur Amorphisierung hin, der f"ur h"ohere Temperaturen aufgrund der erschwerten Amorphisierung ansteigen muss, um Amorphisierung zu beg"unstigen. \section{Kohlenstoffverteilung} diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex index 7fa8344..7435d44 100644 --- a/nlsop/diplom/grundlagen.tex +++ b/nlsop/diplom/grundlagen.tex @@ -360,7 +360,7 @@ Das Programm folgt den Bahnen einer gro"sen Anzahl von Teilchen, die in das Target implantiert werden. Jedes Ion startet mit einer gegebenen Energie, Position und Richtung. - Die Teilchen vollziehen Richtungs"anderungen auf Grund von Kernst"o"sen mit den Atomen des Targets. + Die Teilchen vollziehen Richtungs"anderungen aufgrund von Kernst"o"sen mit den Atomen des Targets. Zwischen zwei Kollisionen bewegt sich das Ion geradlinig innerhalb einer freien Wegl"ange. Durch die nukleare und elektronische Bremskraft verliert das Teilchen Energie. Die Verfolgung der Teilchenbahn terminiert, wenn die Energie unter einen bestimmten Wert abgefallen oder das Teilchen das Target verlassen hat. @@ -456,9 +456,9 @@ Dennis und Hale \cite{dennis_hale} erreichten nach diesem Modell f"ur Argon- und Kryptonionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$. Dies deutet darauf hin, dass selbst bei schweren Ionen ausschlie"slich direkte Amorphisierung ($m=1$) unwahrscheinlich ist. - Bei niedrigen Dosen zeigt sich auf Grund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis. + Bei niedrigen Dosen zeigt sich aufgrund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis. Der lineare Verlauf geht mit steigender Dosis mit der Bildung amorpher Gebiete durch "Uberlappung in einen maximal quadratischen Anstieg "uber. - Der Verlauf s"attigt schlie"slich auf Grund der Abnahme ungesch"adigter und kristallin gesch"adigter Fl"achenanteile. + Der Verlauf s"attigt schlie"slich aufgrund der Abnahme ungesch"adigter und kristallin gesch"adigter Fl"achenanteile. \subsubsection{Strahlensch"adigungsmodell nach Hecking} @@ -468,7 +468,7 @@ Dieses r"aumlich begrenzten Gebiet sehr hoher Energiedichte, in dem die kollektiv angeregten Atome einen quasi fl"ussigen Zustand bilden, nennt man einen Energiespike. Die thermische Relaxation dieses Spikes kann als W"armediffusionsprozess beschrieben werden. Erreicht die Kristallisationsfront den Kaskadenkern bevor die Kristallisationstemperatur unterschritten wird, kann der Spike vollst"andig rekristallisieren. - Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen, auf Grund der langsamen Abk"uhlung, genug Zeit zur Rekombination bleibt. + Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen, aufgrund der langsamen Abk"uhlung, genug Zeit zur Rekombination bleibt. Bei kleinen Temperaturen und einer darausfolgenden schnellen W"armediffusion kann wegen unvollst"andiger Rekristallisation ein amorpher Kaskadenkern zur"uckbleiben. Die Wahrscheinlichkeit f"ur die Bildung amorpher Volumina steigt mit fallender Temperatur. Neben der Implantationstemperatur h"angt der Defektzustand entscheidend von der Kaskadengeometrie und dem Sch"adigungszustand der Kaskadenumgebung ab. diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index f254c1b..c33af5d 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -6,10 +6,10 @@ Im Folgenden soll auf das Modell zur Bildung dieser geordneten amorphen Ausscheidungen eingegangen werden. Es wurde erstmals in \cite{basic_phys_proc} vorgestellt. Die Idee des Modells ist schematisch in Abbildung \ref{img:modell} gezeigt. - \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell} + \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen aufgrund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell} % alternativ model1_s_german.eps - Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}. + Aufgrund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}. Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ unter den gegebenen Bedingungen ionenstrahlinduziert epitaktisch rekristallisiert, w"ahrend rein thermische Rekristallisation von amorphen Silizium ($a-Si$) erst oberhalb $550 \, ^{\circ} \mathrm{C}$ erfolgt \cite{csepregi}. Zuf"allig amorphisierte Gebiete werden demnach mit hoher Wahrscheinlichkeit sehr schnell rekristallisieren. Die rein zuf"allige Amorphisierung, f"ur die immer eine geringe Wahrscheinlichkeit besteht, bezeichnet man als ballistische Amorphisierung. @@ -17,7 +17,7 @@ Aus dem vorherigen Kapitel ist bekannt, dass die Implantation unter den oben genannten Bedingungen bei sehr hohen Dosen zur Bildung von amorphen Phasen f"uhrt. Die Amorphisierung bei den gegebenen Temperaturen oberhalb $130 \, ^{\circ} \mathrm{C}$ muss also dem Vorhandensein von Kohlenstoff zugeschrieben werden, der die amorphe Phase stabilisiert \cite{kennedy}. Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \, \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \, \textrm{\AA}$) erkl"aren. - Auf Grund des Unterschiedes von fast $20\, \%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} \, J cm^{-2}$ abgesch"atzt wird. + Aufgrund des Unterschiedes von fast $20\, \%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird. Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt. Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist. Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind. @@ -32,7 +32,7 @@ Da sich die Ausscheidungen relativ nah an der Oberfl"ache des Targets befinden, kann der vertikale Anteil der Spannungen durch Expansion des Targets \cite{fib} relaxieren. Dies gilt nicht f"ur die horizontale Komponente. Es verbleiben laterale Druckspannungen parallel zur Oberfl"ache. - Diese beg"unstigen Amorphisierung in der Nachbarschaft der Ausscheidung, da im Falle einer Sto"skaskade die versetzten Atome auf Grund der vorhandenen Spannungen nur erschwert auf ihre regul"aren Gitterpl"atze zur"uckkehren k"onnen. + Diese beg"unstigen Amorphisierung in der Nachbarschaft der Ausscheidung, da im Falle einer Sto"skaskade die versetzten Atome aufgrund der vorhandenen Spannungen nur erschwert auf ihre regul"aren Gitterpl"atze zur"uckkehren k"onnen. Im Gegensatz dazu wird reines $a-Si$ in einer kristallinen Nachbarschaft unter den gegebenen Bedingungen sehr wahrscheinlich rekristallisieren. Diese Rekristallisation erfolgt epitaktisch, ausgehend von kristallinen Nachbarbereichen. Dieser Amorphisierungsbeitrag wird im Folgenden als spannungsinduzierte Amorphisierung bezeichnet. diff --git a/nlsop/diplom/quellcode.tex b/nlsop/diplom/quellcode.tex index 41c2315..c87f2b5 100644 --- a/nlsop/diplom/quellcode.tex +++ b/nlsop/diplom/quellcode.tex @@ -1,8 +1,8 @@ \chapter{Funktionen der Programme} -{\em NLSOP} besteht aus einer Anzahl von Programmen. +{\em NLSOP} besteht aus einer Mehrzahl von Programmen. Diese sollen im Folgenden vorgestellt werden. -Der Quellcode ist auf der beigelegten Compact Disc enthalten. +Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-augsburg.de/~zirkelfr/download/nlsop/nlsop.tar.bz2 \end{verbatim} zum Download bereit. \section{Server} @@ -40,7 +40,7 @@ Der Quellcode ist auf der beigelegten Compact Disc enthalten. Die {\em Standalone Version} ist ein eigenst"andiges Programm, das unter anderem auch den Simulationscode beinhaltet. Zus"atzlich stellt sie eine Benutzeroberfl"ache zur Verf"ugung, die die Untersuchung des fertig simulierten Ergebnisses erm"oglicht. Man kann Grafiken, die den TEM-Aufnahmen "ahnlich sind, sowie Druckspannungen und den Kohlenstoffgehalt visualisieren und als Bitmap abspeichern. - Ausserdem kann man Kohlenstoffprofile erzeugen und die Tiefe der vorderen und hinteren Grenzfl"ache einer vorhandenen durchgehenden Schicht bestimmen. + Au"serdem kann man Kohlenstoffprofile erzeugen und die Tiefe der vorderen und hinteren Grenzfl"ache einer vorhandenen durchgehenden Schicht bestimmen. \section{APIs} diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index b1c9eed..792a9b0 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -35,14 +35,14 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert. Die Ausdehnung des Targets in $x,y$-Richtung ist im Gegensatz zur Tiefe sehr gro"s und kann als unendlich ausgedehnt angenommen werden. - Um die Anzahl der W"urfel in diese Richtungen in der Simulation aus Gr"unden der Rechenzeit m"oglichst klein halten zu k"onnen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet. + Um die Anzahl der W"urfel in diese Richtungen in der Simulation, aus Gr"unden der Rechenzeit, m"oglichst klein halten zu k"onnen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet. In Version 1 der Simulation wurden $x = y = 50$ beziehungsweise $x = y = 64$ und $z = 100$ gesetzt. In Version 2 sind $x = y = 64$ und $z = 233$. Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden. Kristalline W"urfel sind schwarz und amorphe "Wurfel wei"s dargestellt. - F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnittezu mitteln. + F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnitte zu mitteln. Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall. \subsection{Amorphisierung und Rekristallisation} @@ -115,8 +115,8 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \subsection{Sputtern} - Es wird von einer, "uber der Oberfl"ache gleichm"a"sig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. - Auf Grund der Unterteilung des Targets in W"urfel mit der Seitenl"ange $3 \, nm$ muss diese Sputterrate in Einheiten einer Dosis, welche $3 \, nm$ sputtert, angegeben werden. + Es wird von einer, "uber der Oberfl"ache gleichm"a"sig verteilten und w"ahrend des Implantationsvorganges konstanten Sputterrate ausgegangen. + Aufgrund der Unterteilung des Targets in W"urfel mit der Seitenl"ange $3 \, nm$ muss diese Sputterrate in Einheiten einer Dosis, welche $3 \, nm$ sputtert, angegeben werden. Jedesmal, nachdem das Programm diese Dosis durchlaufen hat, wird die Sputterroutine aufgerufen, welche die oberste Targetebene abtr"agt. \section{Statistik von Sto"sprozessen} @@ -134,7 +134,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Abbildung \ref{img:bk_impl_p} zeigt die von {\em TRIM 92} ermittelte nukleare Bremskraft sowie das Kohlenstoffkonzentrationsprofil f"ur die in dieser Arbeit verwendeten Parameter. Die gestrichelte Linie markiert das Ionenprofilmaximum bei $500 \, nm$. - Sputtereffekte und Abweichungen auf Grund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden von {\em TRIM} allerdings nicht ber"ucksichtigt. + Sputtereffekte und Abweichungen aufgrund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden von {\em TRIM} allerdings nicht ber"ucksichtigt. Die Profile werden von {\em TRIM} selbst in separate Dateien geschrieben. Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren. @@ -143,7 +143,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohlenstoffs. Das Implantationsmaximum liegt hier bei ungef"ahr $530 \, nm$. Auff"allig ist eine Verschiebung des Maximums um $30 \, nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}. - Dies ist auf eine Ver"anderung in der elektronischen Bremskraft zuru"ckzuf"uhren. + Dies ist auf eine Ver"anderung in der elektronischen Bremskraft zur"uckzuf"uhren. \clearpage @@ -178,7 +178,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Das Auswertungsprogramm {\em parse\_trim\_collision} z"ahlt durchschnittlich $75$ getroffene Volumina pro implantiertem Ion. Genauer gesagt z"ahlt das Programm die Anzahl der Ebenen mit $3 \, nm$ H"ohe in denen Kollisionen verursacht werden. Teilchenbahnen parallel zur Targetoberfl"ache verf"alschen diese Zahl. - Ausserdem werden mehrmalige Durchl"aufe der Ebenen nicht mitgez"ahlt. + Au"serdem werden mehrmalige Durchl"aufe der Ebenen nicht mitgez"ahlt. Man sollte weiterhin beachten, dass Volumina in denen selbst nur eine Kollision stattfindet mitgez"ahlt werden, was allerdings nur sehr unwahrscheinlich zur Amorphisierung f"uhren wird. Daher wird eine Trefferzahl von $h=100$ f"ur die Simulation angenommen. @@ -337,7 +337,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \ncline[]{->}{inc_c}{weiter_3} \end{pspicture} - \caption{{\em NLSOP} Ablaufschema Teil 2: Einbau des Kohlenstoffs (gr"un).} + \caption{{\em NLSOP} Ablaufschema Teil 2: Einbau des Kohlenstoffs.} \label{img:flowchart2} \end{center} \end{figure} @@ -357,19 +357,22 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \rput(7,14){\rnode{weiter_4}{\psframebox{$\bigotimes$}}} - \rput(11,12){\rnode{is_d}{\psframebox[fillstyle=solid,fillcolor=yellow]{Durchlauf vielfaches von $d_v$?}}} + \rput(11,12){\rnode{is_d}{\psframebox[fillstyle=solid,fillcolor=yellow]{Durchlauf Vielfaches von $d_v$?}}} \ncline[]{->}{weiter_4}{is_d} \rput(3,12){\rnode{is_s}{\psframebox[fillstyle=solid,fillcolor=red]{Durchlauf vielfaches von $n$?}}} \ncline[]{->}{is_d}{is_s} \lput*{0}{nein} - \rput(11,10){\rnode{loop_d}{\psframebox[fillstyle=solid,fillcolor=yellow]{Gehe alle/verbleibende Volumina durch?}}} + \rput(11,10){\rnode{loop_d}{\psframebox[fillstyle=solid,fillcolor=yellow]{Gehe alle/verbleibende Volumina durch}}} \ncline[]{->}{is_d}{loop_d} \lput*{0}{ja} \rput(11,9){\rnode{d_is_amorph}{\psframebox[fillstyle=solid,fillcolor=yellow]{Volumen $\vec{r}(k,l,m)$ amorph?}}} \ncline[]{->}{loop_d}{d_is_amorph} + \rput(14.9,9){\pnode{h10}} + \ncline[]{-}{d_is_amorph}{h10} + \lput*{0}{nein} \rput(11,7){\rnode{loop_dn}{\psframebox[fillstyle=solid,fillcolor=yellow]{\parbox{4cm}{ Gehe alle/verbleibende\\ @@ -404,9 +407,9 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \rput(11,1){\rnode{check_d}{\psframebox[fillstyle=solid,fillcolor=yellow]{Alle Volumina durch?}}} \ncline[]{->}{check_dn}{check_d} \lput*{0}{ja} - \rput(14.5,1){\pnode{h5}} + \rput(14.9,1){\pnode{h5}} \ncline[]{check_d}{h5} - \rput(14.5,10){\pnode{h6}} + \rput(14.9,10){\pnode{h6}} \ncline[]{h5}{h6} \lput*{0}{nein} \ncline[]{->}{h6}{loop_d} @@ -495,10 +498,10 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Dabei beschreiben $s$ und $s_0$ die linear gen"aherte nukleare Bremskraft. Die Transformation wird wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben durchgef"uhrt. Dasselbe betrifft die Wahl der Tiefenkoordinate f"ur den Einbau des Kohlenstoffatoms. - Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend, wird eine Verteilung entsprechend dem linear gen"aherte Implantationsprofil verwendet. - Ausserdem wird nicht nach jedem Durchlauf ein Ion im Simulationsbereich zur Ruhe kommen. + Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend, wird eine Verteilung entsprechend dem linear gen"aherten Implantationsprofil verwendet. + Au"serdem wird nicht nach jedem Durchlauf ein Ion im Simulationsbereich zur Ruhe kommen. Da das Maximum der Reichweitenverteilung sehr viel tiefer liegt, werden die meisten Ionen au"serhalb des Simulationsfensters liegen bleiben. - Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Kohlenstoffverteilungskurvekurve $c_C(z)$ bis $300 \, nm$ zur Fl"ache der gesamten Kohlenstoffverteilungskurve ist. + Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Kohlenstoffverteilungskurve $c_C(z)$ bis $300 \, nm$ zur Fl"ache der gesamten Kohlenstoffverteilungskurve ist. \begin{equation} n_c < n \frac{\int_0^{300 nm} c_C(z) dz}{\int_0^{\infty} c_C(z) dz} \end{equation} @@ -507,7 +510,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Der Diffusionsprozess ist uneingeschr"ankt m"oglich. In der ersten Version wurde der Einfluss der amorph/kristallinen Struktur direkter Nachbarn auf die Rekristallisation nach \eqref{eq:p_ac_genau} noch nicht beachtet. Die Rekristallisationswahrscheinlichkeit ergibt sich hier aus \eqref{eq:p_ac_local}. - Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target und Diffusion alle $100$ Schritte betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. + Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target und Diffusion alle $100$ Schritte, betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. In der zweiten Version wird die gesamte Implantationstiefe simuliert. Das Simulationsfenster geht von $0-700 \, nm$. diff --git a/nlsop/diplom/zuzsammenfassung_ausblick.tex b/nlsop/diplom/zuzsammenfassung_ausblick.tex index 7b8d6a0..7f44ccb 100644 --- a/nlsop/diplom/zuzsammenfassung_ausblick.tex +++ b/nlsop/diplom/zuzsammenfassung_ausblick.tex @@ -3,7 +3,7 @@ Im Rahmen dieser Arbeit wurde die Bildung selbstorganisierter nanometrischer $SiC_x$"=Ausscheidungen in $C^+$-implantierten Silizium untersucht. Diese Ausscheidungen wurden bei Targettemperaturen zwischen $150$ und $400 \, ^{\circ} \mathrm{C}$ beobachtet. -Unter diesen Bedingungen ist auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium keine Amorphisierung zu erwarten. +Unter diesen Bedingungen ist aufgrund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium keine Amorphisierung zu erwarten. Tats"achlich ist bekannt, dass reines kristallines Silizium unter diesen Gegebenheiten ionenstrahl-induziert epitaktisch rekristallisiert. Die Amorphisierung wird dem Kohlenstoff zugeschrieben. Um bei diesen Temperaturen amorphe Ausscheidungen zu erhalten, m"uss eine hohe Dosis implantiert werden. @@ -12,7 +12,7 @@ Es sind Dosen von einigen $10^{17} cm^{-2}$ notwendig. Ein Modell zur Entstehung der selbstorganisierten amorphen Phasen wird vorgestellt. Bei "Uberschreitung einer S"attigungsgrenze von Kohlenstoff in kristallinem Silizium entstehen sph"arische amorphe Ausscheidungen. -Auf Grund der Dichtereduktion im entspannten amorphen Zustand "ubt dieses amorphe Gebiet Druckspannungen auf die laterale kristalline Umgebung aus. +Aufgrund der Dichtereduktion im entspannten amorphen Zustand "ubt dieses amorphe Gebiet Druckspannungen auf die laterale kristalline Umgebung aus. Dies beg"unstigt die Amorphisierung in den verspannten Gebieten. Dies entspricht der spannungsinduzierten Amorphisierung. Kohlenstoff diffundiert vom Kristallinen in die amorphen Auscheidungen um die Kohlenstoff"ubers"attigung der kristallinen $Si$-Phase zu reduzieren. @@ -42,7 +42,7 @@ Mit Hilfe der Simulation k"onnen noch weitere Aussagen "uber die Verteilung des Eine genaue Lage des Kohlenstoffs in den amorphen und kristallinen Gebieten kann angegeben werden. Dadurch wird der Selbstorganisationsprozess nachvollziehbar. Amorphe und kristalline Gebiete sind in aufeinander folgenden Ebenen komplement"ar angeordnet. -Da sich gro"se und kleine amorphe Gebiete abwechseln und die amorphen Gebiete auf Grund der Diffusion sehr kohlenstoffreich sind, schwankt die Kohlenstoffkonzentration im Bereich der lamellaren Ausscheidungen. +Da sich gro"se und kleine amorphe Gebiete abwechseln und die amorphen Gebiete aufgrund der Diffusion sehr kohlenstoffreich sind, schwankt die Kohlenstoffkonzentration im Bereich der lamellaren Ausscheidungen. Mit der zweiten Version wird der gesamte durch den Ionenbeschuss modifizierte Tiefenbereich abgedeckt. Man findet einen Satz von Simulationsparametern, der die experimentell beobachtete Dosisentwicklung gut reproduziert. -- 2.20.1 From e63939c4347e051df3093254962114d7aa5688b9 Mon Sep 17 00:00:00 2001 From: hackbard Date: Mon, 17 Oct 2005 15:59:56 +0000 Subject: [PATCH 10/16] ci often and soon --- nlsop/diplom/danksagung.tex | 10 +++++----- nlsop/diplom/quellcode.tex | 27 +++++++++++++-------------- 2 files changed, 18 insertions(+), 19 deletions(-) diff --git a/nlsop/diplom/danksagung.tex b/nlsop/diplom/danksagung.tex index c483e34..1420cb2 100644 --- a/nlsop/diplom/danksagung.tex +++ b/nlsop/diplom/danksagung.tex @@ -7,14 +7,14 @@ Insbesondere gilt meinem Dank \begin{itemize} \item \emph{Herrn Prof. Dr. Bernd Stritzker} f"ur die M"oglichkeit diese Arbeit an seinem Lehrstuhl durchf"uhren zu k"onnen, \item \emph{Herrn Priv.-Doz. Dr. habil. Volker Eyert} f"ur die Bereitschaft sich dieser Arbeit als Zweitkorrektor anzunehmen, - \item \emph{Herrn Priv.-Doz. Dr. habil. J"org K. N. Lindner} f"ur die Vergabe des interessanten Themas, die engagierte Betreuung und Unterst"utzung, sowie die Durchsicht dieses Skripts, - \item \emph{Herrn Dipl.-Phys. Maik H"aberlen} f"ur die Betreuung und vor allem den Ansto"s zu diesem Thema, und - \item \emph{Herrn Dipl.-Phys. Ralf Utermann} f"ur einen tempor"aren Zugang zum Rechencluster des Physik Instituts. + \item \emph{Herrn Priv.-Doz. Dr. habil. J"org K. N. Lindner} f"ur die Vergabe des interessanten Themas, die engagierte Betreuung und Unterst"utzung, sowie die Durchsicht dieser Arbeit, + \item \emph{Herrn Dipl.-Phys. Maik H"aberlen} f"ur die Betreuung, die Durchsicht des Skriptes und vor allem den Ansto"s zu diesem Thema, und + \item \emph{Herrn Dipl.-Phys. Ralf Utermann} f"ur einen tempor"aren Zugang zum Rechencluster des Physik Institutes. \end{itemize} -Allen weiteren Mitarbeitern des Lehrstuhls, insbesondere dem Diplomandenzimmer danke ich recht herzlich f"ur die freundschaftliche Arbeitsatmosph"are. +Allen weiteren Mitarbeitern des Lehrstuhls, insbesondere dem Diplomandenzimmer, danke ich recht herzlich f"ur die freundschaftliche Arbeitsatmosph"are. -Den gr"o"sten Dank gilt meinen Eltern Wilfriede und Karl Zirkelbach, die mir in unglaublicher G"ute hohe finanzielle Mittel zur Verf"ugung gestellt haben um den bayrischen Staat nicht unn"otig zu belasten (kein BAf"oG, kein Kindergeld, Zahlung f"ur Krankenkasse). +Den gr"o"sten Dank gilt meinen Eltern Wilfriede und Karl Zirkelbach, die mir in unglaublicher G"ute hohe finanzielle Mittel zur Verf"ugung gestellt haben, um den bayerischen Staat nicht unn"otig zu belasten (kein BAf"oG, kein Kindergeld, Zahlung f"ur Krankenkasse). Besonders danke ich Ihnen, dass Ihre Drohungen, mir die finanziellen Mittel zu entziehen, wenn ich nicht endlich zum Schluss komme, mich jeden Morgen aus dem Bett trieben. %Ein ganz besonderer Dank gilt meinen Eltern, ohne deren Unterst"utzung das Studium nicht m"oglich gewesen w"are. diff --git a/nlsop/diplom/quellcode.tex b/nlsop/diplom/quellcode.tex index c87f2b5..ff4b941 100644 --- a/nlsop/diplom/quellcode.tex +++ b/nlsop/diplom/quellcode.tex @@ -2,14 +2,13 @@ {\em NLSOP} besteht aus einer Mehrzahl von Programmen. Diese sollen im Folgenden vorgestellt werden. -Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-augsburg.de/~zirkelfr/download/nlsop/nlsop.tar.bz2 \end{verbatim} zum Download bereit. - +Der vollst"andige Quellcode der {\em NLSOP} Version 2 steht unter {\bf http://www.physik.uni-augsburg.de/~zirkelfr/download/nlsop/nlsop.tar.bz2} zum Download bereit. \section{Server} \begin{verbatim} - nlsop_server.c +nlsop_server.c \end{verbatim} - Ein {\em Server}-Programm, bei dem sich {\em Client} und {\em Benutzeroberfl"ache} anmelden. + Es ist ein {\em Server}-Programm, bei dem sich {\em Client} und {\em Benutzeroberfl"ache} anmelden. Dieses verteilt die zu rechnenden Simulationen auf freie {\em Client}-Rechner oder h"alt Simulationsauftr"age in einer Warteschlange. Es nimmt fertige Rechenergebnisse entgegen und speichert sie lokal ab. Es h"alt Statusinformationen "uber die laufenden Rechnungen und die Warteschlange zur Abfrage bereit. @@ -18,16 +17,16 @@ Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-a \section{Client} \begin{verbatim} - nlsop_client.c +nlsop_client.c \end{verbatim} Das {\em Client}-Programm beinhaltet den eigentlichen Simulationscode. Es meldet sich beim {\em Server} an und nimmt Rechenaufgaben entgegen. - Nach einer eintellbaren Anzahl von Durchl"aufen "ubergibt es Zwischenergebnisse beziehungsweise das Endergebnisse an den {\em Server}-Prozess. - Nach Beendigung einer Simulation geht es zur"uck in den Ruhezustand und wartet auf neue Rechenauftr"age. + Nach einer einstellbaren Anzahl von Durchl"aufen "ubergibt es Zwischenergebnisse beziehungsweise das Endergebnis an den {\em Server}-Prozess. + Nach Beendigung einer Simulation geht es in den Ruhezustand und wartet auf neue Rechenauftr"age. \section{Benutzeroberfl"ache} \begin{verbatim} - nlsop_gui.c +nlsop_gui.c \end{verbatim} Die {\em Benutzeroberfl"ache} dient zur "Ubergabe von Simulationsauftr"agen an den {\em Server}. Weiterhin dient es zur Statusabfrage von laufenden Rechnungen, der Warteschlange und der angemeldeten {\em Client}-Rechner. @@ -35,12 +34,12 @@ Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-a \section{Standalone Version} \label{section:sav} \begin{verbatim} - nlsop.c +nlsop.c \end{verbatim} Die {\em Standalone Version} ist ein eigenst"andiges Programm, das unter anderem auch den Simulationscode beinhaltet. Zus"atzlich stellt sie eine Benutzeroberfl"ache zur Verf"ugung, die die Untersuchung des fertig simulierten Ergebnisses erm"oglicht. - Man kann Grafiken, die den TEM-Aufnahmen "ahnlich sind, sowie Druckspannungen und den Kohlenstoffgehalt visualisieren und als Bitmap abspeichern. - Au"serdem kann man Kohlenstoffprofile erzeugen und die Tiefe der vorderen und hinteren Grenzfl"ache einer vorhandenen durchgehenden Schicht bestimmen. + Man kann Querschnittsaufnahmen des Targets, die zum Vergleich mit TEM-Aufnahmen benutzt werden k"onnen, sowie Druckspannungen und den Kohlenstoffgehalt visualisieren und als Bitmap abspeichern. + Au"serdem kann man Kohlenstoffprofile erzeugen und die Tiefe des Beginns der amorphen Ausscheidungen beziehungsweise der vorderen und hinteren Grenzfl"ache einer vorhandenen durchgehenden Schicht bestimmen. \section{APIs} @@ -54,7 +53,7 @@ Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-a \item \begin{verbatim} list.c, list.h \end{verbatim} \\ Hilfsmittel zur Benutzung von verlinkten Listen. \item \begin{verbatim} display.c, display.h \end{verbatim} \\ - Funktionen zur Visulisierung auf Konsolenebene. + Funktionen zur Visualisierung auf Konsolenebene. \item \begin{verbatim} event.c, event.h \end{verbatim} \\ Hilfsmittel zum Eventmanagement. \item \begin{verbatim} bmp.c, bmp.h \end{verbatim} \\ @@ -62,7 +61,7 @@ Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-a \item \begin{verbatim} fourier.c, fourier.h \end{verbatim} Funktionen f"ur die diskrete Fouriertransformation. \item \begin{verbatim} dfbapi.c, dfbapi.h \end{verbatim} - Helfer f"ur die Visulaisierung der Endergebnisse. + Helfer f"ur die Visualisierung der Endergebnisse. \item \begin{verbatim} random.c, randomi.h \end{verbatim} Funktionen zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen. \end{itemize} @@ -78,7 +77,7 @@ Der vollst"andige Quellcode steht unter \begin{verbatim} http://www.physik.uni-a \item \begin{verbatim} nlsop_create_cbox.c \end{verbatim} \\ Erzeugt ein kristallines Target mit einem plateauf"ormigen Verlauf des Kohlenstoffprofils, das in einer Tiefe von $500 nm$ dem Abfall des Kohlenstoffprofils der $180 keV$-Implantation entspricht. \item \begin{verbatim} parse_trim_collision.c \end{verbatim} \\ - Werkzeug zur Auswertung der Datei in der {\em TRIM} die Kollisionen protokolliert. + Werkzeug zur Auswertung der Datei in der {\em TRIM} detailierte Daten der Kollisionsereignisse protokolliert. \item \begin{verbatim} dft.c, dft.h \end{verbatim} \\ Erstellt die zweidimensionale Fouriertransformation eines Bitmaps. \item \begin{verbatim} linescan.c \end{verbatim} \\ -- 2.20.1 From 24434c38263cdb08d84550bc9efcdaab489a0cbb Mon Sep 17 00:00:00 2001 From: hackbard Date: Tue, 18 Oct 2005 07:19:26 +0000 Subject: [PATCH 11/16] basically finished all chapters (reread) --- nlsop/diplom/danksagung.tex | 2 +- nlsop/diplom/ergebnisse.tex | 2 +- nlsop/diplom/quellcode.tex | 12 +++++++----- 3 files changed, 9 insertions(+), 7 deletions(-) diff --git a/nlsop/diplom/danksagung.tex b/nlsop/diplom/danksagung.tex index 1420cb2..9e25390 100644 --- a/nlsop/diplom/danksagung.tex +++ b/nlsop/diplom/danksagung.tex @@ -9,7 +9,7 @@ Insbesondere gilt meinem Dank \item \emph{Herrn Priv.-Doz. Dr. habil. Volker Eyert} f"ur die Bereitschaft sich dieser Arbeit als Zweitkorrektor anzunehmen, \item \emph{Herrn Priv.-Doz. Dr. habil. J"org K. N. Lindner} f"ur die Vergabe des interessanten Themas, die engagierte Betreuung und Unterst"utzung, sowie die Durchsicht dieser Arbeit, \item \emph{Herrn Dipl.-Phys. Maik H"aberlen} f"ur die Betreuung, die Durchsicht des Skriptes und vor allem den Ansto"s zu diesem Thema, und - \item \emph{Herrn Dipl.-Phys. Ralf Utermann} f"ur einen tempor"aren Zugang zum Rechencluster des Physik Institutes. + \item \emph{Herrn Dipl.-Phys. Ralf Utermann} f"ur einen tempor"aren Zugang zum Rechner-Cluster des Physik Institutes. \end{itemize} Allen weiteren Mitarbeitern des Lehrstuhls, insbesondere dem Diplomandenzimmer, danke ich recht herzlich f"ur die freundschaftliche Arbeitsatmosph"are. diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 0b99a2b..7958c9f 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -552,7 +552,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Nach Auswertung der {\em SRIM}-Datei trifft ein Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters. Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat. Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte. - Andererseits kann das nukleare Bremskraftprofil im Bereich der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$ als nahezu konstant angesehen werden. + Andererseits kann das nukleare Bremskraftprofil im Bereich, der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$, als nahezu konstant angesehen werden. Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden au"serdem die Diffusionsparameter beibehalten. F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern. Die Kohlenstoffkonzentration wird nicht ver"andert. diff --git a/nlsop/diplom/quellcode.tex b/nlsop/diplom/quellcode.tex index ff4b941..108ef11 100644 --- a/nlsop/diplom/quellcode.tex +++ b/nlsop/diplom/quellcode.tex @@ -2,7 +2,7 @@ {\em NLSOP} besteht aus einer Mehrzahl von Programmen. Diese sollen im Folgenden vorgestellt werden. -Der vollst"andige Quellcode der {\em NLSOP} Version 2 steht unter {\bf http://www.physik.uni-augsburg.de/~zirkelfr/download/nlsop/nlsop.tar.bz2} zum Download bereit. +Der vollst"andige Quellcode der {\em NLSOP} Version 2 steht im Internet \footnote{http://www.physik.uni-augsburg.de/\~{}zirkelfr/download/nlsop/nlsop.tar.bz2} zum Download bereit. \section{Server} \begin{verbatim} @@ -24,6 +24,8 @@ nlsop_client.c Nach einer einstellbaren Anzahl von Durchl"aufen "ubergibt es Zwischenergebnisse beziehungsweise das Endergebnis an den {\em Server}-Prozess. Nach Beendigung einer Simulation geht es in den Ruhezustand und wartet auf neue Rechenauftr"age. + \clearpage + \section{Benutzeroberfl"ache} \begin{verbatim} nlsop_gui.c @@ -75,13 +77,13 @@ nlsop.c \item \begin{verbatim} nlsop_make_cryst.c \end{verbatim} \\ Estellt ein Duplikat eines gespeicherten Ergebnisses wobei alle Zust"ande der Volumen auf \dq Kristallin\dq{} gesetzt werden. \item \begin{verbatim} nlsop_create_cbox.c \end{verbatim} \\ - Erzeugt ein kristallines Target mit einem plateauf"ormigen Verlauf des Kohlenstoffprofils, das in einer Tiefe von $500 nm$ dem Abfall des Kohlenstoffprofils der $180 keV$-Implantation entspricht. + Erzeugt ein kristallines Target mit einem plateauf"ormigen Verlauf des Kohlenstoffprofils, das in einer Tiefe von $500 \, nm$ dem Abfall des Kohlenstoffprofils der $180 \, keV$-Implantation entspricht. \item \begin{verbatim} parse_trim_collision.c \end{verbatim} \\ - Werkzeug zur Auswertung der Datei in der {\em TRIM} detailierte Daten der Kollisionsereignisse protokolliert. + Werkzeug zur Auswertung der Datei in der {\em TRIM} detaillierte Daten der Kollisionsereignisse protokolliert. \item \begin{verbatim} dft.c, dft.h \end{verbatim} \\ - Erstellt die zweidimensionale Fouriertransformation eines Bitmaps. + Erstellt die zweidimensionale Fouriertransformation einer Bitmap. \item \begin{verbatim} linescan.c \end{verbatim} \\ - Erstellt den Linescan "uber ein fouriertransformiertes Bitmap. + Erstellt den Linescan "uber eine fouriertransformierte Bitmap. \item \begin{verbatim} random_parse.sh \end{verbatim} \\ Simples Shell-Script zur Auswertung und "Uberpr"ufung der Zufallszahlen. \end{itemize} -- 2.20.1 From db2d2741390b2168953b8e296d50ee11d1bbb738 Mon Sep 17 00:00:00 2001 From: hackbard Date: Tue, 18 Oct 2005 12:54:37 +0000 Subject: [PATCH 12/16] ci often and soon --- nlsop/diplom/einleitung.tex | 2 +- nlsop/diplom/exp_befunde.tex | 10 +++++----- nlsop/diplom/grundlagen.tex | 21 +++++++++++---------- nlsop/diplom/modell.tex | 2 +- nlsop/diplom/simulation.tex | 15 +++++++-------- 5 files changed, 25 insertions(+), 25 deletions(-) diff --git a/nlsop/diplom/einleitung.tex b/nlsop/diplom/einleitung.tex index 726a9c3..614ce5d 100644 --- a/nlsop/diplom/einleitung.tex +++ b/nlsop/diplom/einleitung.tex @@ -18,7 +18,7 @@ Erstaunlicherweise wurden schon eine ganze Reihe solcher Selbstorganisationsph"a Bei der Bestrahlung d"unner $NiO$-Schichten mit schnellen und schweren Ionen erkennt man eine periodische Rissbildung senkrecht zur projezierten Einfallsrichtung des Ionenstrahls \cite{bolse}. Bei fortgef"uhrter Implantation bilden sich $100 \, nm$ dicke und $1 \, \mu m$ hohe $NiO$-Lamellen aus, die einen Abstand von $1-3 \, \mu m$ und die selbe Orientierung wie die Risse besitzen. Dieser Effekt wird auf das kurzzeitige Schmelzen des Materials in der Umgebung der Teilchenbahn des Ions zur"uckgef"uhrt. -Ein weiteres Beispiel f"ur einen Selbstorganisationsvorgang ist die Entstehung von Riffeln auf der Oberfl"ache des Taregts, die sich abh"angig vom Einfallswinkel der Ionen, senkrecht beziehungsweise parallel zur Projektion des Ionenstrahls auf die Oberfl"ache orientieren. +Ein weiteres Beispiel f"ur einen Selbstorganisationsvorgang ist die Entstehung von Riffeln auf der Oberfl"ache des Taregts, die sich abh"angig vom Einfallswinkel der Ionen, senkrecht beziehungsweise parallel zur Projektion des Ionenstrahls auf die Oberfl"ache, orientieren. Diese Beobachtung kann durch die Bradley-Harper-Theorie beschrieben werden \cite{bradley_harper}. Desweiteren k"onnen Selbstorganisationsph"anomene bei der Bestrahlung von bin"aren Legierungen beobachtet werden. Die thermisch aktivierte, kurzreichweitige Diffusion und der, durch die Bestrahlung aktivierte Austausch von Atomen f"uhrt ab einem bestimmten Wert f"ur die Austauschreichweite zur Bildung verworrener separierter stabiler Phasen \cite{enrique1,enrique2}. diff --git a/nlsop/diplom/exp_befunde.tex b/nlsop/diplom/exp_befunde.tex index 232a000..cb5562d 100644 --- a/nlsop/diplom/exp_befunde.tex +++ b/nlsop/diplom/exp_befunde.tex @@ -8,14 +8,14 @@ Allen Systemen gemeinsam ist eine drastische Dichtereduktion von mehr als $3-10 Die Entstehung solcher Ausscheidungen beobachtet man nur unter bestimmten Implantationsbedingungen. Im Folgenden sollen einige der experimentellen Ergebnisse bez"uglich der Bildung der geordneten Ausscheidungen aus \cite{maik_da} zusammengefasst werden. -Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von $\alpha = 7^{\circ}$ und einer Dosisrate von $\dot{D} = 10 \, \mu A cm^{-2}$ in einem Temperaturbereich von $150$ bis $250 \, ^{\circ} \mathrm{C}$ in $(100)$ $Si$ f"ur verschiedene Dosen oberhalb von $1,0 \times 10^{17} cm^{-2}$ durchgef"uhrt und untersucht. +Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von $\alpha = 7^{\circ}$ und einer Dosisrate von $\dot{D} = 10 \, \mu A cm^{-2}$ in einem Temperaturbereich von $150$ bis $250 \, ^{\circ} \mathrm{C}$ in $(100)$ $Si$ f"ur verschiedene Dosen zwischen $1,0$ und $8,5 \times 10^{17} cm^{-2}$ durchgef"uhrt und untersucht. \section{Lage und Ausdehnung amorpher Phasen} \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 \, keV$ $C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme einer mit $4,3 \times 10^{17} cm^{-2}$ $180 \, keV \, C^{+}$-inplantierten Probe. Die hellen Gebiete sind amorph, dunkle Gebiete kristallin. - In einer Tiefe von ungef"ahr $300 \, nm$ beginnt die durchgehende amorphe Schicht. + In einer Tiefe von ungef"ahr $300 \, nm$ beginnt die durchgehend amorphe Schicht. An der vorderen Grenzfl"ache sind die lamellaren und sph"arischen $SiC_x$-Ausscheidungen zu erkennen. Diese erstrecken sich "uber einen Tiefenbereich von ca. $100 \, nm$. Die Lamellen sind parallel zur Targetoberfl"ache ausgerichtet. @@ -29,16 +29,16 @@ Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von Abbildung \ref{img:lua_vs_d} zeigt die in \cite{maik_da} mittels TEM bestimmte Position und Ausdehnung amorpher Phasen unter denselben Implantationsbedingungen abh"angig von der Dosis. In Abbildung \ref{img:temdosis} sind die dazugeh"origen Hellfeld-TEM-Abbildungen zu den ersten vier Dosen abgebildet. Die mit $R_{max}$ gekennzeichnete Linie in Abbildung \ref{img:lua_vs_d} gibt die Position des Kohlenstoffkonzentrationsmaximums an, welches f"ur kleine Dosen mittels {\em TRIM} und f"ur hohe Dosen durch RBS- und TEM-Messungen bestimmt wurde. - F"ur die kleinste Dosis von $1,0 \times 10^{17} cm^{-2}$ wird keine durchgehende amorphe Schicht beobachtet. + F"ur die kleinste Dosis von $1,0 \times 10^{17} cm^{-2}$ wird keine durchgehend amorphe Schicht beobachtet. Stattdessen kann man zahlreiche $3 \, nm$ gro"se, teilweise zusammenwachsende amorphe Einschl"usse erkennen. - F"ur Dosen oberhalb $1,0 \times 10^{17} cm^{-2}$ entstehen durchgehende amorphe Schichten. + F"ur Dosen oberhalb $1,0 \times 10^{17} cm^{-2}$ entstehen durchgehend amorphe Schichten. Gut zu erkennen ist, dass sich die, mit steigender Dosis anwachsende durchgehende Schicht um das Kohlenstoffverteilungsmaximum erstreckt. Wie man in Abbildung \ref{img:temdosis} gut erkennen kann, bilden sich die lamellaren Ausscheidungen an der vorderen Grenzfl"ache zur durchgehend amorphen Schicht erst ab einer Dosis von $3,3 \times 10^{17} cm^{-2}$ und werden mit steigender Dosis sch"arfer. \section{Temperaturabh"angigkeit} Die Position und Ausdehnung der amorphen Phasen ist au"serdem abh"angig von der Implantationstemperatur. - F"ur die Bildung durchgehender amorpher Schichten und lamellarer Ausscheidungen an der Grenzfl"ache muss die Implantationstemperatur hoch genug sein, um eine komplette Amorphisierung der Targetoberfl"ache, und gleichzeitig niedrig genug, um die Kristallisation amorpher Ausscheidungen zu kubischen $3C-SiC$-Pr"azipitaten zu verhindern. + F"ur die Bildung durchgehend amorpher Schichten und lamellarer Ausscheidungen an der Grenzfl"ache muss die Implantationstemperatur hoch genug sein, um eine komplette Amorphisierung der Targetoberfl"ache, und gleichzeitig niedrig genug, um die Kristallisation amorpher Ausscheidungen zu kubischen $3C-SiC$-Pr"azipitaten zu verhindern. F"ur Kohlenstoff in Silizium sind Temperaturen zwischen $150$ und $400 \, ^{\circ} \mathrm{C}$ geeignet. \printimg{h}{width=10cm}{a-t.eps}{Schematischer Aufbau des implantierten Schichtsystems f"ur $180 \, keV$ $C^+$"=Implantationen in $(100)Si$ mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ in Abh"angigkeit von der Temperatur. \cite{maik_da}}{img:lua_vs_t} Abbildung \ref{img:lua_vs_t} zeigt die Position und Ausdehnung der strukturell verschiedenen Bereiche f"ur $180 \, keV \, C^+$-implantierte Proben mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$ abh"angig von der Implantationstemperatur. diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex index 7435d44..ea00803 100644 --- a/nlsop/diplom/grundlagen.tex +++ b/nlsop/diplom/grundlagen.tex @@ -4,11 +4,12 @@ \section{Monte-Carlo-Simulation} Monte-Carlo-Simulationen sind numerische Computerexperimente zur Untersuchung von interessierenden Sachverhalten. - Gegen"uber anderen Rechenmethoden basieren diese Computerexperiemnte auf stochastischen Modellen. + Gegen"uber anderen Rechenmethoden basieren diese Computerexperimente auf stochastischen Modellen. + Dabei werden vom Computer generierte Zufallszahlen auf physikalische Gr"o"sen abgebildet. Die Zuf"allgkeit mikroskopischer Ereignisse spielt, wie im realen System des Experimentes, die wesentliche Rolle. Der Rechner wird zum virtuellen Labor, in dem ein bestimmtest System untersucht wird. Eine solche Computersimulation kann als numerisches Experiment betrachtet werden. - Makroskopische, observable Gr"ossen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst. + Makroskopische, observable Gr"o"sen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst. Die Reproduzierbarkeit von Ergebnissen hat demnach statistischen Charakter. Der Vorteil der Monte-Carlo-Methode ist das relativ einfache Erzielen von Ergebnissen f"ur Problemstellungen, die ohne N"aherungen analytisch nicht l"osbar oder sehr aufw"andig sind. @@ -18,7 +19,7 @@ Z = \sum_{i=1}^N e^{\frac{-E_i}{k_B T}} = Tr(e^{-\beta H}) \end{equation} nicht den gesamten Raum der Konfigurationen, sondern nur statistisch ausgew"ahlte Punkte zu ber"ucksichtigen. - Um die Genauigkeit der simulierten Eigenschaften des Systems in einer bestimmten Sollzeit zu verbessern, ist es n"otig die Zust"ande mit der Wahrscheinlichkeit entprechend ihres Beitrages zur Zustandssumme auszusuchen. + Um die Genauigkeit der simulierten Eigenschaften des Systems in einer bestimmten Sollzeit zu verbessern, ist es n"otig die Zust"ande mit der Wahrscheinlichkeit entsprechend ihres Beitrages zur Zustandssumme auszusuchen. Dieser Ansatz wird als \dq importance sampling\dq{} bezeichnet. F"ur das Ising-Modell wird der Metropolis-Algorithmus verwendet, der die Dynamik des Systems in Form eines \dq update algorithm\dq{} f"ur die Mikrozust"ande vorschreibt. @@ -105,7 +106,7 @@ Mit Hilfe der Verwerfungsmethode k"onnen Zufallszahlen mit beliebiger Wahrscheinlichkeitsverteilung $p(x)$ generiert werden. Sie basiert auf einer einfachen geometrischen "Uberlegung (Abbildung \ref{img:rej_meth}). - Die Verteilung $p(x)$ sei im Intervall $[a,b]$ mit $p(x) \geq 0 \quad \forall x \in [a,b]$ gegeben. + Die Verteilung $p(x)$ sei im Intervall $[a,b]$ mit $p(x) \geq 0 \,\, \forall x \in [a,b]$ gegeben. Das Maximum von $p(x)$ sei $p_m$. Die Erzeugung der Zufallszahlen funktioniert nun wie folgt: \begin{enumerate} @@ -113,8 +114,8 @@ \item Ist $y \leq p(x)$, so ist $x$ die n"achste Zufallszahl, ansonsten zur"uck zu 1. \end{enumerate} \printimg{}{width=10cm}{rej_meth.eps}{Beliebige Wahrscheinlichkeitsverteilung $p(x)$ im Intervall $[a,b]$ mit Maximum $p_m$.}{img:rej_meth} - Diese Methode ist zwar sehr einfach, jedoch wird sie um so ineffizienter, je groesser die Fl"ache der Vergleichsfunktion (hier: $f(x) = p_m$) im Vergleich zu $p(x)$ zwischen $a$ und $b$ wird. - Deshalb macht es Sinn die Funktion $f(x)$ "ahnlich der Funktion $p(x)$ mit $f(x) \geq p(x); \, x \in [a,b]$ zu w"ahlen. + Diese Methode ist zwar sehr einfach, jedoch wird sie um so ineffizienter, je gr"o"ser die Fl"ache der Vergleichsfunktion (hier: $f(x) = p_m$) im Vergleich zu $p(x)$ zwischen $a$ und $b$ wird. + Deshalb macht es Sinn, die Funktion $f(x)$ "ahnlich der Funktion $p(x)$ mit $f(x) \geq p(x); \, x \in [a,b]$ zu w"ahlen. Das unbestimmte Integral $F(x) = \int f(x) dx$ muss dabei bekannt und invertierbar sein. Dann kann wie in \eqref{eq:trafo} die Transformation durchgef"uhrt werden. Die Werte f"ur $x$ werden nun nach der Transformationsmethode im Intervall $[a,b]$ gew"ahlt, die Werte f"ur $y$ m"ussen gleichverteilt im Intervall $[0,f(x)]$ sein. @@ -167,7 +168,7 @@ \begin{equation} \frac{1}{2} M_1 v_0^2 = \frac{1}{2} M_1 v_1^2 + \frac{1}{2} M_2 v_2^2 \end{equation} - Dabei ist $v_0$ die anf"angliche Geschwindigkeit des Ions der Masse $M_1$, $v_1$ die Geschwindigkeit des Ions nach dem Sto"s und $v_2$ die Geschwindigkeit des gestossenen Atomkerns mit Masse $M_2$. + Dabei ist $v_0$ die anf"angliche Geschwindigkeit des Ions der Masse $M_1$, $v_1$ die Geschwindigkeit des Ions nach dem Sto"s und $v_2$ die Geschwindigkeit des gesto"senen Atomkerns mit Masse $M_2$. Aus der Impulserhaltung folgt, \begin{eqnarray} \textrm{Longitudinal: } & M_1 v_0 = M_1 v_1 cos(\theta) + M_2 v_2 cos(\phi) \\ @@ -277,7 +278,7 @@ \begin{equation} \stackrel{.}{r} = \frac{dr}{dt} = \sqrt{ \frac{2}{M_c} (E - V(r)) - \frac{l^2}{M_c^2 r^2} } \end{equation} - und diese Gleichung wiederrum nach $dt$, + und diese Gleichung wiederum nach $dt$, \begin{equation} dt = \frac{dr}{\sqrt{ \frac{2}{M_c} (E - V(r)) - \frac{l^2}{M_c^2 r^2} }} \end{equation} @@ -299,7 +300,7 @@ \end{eqnarray} Die Wahrscheinlichkeit $d \sigma$ bezeichnet man als differentiellen Wirkungsquerschnitt. $\Theta$ ist eine Funktion von $p$ \eqref{eq:theta_of_p}, die invertierbar ist. - Die Funktion $p(\Theta)$ wiederrum ist differenzierbar, so dass man zusammen mit der Raumwinkeldefinition $d \Omega = 2 \pi sin(\Theta) d \Theta$ folgenden Ausdruck f"ur den differentiellen Wirkungsquerschnitt erh"alt. + Die Funktion $p(\Theta)$ wiederum ist differenzierbar, so dass man zusammen mit der Raumwinkeldefinition $d \Omega = 2 \pi sin(\Theta) d \Theta$ folgenden Ausdruck f"ur den differentiellen Wirkungsquerschnitt erh"alt. \begin{equation} d \sigma (\Theta) = 2 \pi p \frac{dp}{d \Theta} d\Theta = \frac{p(\Theta)}{sin \Theta} \left| \frac{dp}{d \Theta} \right| d \Omega \end{equation} @@ -366,7 +367,7 @@ Die Verfolgung der Teilchenbahn terminiert, wenn die Energie unter einen bestimmten Wert abgefallen oder das Teilchen das Target verlassen hat. Das Target wird als amorph angenommen, weshalb kristalline Richtungseigenschaften, wie zum Beispiel das sogenannte Channeling, ignoriert werden. Der nukleare und elektronische Energieverlust werden unabh"angig voneinander behandelt. - Das Teilchen verliert neben dem kontinuierlichen Energieverlust durch die elektronischen Bremskraft einen diskreten Betrag der Energie durch Kernst"o"se. + Das Teilchen verliert neben dem kontinuierlichen Energieverlust durch die elektronische Bremskraft einen diskreten Betrag der Energie durch Kernst"o"se. Das einfallende Teilchen startet mit der Anfangsenergie $E = E_0$ an der Oberfl"ache des Targets. Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet. diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index c33af5d..e78f8d7 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -20,7 +20,7 @@ Aufgrund des Unterschiedes von fast $20\, \%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird. Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt. Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist. - Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind. + Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$, weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$, stabil sind. Bei bis zu f"unfst"undigen Tempervorg"angen bei $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen, zeigt. Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinem Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt. Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 792a9b0..5aca4ca 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -19,7 +19,7 @@ Der Einbau des Kohlenstoffs im Target wird im zweiten Schritt ausgef"uhrt. Als letztes wird die Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete und der Sputtervorgang realisiert. Im Folgenden werden der Simulationsalgorithmus und die dazu ben"otigten Annahmen besprochen. -Ein weiterer Abschnitt besch"aftigt sich mit der Extraktion von, f"ur die Simulation notwendigen Informationen aus {\em TRIM}-Ergebnissen. +Ein weiterer Abschnitt besch"aftigt sich mit der Extraktion von, f"ur die Simulation notwendigen, Informationen aus {\em TRIM}-Ergebnissen. Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. \section{Annahmen der Simulation} @@ -41,7 +41,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. In Version 2 sind $x = y = 64$ und $z = 233$. Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden. - Kristalline W"urfel sind schwarz und amorphe "Wurfel wei"s dargestellt. + Kristalline W"urfel sind schwarz und amorphe W"urfel wei"s dargestellt. F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnitte zu mitteln. Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall. @@ -192,7 +192,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Im Folgenden sei die Anzahl der W"urfel in $x$, $y$ und $z$ Richtung $X$, $Y$ und $Z$. Eine Anzahl von $N$ Durchl"aufen ist damit "aquivalent zur Dosis $D$, die wie folgt gegeben ist: \begin{equation} - D = \frac{N}{XY(3 nm)^2} \, \textrm{.} + D = \frac{N}{XY(3 \, nm)^2} \, \textrm{.} \label{eq:dose_steps} \end{equation} @@ -346,7 +346,6 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Die Wahl des Volumens, in das das Ion eingebaut wird, ist analog zur Wahl der Ermittlung des zu sto"senden Volumens. Lediglich die Implantationstiefe wird durch eine Zufallszahl bestimmt, deren Wahrscheinlichkeitsverteilung dem Konzentrationsprofil entspricht. Zur Erzeugung der entsprechenden Zufallszahl wird wieder die in \ref{subsubsection:verwerf_meth} beschriebene Verwerfungsmethode benutzt. - In dem ausgew"ahlten W"urfel $\vec{r}(k,l,m)$ wird der Z"ahler f"ur den Kohlenstoff um eins erh"oht. \subsection{Diffusion und Sputtern} @@ -469,7 +468,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Die Sputterroutine wird nach der Dosis, die einem Abtrag von einer Ebene von Zellen ($3 \, nm$) entspricht, ausgef"uhrt und bewirkt, dass diese oberste Ebene entfernt wird. Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben: \begin{equation} - S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.} + S = \frac{(3 \, nm)^3 XY }{n} \quad \textrm{.} \end{equation} Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben. Der Inhalt der Ebene $i$ wird auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben. @@ -477,7 +476,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Diese entspricht der abgetragenen Ebene. Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null. - Dies macht allerdings nur Sinn, wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren. + Dies macht allerdings nur Sinn, wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen sind, um kristalline, kohlenstofffreie Ebenen zu garantieren. Daher wird das Sputtern nur in Simulationen "uber gro"se Tiefenbereiche ber"ucksichtigt. Die Sputterrate kann durch {\em TRIM} beziehungsweise Messungen des Kohlenstoffprofils bestimmt werden. @@ -510,7 +509,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Der Diffusionsprozess ist uneingeschr"ankt m"oglich. In der ersten Version wurde der Einfluss der amorph/kristallinen Struktur direkter Nachbarn auf die Rekristallisation nach \eqref{eq:p_ac_genau} noch nicht beachtet. Die Rekristallisationswahrscheinlichkeit ergibt sich hier aus \eqref{eq:p_ac_local}. - Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target und Diffusion alle $100$ Schritte, betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. + Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target, einem Treffer pro Durchlauf und Diffusion alle $100$ Schritte, betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden. In der zweiten Version wird die gesamte Implantationstiefe simuliert. Das Simulationsfenster geht von $0-700 \, nm$. @@ -529,7 +528,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. Das Betriebssystem generiert aus dem Rauschen einiger Treiber, zum Beispiel den Treibern f"ur Tastatur, Maus und Festplatte einen Vorrat an Entropie. Eine Zufallszahl wird durch Anwendung des {\em SHA}-Algorithmus (kurz f"ur {\bf S}ecure {\bf H}ash {\bf A}lgorithm) auf den Inhalt des Entropievorrates erzeugt. Eine zweite M"oglichkeit ist die Verwendung des Zufallszahlengenerators der Standardbibliothek der Programmiersprache {\em C}. - Diese generiert die Zufallszahlensequenz nach der im Abschnitt \ref{subsection:rand_gen} vorgestellten linearen Kongruenzmethode. + Dieser generiert die Zufallszahlensequenz nach der im Abschnitt \ref{subsection:rand_gen} vorgestellten linearen Kongruenzmethode. Das zuletzt genannte Verfahren ist damit unabh"angig vom Betriebssystem. F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein. -- 2.20.1 From e63e3521ce344f8b420f098003847bfa7e8e9d3e Mon Sep 17 00:00:00 2001 From: hackbard Date: Tue, 18 Oct 2005 13:44:19 +0000 Subject: [PATCH 13/16] more updates --- nlsop/diplom/ergebnisse.tex | 8 ++++---- nlsop/diplom/exp_befunde.tex | 2 +- nlsop/diplom/simulation.tex | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 7958c9f..b1d94dd 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -104,7 +104,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Abbildung \ref{img:diff_influence} zeigt den Vergleich von Ergebnissen mit unterschiedlicher Diffusionsrate $d_r$. Zus"atzlich kann die Diffusion in $z$-Richtung unterdr"uckt werden ($d_r^z=0$). Unter der Querschnittsansicht ist die jeweilige Fouriertransformierte abgebildet. - Die beiden Querschnitte in Abbildung \ref{img:diff_influence} a) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde. + Die beiden Querschnitte in Abbildung \ref{img:diff_influence} b) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde. Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung. Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen. Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation. @@ -128,7 +128,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Der Linescan zeigt kein Maximum au"ser bei der Ortsfrequenz Null. Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigtem Querschnitt. Es haben sich keine lamellaren Ausscheidungen gebildet. - Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erh"alt deutlich lamellare Ausscheidungen. + Bei den in Abbildung \ref{img:diff_influence_ls} a) und b) gezeigten Spektren ist die Diffusion stark und man erh"alt deutlich lamellare Ausscheidungen. Dies "au"sert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null. Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen. Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 \, nm$. @@ -588,7 +588,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 \, at. \%$ im Implantationsmaximum hat. F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal. - Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 \, keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 \, keV$ reduziert \cite{unknown}. + Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 \, keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 \, keV$ reduziert. Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 \, nm$ im wesentlichen dem Abfall des $180 \, keV$-Profils entspricht. \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 \, keV$ $C^+$"=Implantationsprofils ab einer Tiefe von $500 \, nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 \, keV$.}{img:cbox} @@ -612,7 +612,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis In den Lamellen befindliche amorphe Gebiete werden aufgrund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren. Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater rekristallisieren. Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt. - Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) bis f)). + Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) - f)). Die Ausscheidungen werden sch"arfer. Dies erkennt man auch in Abbildung \ref{img:broad_ls}. diff --git a/nlsop/diplom/exp_befunde.tex b/nlsop/diplom/exp_befunde.tex index cb5562d..909df41 100644 --- a/nlsop/diplom/exp_befunde.tex +++ b/nlsop/diplom/exp_befunde.tex @@ -13,7 +13,7 @@ Es wurden Implantationen von Ionen der Energie $180 \, keV$ in einem Winkel von \section{Lage und Ausdehnung amorpher Phasen} \printimg{h}{width=15cm}{k393abild1_.eps}{Hellfeld-TEM-Abbildung einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 \, keV$ $C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. (L: amorphe Lamellen, S: sph"arische amorphe Ausscheidungen) \cite{maik_da}}{img:xtem_img} - Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme einer mit $4,3 \times 10^{17} cm^{-2}$ $180 \, keV \, C^{+}$-inplantierten Probe. + Abbildung \ref{img:xtem_img} zeigt eine Cross-Section TEM-Aufnahme (Querschnittsaufnahme) einer mit $4,3 \times 10^{17} cm^{-2}$ $180 \, keV \, C^{+}$-inplantierten Probe. Die hellen Gebiete sind amorph, dunkle Gebiete kristallin. In einer Tiefe von ungef"ahr $300 \, nm$ beginnt die durchgehend amorphe Schicht. An der vorderen Grenzfl"ache sind die lamellaren und sph"arischen $SiC_x$-Ausscheidungen zu erkennen. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 5aca4ca..baa1f36 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -40,7 +40,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen. In Version 1 der Simulation wurden $x = y = 50$ beziehungsweise $x = y = 64$ und $z = 100$ gesetzt. In Version 2 sind $x = y = 64$ und $z = 233$. - Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden. + Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte (Cross-Sections) der amoprh/kristallinen Struktur als Bitmap ausgegeben werden. Kristalline W"urfel sind schwarz und amorphe W"urfel wei"s dargestellt. F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnitte zu mitteln. Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall. -- 2.20.1 From 9863bdbe1284f0ea52c3c7f8f8a3a8bdd676dc57 Mon Sep 17 00:00:00 2001 From: hackbard Date: Tue, 18 Oct 2005 17:10:59 +0000 Subject: [PATCH 14/16] waaahhhh! - this will never end --- nlsop/diplom/ergebnisse.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index b1d94dd..2194ef1 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -350,16 +350,16 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb der Gesamtkonzentration liegt. Die Ursache daf"ur ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen. Es wechseln sich Ebenen mit hohen und niedrigen amorphen Anteil ab. - Ein h"oherer Anteil an amorphen Gebieten in einer Ebene bewirkt nicht nur das Ansteigen der Gesamtkonzentration an Kohlenstoff in dieser Ebene, sondern auch das der amorphen Gebiete, da mehr Senken f"ur den Kohlenstoff vorhanden sind. + Ein h"oherer Anteil an amorphen Gebieten in einer Ebene bewirkt nicht nur das Ansteigen der Gesamtkonzentration an Kohlenstoff in dieser Ebene, sondern auch das der amorphen Gebiete, da die amorphen Ausscheidungen schon l"anger stabilisiert vorliegen und demnach viel Kohlenstoff durch den Diffusionsprozess gewonnen haben. Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion. Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff. Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht, w"ahrend sie in der Nachbarebene kleiner wird. Die lamellaren Strukturen entstehen. Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht, vorhanden ist. - Diese charakteristische Konzentration wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen, im Gegensatz zu einzelnen stabilen Ausscheidungen, ben"otig. + Diese charakteristische Konzentration von ungef"ahr $17 \, at.\%$ wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen, im Gegensatz zu einzelnen stabilen Ausscheidungen, ben"otig. Die Schwankungen und eine weiter ansteigende Differenz zum Gesamtprofil erkennt man ebenfalls in der Konzentration in den kristallinen Gebieten. - Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem gro"sen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren. - Demnach erh"alt man Maxima in der Kohlenstoffkonzentration der kristallinen Gebiete genau bei den Maxima f"ur die Gesamtkonzentration und der Konzentration der amorphen Gebiete. + Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da den Bereichen mit viel kristallinem Anteil viel Kohlenstoff von schon l"anger stabil existierenden amorphen Gebieten der Nachbarebenen entzogen wurde. + Demnach erh"alt man Absenkungen in der Kohlenstoffkonzentration der kristallinen Gebiete in Ebenen mit hohem kristallinen Anteil im Gegensatz zu den Ebenen ... Diese Maxima sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert. Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen. Dies stimmt sehr gut mit dem experimentell bestimmten Wert von $?? \, at.\%$ \cite{unknown} "uberein. -- 2.20.1 From 97eb7b6e919e1fec8915d4ae056e64b34be71fb4 Mon Sep 17 00:00:00 2001 From: hackbard Date: Wed, 19 Oct 2005 10:57:44 +0000 Subject: [PATCH 15/16] fixed eel, c-distr + model figure caption --- nlsop/diplom/ergebnisse.tex | 39 +++++++++++++++++-------------------- nlsop/diplom/grundlagen.tex | 13 +++++-------- nlsop/diplom/modell.tex | 2 +- 3 files changed, 24 insertions(+), 30 deletions(-) diff --git a/nlsop/diplom/ergebnisse.tex b/nlsop/diplom/ergebnisse.tex index 2194ef1..5f14255 100644 --- a/nlsop/diplom/ergebnisse.tex +++ b/nlsop/diplom/ergebnisse.tex @@ -347,22 +347,19 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Ab einer Tiefe von $250 \, nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt. In diesem Tiefenbereich existieren Ausscheidungen, die nicht unmittelbar rekristallisieren und so Kohlenstoff durch den Diffusionsprozess gewinnen k"onnen, der zur weiteren Stabilisierung f"uhrt. Ab einer Tiefe von $350 \, nm$ haben sich lamellare amorphe Ausscheidungen gebildet. - Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb der Gesamtkonzentration liegt. - Die Ursache daf"ur ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen. - Es wechseln sich Ebenen mit hohen und niedrigen amorphen Anteil ab. - Ein h"oherer Anteil an amorphen Gebieten in einer Ebene bewirkt nicht nur das Ansteigen der Gesamtkonzentration an Kohlenstoff in dieser Ebene, sondern auch das der amorphen Gebiete, da die amorphen Ausscheidungen schon l"anger stabilisiert vorliegen und demnach viel Kohlenstoff durch den Diffusionsprozess gewonnen haben. - Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion. + Im allen drei Kohlenstofftiefenprofilen sind Schwankungen in diesem Bereich zu erkennen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb und die der kristallinen Gebiete immer unterhalb der Gesamtkonzentration liegt. + Die Ursache f"ur die Schwankungen in der Gesamtkonzentration ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen. + Es wechseln sich Ebenen mit hohem und niedrigem amorphen Anteil ab. Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff. - Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht, w"ahrend sie in der Nachbarebene kleiner wird. - Die lamellaren Strukturen entstehen. + Demnach ergeben sich Konzentrationsmaxima in Ebenen mit hohem amorphen Anteil und Minima f"ur Ebenen mit hohem kristallinen Anteil. + Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion. + Gleichzeitig steigt in den Ebenen mit viel amorphem Anteil die Kohlenstoffkonzentration auch in den amorphen und kristallinen Gebieten. + Dies deutet darauf hin, dass die amorphen Ausscheidungen in den Ebenen mit gro"sem amorphen Anteil schon l"anger stabil existieren und demnach mehr Kohlenstoff durch den Diffusionsprozess gewonnen haben als die Ausscheidungen in den anliegenden Ebenen. + Umgekehrt wurden Ebenen mit wenig kristallinem Anteil folglich weniger Kohlenstoff entzogen als Ebenen mit vielen kristallinen Gebieten. Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht, vorhanden ist. Diese charakteristische Konzentration von ungef"ahr $17 \, at.\%$ wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen, im Gegensatz zu einzelnen stabilen Ausscheidungen, ben"otig. - Die Schwankungen und eine weiter ansteigende Differenz zum Gesamtprofil erkennt man ebenfalls in der Konzentration in den kristallinen Gebieten. - Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da den Bereichen mit viel kristallinem Anteil viel Kohlenstoff von schon l"anger stabil existierenden amorphen Gebieten der Nachbarebenen entzogen wurde. - Demnach erh"alt man Absenkungen in der Kohlenstoffkonzentration der kristallinen Gebiete in Ebenen mit hohem kristallinen Anteil im Gegensatz zu den Ebenen ... - Diese Maxima sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert. - Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen. - Dies stimmt sehr gut mit dem experimentell bestimmten Wert von $?? \, at.\%$ \cite{unknown} "uberein. + Die Maxima der Kohlenstoffkonzentration in den kristallinen Gebieten an der vorderen Grenzfl"ache sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert. + Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen an der vorderen Grenzfl"ache ablesen. In einer Tiefe von $400 \, nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten schlagartig auf Null ab. Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten. @@ -375,15 +372,15 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis Dies entspricht dem Ende der durchgehend amorphen Schicht. Auff"allig ist, dass hier das Maximum der Kohlenstoffkonzentration in kristallinen Gebieten sehr viel h"oher ist, als das an der vorderen Grenzfl"ache. Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 \, nm$ wieder in die Gesamtkonzentration "uber. - Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 \, nm$ Tiefe instabil gegen"uber Rekristallisation. + Die Ausscheidungen sind wie die Ausscheidungen bis zu einer Tiefe von $250 \, nm$ instabil gegen"uber Rekristallisation. Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache der durchgehend amorphen Schicht f"ur Experiment und Simulation in Abh"angigkeit von der Dosis zusammen. Experimentell wird dies durch die Kombination der Messung des Kohlenstofftiefenprofils mittels Rutherford-R"uckstreu-Spektroskopie und der Bestimmung der Tiefe der Grenzfl"achen mittels Transmissionselektronenmikroskopie realisiert. - Die selbe Strategie wird f"ur die Auswertung der Simulationsergebnisse verfolgt. - Zuerst bestimmt man visuell die $z$-Koordinaten der Grenzfl"achen mit der {\em NLSOP Standalone} Version (Anhang \ref{section:sav}). - Das selbe Programm liefert auch die zugeh"origen Kohlenstoffkonzentrationsprofile, in denen man die zugeh"origen Konzentrationen ablesen kann. + In der Simulation erfolgt die Auswertung "uber die Kohlenstofftiefenprofile in amorphen und kristallinen Gebieten. + Die Grenzfl"achen der durchgehend amorphen Schicht befinden sich in Tiefen, in der die Konzentration im Kristallinen auf Null abgefallen beziehungsweise gerade noch Null ist. + Durch Ablesen der Konzentrationen im Amorphen in diesen Tiefen erh"alt man die gew"unschten Grenzfl"achenkonzentrationen. - Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 \, at.\%$. + Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $18 \, at.\%$. Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \, at.\%$ gut "uberein. Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist. Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht. @@ -411,11 +408,11 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis \hline Durchl"aufe & \begin{minipage}{3.5cm} \begin{center} "aquivalente Dosis \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\ \hline - $80 \times 10^6$ & $2,16 \times 10^{17} cm^{-2}$ & 13,20 $at. \%$ & 12,82 $at. \%$ \\ + $80 \times 10^6$ & $2,16 \times 10^{17} cm^{-2}$ & 15,21 $at. \%$ & 16,62 $at. \%$ \\ \hline - $120 \times 10^6$ & $3,25 \times 10^{17} cm^{-2}$ & 13,47 $at. \%$ & 12,32 $at. \%$ \\ + $120 \times 10^6$ & $3,25 \times 10^{17} cm^{-2}$ & 15,80 $at. \%$ & 17,67 $at. \%$ \\ \hline - $159 \times 10^6$ & $4,3 \times 10^{17} cm^{-2}$ & 15,23 $at. \%$ & 12,87 $at. \%$ \\ + $159 \times 10^6$ & $4,3 \times 10^{17} cm^{-2}$ & 17,28 $at. \%$ & 17,73 $at. \%$ \\ \hline \end{tabular} \end{center} diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex index ea00803..06272e5 100644 --- a/nlsop/diplom/grundlagen.tex +++ b/nlsop/diplom/grundlagen.tex @@ -120,7 +120,7 @@ Dann kann wie in \eqref{eq:trafo} die Transformation durchgef"uhrt werden. Die Werte f"ur $x$ werden nun nach der Transformationsmethode im Intervall $[a,b]$ gew"ahlt, die Werte f"ur $y$ m"ussen gleichverteilt im Intervall $[0,f(x)]$ sein. - \section{Ion-Festk"orper Wechselwirkung} + \section{Ion-Festk"orper-Wechselwirkung} Zur theoretischen Beschreibung der Ionenimplantation muss die Wechselwirkung der Ionen mit dem Target betrachtet werden. Durch St"o"se mit den Kernen und Elektronen des Targets werden die Ionen im Festk"orper abgelenkt und abgebremst. @@ -324,11 +324,11 @@ \subsubsection{Elektronische Bremskraft} Der elektronische Energieverlust der Ionen an den Elektronen des Targets kommt haupts"achlich durch inelastische Streuung zustande. - Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets. + Dies f"uhrt zur Anregung beziehungsweise Ionisation der Targetatome. Die elektronische Bremskraft ist abh"angig von der Energie der Ionen. Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen. - Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden. - F"ur hohe, nichtrelativistische Energien (kleiner $10 \, Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden. + Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, MeV/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden. + F"ur hohe, nichtrelativistische Energien (kleiner $10 \, MeV/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden. Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien. F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden. @@ -339,9 +339,6 @@ \end{equation} Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beinhaltet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und des Targetatoms. Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, ber"ucksichtigt werden. - In \cite{ziegler_biersack_littmark} wird die ZBL-Theorie vorgestellt, die auch die Oszillationen erkl"art. - Dabei werden alle Bremskr"afte auf experimentell genau bekannte Wasserstoff-Bremskr"afte f"ur jedes Element zur"uckgef"uhrt. - Die Wasserstoff-Bremskr"afte werden mittels der Brandt-Kitagawa-Theorie f"ur schwere Ionen im gleichen Target skaliert. \subsection{Implantationsprofil} @@ -373,7 +370,7 @@ Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet. Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen. - F"ur niedrige Ionenenergien (kleiner $0,1 \, Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren. + F"ur niedrige Ionenenergien (kleiner $0,1 \, MeV/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren. Diese ist gegeben durch den mittleren Abstand der Targetatome. \begin{equation} l = N^{- \frac{1}{3}} diff --git a/nlsop/diplom/modell.tex b/nlsop/diplom/modell.tex index e78f8d7..a9a0549 100644 --- a/nlsop/diplom/modell.tex +++ b/nlsop/diplom/modell.tex @@ -6,7 +6,7 @@ Im Folgenden soll auf das Modell zur Bildung dieser geordneten amorphen Ausscheidungen eingegangen werden. Es wurde erstmals in \cite{basic_phys_proc} vorgestellt. Die Idee des Modells ist schematisch in Abbildung \ref{img:modell} gezeigt. - \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen aufgrund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell} + \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen aufgrund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium. Schwarze Pfeile entsprechen den Druckspannungen, weisse Pfeile deuten Kohlenstoffdiffusion an.}{img:modell} % alternativ model1_s_german.eps Aufgrund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}. -- 2.20.1 From 8b5b06b211854f4bcbe0113ea59d9eb4b841084d Mon Sep 17 00:00:00 2001 From: hackbard Date: Wed, 19 Oct 2005 14:57:44 +0000 Subject: [PATCH 16/16] fixes --- nlsop/diplom/einleitung.tex | 1 + nlsop/diplom/grundlagen.tex | 2 +- nlsop/diplom/simulation.tex | 4 ++-- 3 files changed, 4 insertions(+), 3 deletions(-) diff --git a/nlsop/diplom/einleitung.tex b/nlsop/diplom/einleitung.tex index 614ce5d..b5688d8 100644 --- a/nlsop/diplom/einleitung.tex +++ b/nlsop/diplom/einleitung.tex @@ -41,6 +41,7 @@ Die Simulation bietet hierbei entscheidende Vorteile. Die Vorhersage eines Implantationsergebnisses anhand des Modells ist nicht ohne weiteres m"oglich. Mittels eines Computerexperimentes k"onnen die aus dem Modell resultierenden Ergebnisse berechnet und mit den experimentellen Ergebnissen verglichen werden. Durch Variation von Parametern k"onnen die Einfl"usse der zur Amorphisierung beitragenden Mechanismen ver"andert und deren Auswirkung auf das System beobachtet werden. +Dadurch wird der Ordnungsprozess nachvollziehbar. Desweiteren ist es sehr einfach m"oglich an pr"azise Informationen "uber die Struktur und Zusammensetzung des Targets w"ahrend der Implantation zu gelangen, was durch experimentelle Messungen nur sehr schwer oder "uberhaupt nicht m"oglich ist. Monte-Carlo-Rechnungen bieten den Vorteil, dass sie im Gegensatz zu sogenannten molekulardynamischen Berechnungen sehr viel weniger rechenzeitintensiv sind, da im letztgenannten die Bewegung des Ions in dem Festk"orper durch L"osen der klassischen Bewegungsgleichungen errechnet wird. Weiterhin bieten sie den Vorteil, dass die physikalischen Vorg"ange weitgehend ohne einschr"ankende Annahmen behandelt werden k"onnen. diff --git a/nlsop/diplom/grundlagen.tex b/nlsop/diplom/grundlagen.tex index 06272e5..a51182c 100644 --- a/nlsop/diplom/grundlagen.tex +++ b/nlsop/diplom/grundlagen.tex @@ -9,7 +9,7 @@ Die Zuf"allgkeit mikroskopischer Ereignisse spielt, wie im realen System des Experimentes, die wesentliche Rolle. Der Rechner wird zum virtuellen Labor, in dem ein bestimmtest System untersucht wird. Eine solche Computersimulation kann als numerisches Experiment betrachtet werden. - Makroskopische, observable Gr"o"sen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst. + Makroskopische observable Gr"o"sen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst. Die Reproduzierbarkeit von Ergebnissen hat demnach statistischen Charakter. Der Vorteil der Monte-Carlo-Methode ist das relativ einfache Erzielen von Ergebnissen f"ur Problemstellungen, die ohne N"aherungen analytisch nicht l"osbar oder sehr aufw"andig sind. diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index baa1f36..ce68f96 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -1,8 +1,8 @@ \chapter{Simulation} \label{chapter:simulation} -Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangen Modell diskutiert werden. -Die Simulation tr"agt den Namen {\em NLSOP}, was f"ur die Schlagw"orter {\bf N}ano, {\bf L}amellar und {\bf S}elbst{\bf O}ragnisations{\bf P}rozess steht. +Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangenen Modell diskutiert werden. +Die Simulation tr"agt den Namen {\em NLSOP}, was f"ur die Schlagw"orter {\bf N}ano, {\bf L}amellar und {\bf S}elbst{\bf o}rganisations{\bf p}rozess steht. Die Simulation ist in der Programmiersprache {\em C} \cite{kerningham_ritchie} geschrieben. Der Simulationscode wurde auf Computern der {\em IA32}-Rechnerarchitektur mit dem {\em GNU C Compiler} auf einem Linux Bestriebssystem "ubersetzt und betrieben. -- 2.20.1