some updates
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
1 \documentclass[10pt]{scrartcl}
2
3 % howto ...
4 %
5 % resize to A0 (900 x 1100 mm) full poster size
6 %        or A4 or Letter size
7
8 % resize factor:
9 %        2*sqrt(2) = 2.828    (for A0)
10 %        2         = 2.00     (for A1) 
11 %
12 %
13 % format definition:
14 %
15 % special format, scaled by 2.82 -> A0
16 %
17 \def\breite{390mm}
18 \def\hoehe{319.2mm}
19 \def\anzspalten{4}
20 %
21 % A3 landscape
22 %
23 %\def\breite{420mm}
24 %\def\hoehe{297mm}
25 %\def\anzspalten{4}
26 %
27 % A3 portrait
28 %
29 %\def\breite{297mm}
30 %\def\hoehe{420mm}
31 %\def\anzspalten{3}
32 %
33 % A4 portrait
34 %
35 %\def\breite{210mm}
36 %\def\hoehe{297mm}
37 %\def\anzspalten{2}
38 %
39 %
40 %
41 % scaling procedure:
42 %   ./poster_resize poster.ps S
43
44 % european sizes:
45 %   A3: 29.73 x 42.04 cm
46 %   A1: 59.5 x 84.1 cm
47 %   A0: 84.1 x 118.9 cm
48 %
49
50 % packages:
51
52 \usepackage{palatino}
53 \usepackage[latin1]{inputenc}
54 \usepackage{epsf}
55 \usepackage{graphicx,psfrag,color,pstricks,pst-grad}
56 \graphicspath{{../img/}}
57 \usepackage{amsmath,amssymb}
58 \usepackage{latexsym}
59 \usepackage{calc}
60 \usepackage{multicol}
61 \usepackage[german]{babel}
62
63 % numbers, lengths and boxes:
64 %
65 \newsavebox{\dummybox}
66 \newsavebox{\spalten}
67 %
68 \newlength{\bgwidth}\newlength{\bgheight}
69 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
70 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
71 %
72 \newlength{\kastenwidth}
73 %
74 \setlength\paperheight{\hoehe}                                             
75 \setlength\paperwidth{\breite}
76 \special{papersize=\breite,\hoehe}
77 %
78 \topmargin -1in
79 \marginparsep0mm
80 \marginparwidth0mm
81 \headheight0mm
82 \headsep0mm
83 %
84 \setlength{\oddsidemargin}{-2.44cm}
85 \addtolength{\topmargin}{-3mm}
86 \textwidth\paperwidth
87 \textheight\paperheight
88 %
89 \parindent0cm
90 \parskip1.5ex plus0.5ex minus 0.5ex
91 \pagestyle{empty}
92 %
93 \definecolor{recoilcolor}{rgb}{1,0,0}
94 \definecolor{occolor}{rgb}{0,1,0}
95 \definecolor{pink}{rgb}{0,1,1}
96 %
97 \def\UberStil{\normalfont\sffamily\bfseries\large}
98 \def\UnterStil{\normalfont\sffamily\small}
99 \def\LabelStil{\normalfont\sffamily\tiny}
100 \def\LegStil{\normalfont\sffamily\tiny}
101
102 % commands:
103 %
104 \definecolor{JG}{rgb}{0.1,0.9,0.3}
105 %
106 \newenvironment{kasten}{%
107         \begin{lrbox}{\dummybox}%
108         \begin{minipage}{0.96\linewidth}}%
109         {\end{minipage}%
110         \end{lrbox}%
111 \raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
112 %
113 \newenvironment{spalte}{%
114         \setlength\kastenwidth{1.2\textwidth}
115         \divide\kastenwidth by \anzspalten
116         \begin{minipage}[t]{\kastenwidth}}
117         {\end{minipage}\hfill}
118 %
119 \renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
120 %
121 \def\op#1{\hat{#1}}
122
123 %
124 % the document begins ...
125 %
126 \begin{document}
127
128 % background
129 {\newrgbcolor{gradbegin}{0.1 0.1 0.1}%
130  \newrgbcolor{gradend}{1 1 1}%
131  \psframe[fillstyle=gradient,gradend=gradend,%
132  gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)%
133 }
134
135 % header
136 \vfill
137 \hfill
138 \psshadowbox{\makebox[0.95\textwidth]{%
139         \hfill
140         \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
141         \parbox[c]{0.7\linewidth}{%
142                 \begin{center}
143                         \textbf{\Huge{Monte Carlo simulation study of a
144                                       selforganization process\\
145                                       leading to ordered precipitate structures}
146                         }\\[0.7em]
147                         \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
148                                        J. K. N. Lindner, B. Stritzker
149                         }\\[0.7em]
150                         {\large Institut f"ur Physik, Universit"at Augsburg,
151                          D-86135 Augsburg, Germany
152                         }
153                 \end{center}
154         }
155         \parbox[c]{0.1\linewidth}{%
156                 \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
157         }
158         \hfill
159 }}
160 \hfill\mbox{}\\[1.cm]
161
162 %\vspace*{1.3cm}
163
164 % content, let's rock the columns
165 \begin{lrbox}{\spalten}
166         \parbox[t][\textheight]{1.3\textwidth}{%
167                 \vspace*{0.2cm}
168                 \hfill
169 % first column
170 %\begin{spalte}
171 %       \begin{kasten}
172 %               \begin{center}
173 %                       {\large{\color{blue}\underline{ABSTRACT}}}
174 %               \end{center}
175 %
176 % abstract ... skip it
177 %High-dose ion implantation into solids usually leads to a disordered distribution of defects or precipitates with variable sizes.
178 %However materials exist for which high-dose ion irradiation at certain conditions results in periodically arranged, self-organized, nanometric amorphous inclusions.
179 %This has been observed for a number of ion/target combinations \cite{ommen,specht,ishimaru} which all have in common a largely reduced density of host atoms of the amorphous phase compared to the crystalline host lattice.
180 %A simple model explaining the phenomenon is introduced and realized in a Monte Carlo simulation code, which focuses on high dose carbon implantation into silicon.
181 %The simulation is able to reproduce the depth distribution observed by TEM and RBS.
182 %While first versions of the simulation \cite{me1,me2} just covered a limited depth region of the target in which the selforganization is observed, the new version of this simulation code presented here is able to model the whole depth region affected by the irradiation process, as can be seen in chapter 4.
183 %Based on simulation results a recipe is proposed for producing broad distributions of lamellar, ordered structures which, according to recent studies \cite{wong}, are the starting point for materials with high photoluminescence.
184 %       \end{kasten}
185 %
186 \begin{spalte}
187         \begin{kasten}
188
189         \section*{1 \hspace{0.1cm} {\color{blue}Experimental observations}}
190
191                 \subsection*{1.1 {\color{blue} Amorphous inclusions}}
192                         \begin{center}              
193                                 \includegraphics[width=11cm]{k393abild1_e.eps} 
194                         \end{center}
195                         Cross section TEM image:\\
196                         $180 \, keV$ $C^+ \rightarrow Si$,
197                         $T=150 \, ^{\circ} \mathrm{C}$,
198                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
199                         black/white: crystalline/amorphous material\\
200                         L: amorphous lamellae, S: spherical amorphous inclusions
201
202                 \subsection*{1.2 {\color{blue} Carbon distribution}}
203                         \begin{center}
204                                 \includegraphics[width=11cm]{eftem.eps}
205                         \end{center}
206                         Brightfield TEM and respective EFTEM image:\\
207                         $180 \, keV$ $C^+ \rightarrow Si$,
208                         $T=200 \, ^{\circ} \mathrm{C}$,
209                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
210                         yellow/blue: high/low concentrations of carbon
211
212         \end{kasten}
213
214         \begin{kasten}
215                 \section*{2 \hspace{0.1cm} {\color{blue}Model}}
216
217                         \begin{center}
218                                 \includegraphics[width=11cm]{modell_ng_e.eps}
219                         \end{center}
220                         \begin{itemize}
221 \item supersaturation of $C$ in $c-Si$\\
222       $\rightarrow$ {\bf carbon induced} nucleation of spherical
223       $SiC_x$-precipitates
224 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
225       $\rightarrow$ {\bf amourphous} precipitates
226 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
227       $\rightarrow$ {\bf lateral strain} (black arrows)
228 \item reduction of the carbon supersaturation in $c-Si$\\
229       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
230       (white arrows)
231 \item lateral strain (vertical component relaxating)\\
232       $\rightarrow$ {\bf strain induced} lateral amorphization
233                         \end{itemize}
234         \end{kasten}
235 \end{spalte}
236 \begin{spalte}
237         \begin{kasten}
238                 \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
239
240                 \subsection*{3.1 {\color{blue} Discretization of the target}}
241                         \begin{center}
242                                 \includegraphics[width=6cm]{gitter_e.eps}
243                         \end{center}
244
245                 \subsection*{3.2 {\color{blue} Simulation algorithm}}
246
247                 \subsubsection*{3.2.1 Amorphization/Recrystallization}
248                         \begin{itemize}
249                                 \item random numbers according to the nuclear
250                                       energy loss to determine the volume hit
251                                       by an impinging ion
252                                 \item compute local probability for
253                                       amorphization:\\
254 \[
255  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
256 \]
257                                       and recrystallization:
258 \[
259  p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
260 \]
261 \[
262 \delta (\vec r) = \left\{
263 \begin{array}{ll}
264         1 & \textrm{volume at position $\vec r$ amorphous} \\
265         0 & \textrm{otherwise} \\
266 \end{array}
267 \right.
268 \]
269                                 \item loop for the mean amount of hits by the
270                                       ion
271                         \end{itemize}
272 Three contributions to the amorphization process controlled by:
273 \begin{itemize}
274         \item {\color{green} $p_b$} normal 'ballistic' amorphization
275         \item {\color{blue} $p_c$} carbon induced amorphization
276         \item {\color{red} $p_s$} stress enhanced amorphization
277 \end{itemize}
278
279                 \subsubsection*{3.2.2 Carbon incorporation}
280                         \begin{itemize}
281                                 \item random numbers according to the
282                                       implantation profile to determine the
283                                       incorporation volume
284                                 \item increase the amount of carbon atoms in
285                                       that volume
286                         \end{itemize}
287                 \subsubsection*{3.2.3 Diffusion/Sputtering}
288                         \begin{itemize}
289                                 \item every $d_v$ steps transfer $d_r$ of the
290                                       carbon atoms of crystalline volumina to
291                                       an amorphous neighbour volume
292                                 \item do the sputter routine after $n$ steps
293                                       corresponding to $3 \, nm$ of substrat
294                                       removal
295                         \end{itemize}
296         \end{kasten}
297 \end{spalte}
298 \begin{spalte}
299         \begin{kasten}
300                 \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
301
302                 \subsection*{4.1 {\color{blue} Comparison with experiments}}
303                         \begin{center}              
304                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_1-2.eps}
305                         \end{center}
306                         \begin{center}              
307                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
308                         \end{center}
309
310                 \subsection*{4.1 {\color{blue} Carbon distribution}}
311                         \begin{center}              
312                         \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
313                         \end{center}
314                         
315         \end{kasten}
316 \end{spalte}
317 % fourth column
318 \begin{spalte}
319         \begin{kasten}
320                 \section*{5 \hspace{0.1cm} {\color{blue}Broad distribution of
321                                                         lamellar structure}}
322                         \begin{mbox}
323                         \begin{itemize}
324                                 \item $10 \, at.\%$ constant carbon plateau
325                                       by multiple implantation steps at
326                                       energies between $180$ and $10 \, keV$
327                         \end{itemize}
328                         \begin{center}              
329                                 \includegraphics[width=6cm]{multiple_impl_cp.eps}
330                         \end{center}
331                         \begin{itemize}
332                                 \item foloowed by $2 \, MeV$ $C^+$ implantation
333                         \end{itemize}
334                         \begin{center}              
335                                 \includegraphics[width=10cm]{multiple_impl.eps}
336                         \end{center}
337
338         \end{kasten}
339
340 \vspace{0.5cm}
341       \begin{kasten}
342          \section*{6 \hspace{0.1cm} {\color{red} \underline{Conclusions}}}
343              \begin{itemize}
344              \item
345              
346              \item
347              
348              \item
349              
350              \item
351              
352              \end{itemize}
353       \end{kasten}
354
355 \vspace{0.5cm}
356       \begin{kasten}
357
358            {\small
359            \begin{thebibliography}{9}
360            \bibitem{ommen} A. H. van Ommen,
361                            Nucl. Instr. and Meth. B 39 (1989) 194.
362            \bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle,
363                            Nucl. Instr. and Meth. B 84 (2000) 390.
364            \bibitem{ishimaru} M. Ishimaru,  R. M. Dickerson, K. E. Sickafus,
365                               Nucl. Instr. and Meth. B 166-167 (2000) 390.
366         \bibitem{me1} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
367                       B. Stritzker,
368                       Comp. Mater. Sci. 33 (2005) 310.
369         \bibitem{me2} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
370                       B. Stritzker,
371                       Nucl. Instr. and Meth. B 242 (2006) 679.
372            \bibitem{wong} Dihu Chen, Z. M. Liao, L. Wang, H. Z. Wang, Fuli Zhao,
373                           W. Y. Cheung, S. P. Wong,
374                           Opt. Mater. 23 (2003) 65. Opt. Mater. 23 (2003) 65.
375            \end{thebibliography}
376            }
377    \end{kasten}
378     \end{spalte}
379     }
380     \end{lrbox}
381 \resizebox*{0.98\textwidth}{!}{%
382   \usebox{\spalten}}\hfill\mbox{}\vfill
383 \end{document}
384
385