pp + so started
[lectures/latex.git] / physics_compact / solid.tex
1 \part{Theory of the solid state}
2
3 \chapter{Atomic structure}
4
5 \chapter{Reciprocal lattice}
6
7 Example of primitive cell ...
8
9 \chapter{Electronic structure}
10
11 \section{Noninteracting electrons}
12
13 \subsection{Bloch's theorem}
14
15 \section{Nearly free and tightly bound electrons}
16
17 \subsection{Tight binding model}
18
19 \section{Interacting electrons}
20
21 \subsection{Density functional theory}
22
23 \subsubsection{Hohenberg-Kohn theorem}
24
25 The Hamiltonian of a many-electron problem has the form
26 \begin{equation}
27 H=T+V+U\text{ ,}
28 \end{equation}
29 where
30 \begin{eqnarray}
31 T & = & \langle\Psi|\sum_{i=1}^N\frac{-\hbar^2}{2m}\nabla_i^2|\Psi\rangle\\
32   & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \,
33         \langle \Psi | \vec{r} \rangle \langle \vec{r} |
34         \nabla_i^2
35         | \vec{r}' \rangle \langle \vec{r}' | \Psi \rangle\\
36   & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \,
37         \langle \Psi | \vec{r} \rangle \nabla_{\vec{r}_i}
38         \langle \vec{r} | \vec{r}' \rangle
39         \nabla_{\vec{r}'_i} \langle \vec{r}' | \Psi \rangle\\
40   & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \,
41         \nabla_{\vec{r}_i} \langle \Psi | \vec{r} \rangle
42         \delta_{\vec{r}\vec{r}'}
43         \nabla_{\vec{r}'_i} \langle \vec{r}' | \Psi \rangle\\
44   & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} \,
45         \nabla_{\vec{r}_i} \Psi^*(\vec{r}) \nabla_{\vec{r}_i} \Psi(\vec{r})
46         \text{ ,} \\
47 V & = & \int V(\vec{r})\Psi^*(\vec{r})\Psi(\vec{r})d\vec{r} \text{ ,} \\
48 U & = & \frac{1}{2}\int\frac{1}{\left|\vec{r}-\vec{r}'\right|}
49         \Psi^*(\vec{r})\Psi^*(\vec{r}')\Psi(\vec{r}')\Psi(\vec{r})
50         d\vec{r}d\vec{r}'
51 \end{eqnarray}
52 represent the kinetic energy, the energy due to the external potential and the energy due to the mutual Coulomb repulsion.
53
54 \begin{remark}
55 As can be seen from the above, two many-electron systems can only differ in the external potential and the number of electrons.
56 The number of electrons is determined by the electron density.
57 \begin{equation}
58 N=\int n(\vec{r})d\vec{r}
59 \end{equation}
60 Now, if the external potential is additionally determined by the electron density, the density completely determines the many-body problem.
61 \end{remark}
62
63 Considering a system with a nondegenerate ground state, there is obviously only one ground-state charge density $n_0(\vec{r})$ that corresponds to a given potential $V(\vec{r})$.
64 \begin{equation}
65 n_0(\vec{r})=\int \Psi_0^*(\vec{r},\vec{r}_2,\vec{r}_3,\ldots,\vec{r}_N)
66                   \Psi_0(\vec{r},\vec{r}_2,\vec{r}_3,\ldots,\vec{r}_N)
67              d\vec{r}_2d\vec{r}_3\ldots d\vec{r}_N
68 \end{equation}
69 In 1964, Hohenberg and Kohn showed the opposite and far less obvious result \cite{hohenberg64}.
70
71 \begin{theorem}[Hohenberg / Kohn]
72 For a nondegenerate ground state, the ground-state charge density uniquely determines the external potential in which the electrons reside.
73 \end{theorem}
74
75 \begin{proof}
76 The proof presented by Hohenberg and Kohn proceeds by {\em reductio ad absurdum}.
77 Suppose two potentials $V_1$ and $V_2$ exist, which yield the same electron density $n(\vec{r})$.
78 The corresponding Hamiltonians are denoted $H_1$ and $H_2$ with the respective ground-state wavefunctions $\Psi_1$ and $\Psi_2$ and eigenvalues $E_1$ and $E_2$.
79 Then, due to the variational principle (see \ref{sec:var_meth}), one can write
80 \begin{equation}
81 E_1=\langle \Psi_1 | H_1 | \Psi_1 \rangle <
82 \langle \Psi_2 | H_1 | \Psi_2 \rangle \text{ .}
83 \label{subsub:hk01}
84 \end{equation}
85 Expressing $H_1$ by $H_2+H_1-H_2$, the last part of \eqref{subsub:hk01} can be rewritten:
86 \begin{equation}
87 \langle \Psi_2 | H_1 | \Psi_2 \rangle =
88 \langle \Psi_2 | H_2 | \Psi_2 \rangle +
89 \langle \Psi_2 | H_1 -H_2 | \Psi_2 \rangle
90 \end{equation}
91 The two Hamiltonians, which describe the same number of electrons, differ only in the potential
92 \begin{equation}
93 H_1-H_2=V_1(\vec{r})-V_2(\vec{r})
94 \end{equation}
95 and, thus
96 \begin{equation}
97 E_1<E2+\int n(\vec{r}) \left( V_1(\vec{r})-V_2(\vec{r}) \right) d\vec{r}
98 \text{ .}
99 \label{subsub:hk02}
100 \end{equation}
101 By switching the indices of \eqref{subsub:hk02} and adding the resulting equation to \eqref{subsub:hk02}, the contradiction
102 \begin{equation}
103 E_1 + E_2 < E_2 + E_1 +
104 \underbrace{
105 \int n(\vec{r}) \left( V_1(\vec{r})-V_2(\vec{r}) \right) d\vec{r} +
106 \int n(\vec{r}) \left( V_2(\vec{r})-V_1(\vec{r}) \right) d\vec{r}
107 }_{=0}
108 \end{equation}
109 is revealed, which proofs the Hohenberg Kohn theorem.% \qed
110 \end{proof}
111
112 \section{Electron-ion interaction}
113
114 \subsection{Pseudopotential theory}
115
116 The basic idea of pseudopotential theory is to only describe the valence electrons, which are responsible for the chemical bonding as well as the electronic properties for the most part.
117
118 \subsubsection{Orthogonalized planewave method}
119
120 Due to the orthogonality of the core and valence wavefunctions, the latter exhibit strong oscillations within the core region of the atom.
121 This requires a large amount of planewaves $\ket{k}$ to adequatley model the valence electrons.
122
123 In a very general approach, the orthogonalized planewave (OPW) method introduces a new basis set
124 \begin{equation}
125 \ket{k}_{\text{OPW}} = \ket{k} - \sum_t \ket{t}\bra{t}k\rangle \text{ ,}
126 \end{equation} 
127 with $\ket{t}$ being the eigenstates of the core electrons.
128 The new basis is orthogonal to the core states $\ket{t}$.
129 \begin{equation}
130 \braket{t}{k}_{\text{OPW}} =
131 \braket{t}{k} - \sum_{t'} \braket{t}{t'}\braket{t'}{k} =
132 \braket{t}{k} - \braket{t}{k}=0
133 \end{equation}
134 The number of planewaves required for reasonably converged electronic structure calculations is tremendously reduced by utilizing the OPW basis set.
135
136 \subsubsection{Pseudopotential method}
137
138 \subsubsection{Norm conserving pseudopotentials}
139
140 \begin{equation}
141 V=\ket{lm}V_l(r)\bra{lm}
142 \end{equation}
143
144 \subsubsection{Fully separable form of the pseudopotential}
145
146 \subsection{Spin orbit interaction}
147
148
149 \subsubsection{Perturbative treatment}
150
151 \subsubsection{Non-perturbative method}
152