figures changed + marked to be pruned parts of teh first part of the document
[lectures/latex.git] / posic / publications / sic_prec_merge.tex
1 \documentclass[prb,twocolumn,superscriptaddress,a4paper,showkeys,showpacs]{revtex4}
2 \usepackage{graphicx}
3 \usepackage{subfigure}
4 \usepackage{dcolumn}
5 \usepackage{booktabs}
6 \usepackage{units}
7 \usepackage{amsmath}
8 \usepackage{amsfonts}
9 \usepackage{amssymb}
10 \usepackage{color}
11
12 \newcommand{\si}{Si$_{\text{i}}${}}
13 \newcommand{\ci}{C$_{\text{i}}${}}
14 \newcommand{\cs}{C$_{\text{s}}${}}
15 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
16 \newcommand{\degk}[1]{\unit[#1]{K}{}}
17 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
18 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
19 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
20 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
21
22 % additional stuff
23 \usepackage{miller}
24
25 \newcommand{\prune}[1]{{\color{red} #1}}
26 \newcommand{\possprune}[1]{{\color{blue} #1}}
27
28 \begin{document}
29
30 \title{Combined {\em ab initio} and classical potential simulation study on the silicon carbide precipitation in silicon}
31 \author{F. Zirkelbach}
32 \author{B. Stritzker}
33 \affiliation{Experimentalphysik IV, Universit\"at Augsburg, 86135 Augsburg, Germany}
34 \author{K. Nordlund}
35 \affiliation{Department of Physics, University of Helsinki, 00014 Helsinki, Finland}
36 \author{J. K. N. Lindner}
37 \author{W. G. Schmidt}
38 \author{E. Rauls}
39 \affiliation{Department Physik, Universit\"at Paderborn, 33095 Paderborn, Germany}
40
41 \begin{abstract}
42 Atomistic simulations on the silicon carbide precipitation in bulk silicon employing both, classical potential and first-principles methods are presented.
43 %These aime to clarify a controversy concerning the precipitation mechanism as revealed from literature.
44 The calculations aim at a comprehensive, microscopic understanding of the precipitation mechanism in the context of controversial discussions in the literature.
45 %
46 For the quantum-mechanical treatment, basic processes assumed in the precipitation process are calculated in feasible systems of small size.
47 The migration mechanism of a carbon \hkl<1 0 0> interstitial and silicon \hkl<1 1 0> self-interstitial in otherwise defect-free silicon are investigated using density functional theory calculations.
48 The influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically.
49 Interactions of various combinations of defects have been characterized including a couple of selected migration pathways within these configurations.
50 Almost all of the investigated pairs of defects tend to agglomerate allowing for a reduction in strain.
51 The formation of structures involving strong carbon-carbon bonds turns out to be very unlikely.
52 In contrast, substitutional carbon occurs in all probability.
53 A long range capture radius has been observed for pairs of interstitial carbon as well as interstitial carbon and vacancies.
54 A rather small capture radius is predicted for substitutional carbon and silicon self-interstitials.
55 %
56 %We derive conclusions on the precipitation mechanism of silicon carbide in bulk silicon and discuss conformability to experimental findings.
57 Initial assumptions regarding the precipitation mechanism of silicon carbide in bulk silicon are established and conformability to experimental findings is discussed.
58 %
59 Furthermore, results of the accurate first-principles calculations on defects and carbon diffusion in silicon are compared to results of classical potential simulations revealing significant limitations of the latter method.
60 An approach to work around this problem is proposed.
61 Finally, results of the classical potential molecular dynamics simulations of large systems are examined, which reinforce previous assumptions and give further insight into basic processes involved in the silicon carbide transition.
62 %Finally, results of the classical potential molecular dynamics simulations of large systems are discussed, which allow to draw further conclusions on the precipitation mechanism of silicon carbide in silicon.
63 \end{abstract}
64
65 \keywords{point defects, migration, interstitials, first-principles calculations, classical potentials, molecular dynamics, silicon carbide, ion implantation}
66 \pacs{61.72.J-,61.72.-y,66.30.Lw,66.30.-h,31.15.A-,31.15.xv,34.20.Cf,61.72.uf}
67 \maketitle
68
69 %  --------------------------------------------------------------------------------
70 \section{Introduction}
71
72 The wide band gap semiconductor silicon carbide (SiC) is well known for its outstanding physical and chemical properties.
73 The high breakdown field, saturated electron drift velocity and thermal conductivity in conjunction with the unique thermal and mechanical stability as well as radiation hardness makes SiC a suitable material for high-temperature, high-frequency and high-power devices operational in harsh and radiation-hard environments\cite{edgar92,morkoc94,wesch96,capano97,park98}.
74 Different modifications of SiC exist, which solely differ in the one-dimensional stacking sequence of identical, close-packed SiC bilayers\cite{fischer90}.
75 Different polytypes exhibit different properties, in which the cubic phase of SiC (3C-SiC) shows increased values for the thermal conductivity and breakdown field compared to other polytypes\cite{wesch96}, which is, thus, most effective for high-performance electronic devices.
76 Much progress has been made in 3C-SiC thin film growth by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE) on hexagonal SiC\cite{powell90,fissel95,fissel95_apl} and Si\cite{nishino83,nishino87,kitabatake93,fissel95_apl} substrates.
77 However, the frequent occurrence of defects such as twins, dislocations and double position boundaries remains a challenging problem. 
78 Apart from these methods, high-dose carbon implantation into crystalline silicon (c-Si) with subsequent or in situ annealing was found to result in SiC microcrystallites in Si\cite{borders71}.
79 Utilized and enhanced, ion beam synthesis (IBS) has become a promising method to form thin SiC layers of high quality and exclusively of the 3C polytype embedded in and epitaxially aligned to the Si host featuring a sharp interface\cite{lindner99,lindner01,lindner02}.
80
81 However, the process of the formation of SiC precipitates in Si during C implantation is not yet fully understood.
82 \begin{figure}
83 \begin{center}
84 \subfigure[]{\label{fig:hrem:c-si}\includegraphics[width=0.48\columnwidth]{tem_c-si-db.eps}}
85 \subfigure[]{\label{fig:hrem:sic}\includegraphics[width=0.48\columnwidth]{tem_3c-sic.eps}}
86 \end{center}
87 \caption{High resolution transmission electron microscopy (HREM) micrographs\cite{lindner99_2} of agglomerates of C-Si dimers showing dark contrasts and otherwise undisturbed Si lattice fringes (a) and equally sized Moir\'e patterns indicating 3C-SiC precipitates (b).}
88 \label{fig:hrem}
89 \end{figure}
90 High resolution transmission electron microscopy (HREM) studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03} suggest the formation of C-Si dimers (dumbbells) on regular Si lattice sites, which agglomerate into large clusters indicated by dark contrasts and otherwise undisturbed Si lattice fringes in HREM, as can be seen in Fig.~\ref{fig:hrem:c-si}.
91 A topotactic transformation into a 3C-SiC precipitate occurs once a critical radius of 2 nm to 4 nm is reached, which is manifested by the disappearance of the dark contrasts in favor of Moir\'e patterns (Fig.~\ref{fig:hrem:sic}) due to the lattice mismatch of \unit[20]{\%} of the 3C-SiC precipitate and c-Si.
92 The insignificantly lower Si density of SiC ($\approx \unit[4]{\%}$) compared to c-Si results in the emission of only a few excess Si atoms.
93 In contrast, investigations of strained Si$_{1-y}$C$_y$/Si heterostructures formed by IBS and solid-phase epitaxial regorowth\cite{strane94} as well as MBE\cite{guedj98}, which incidentally involve the formation of SiC nanocrystallites, suggest an initial coherent precipitation by agglomeration of substitutional instead of interstitial C.
94 Coherency is lost once the increasing strain energy of the stretched SiC structure surpasses the interfacial energy of the incoherent 3C-SiC precipitate and the Si substrate.
95 These two different mechanisms of precipitation might be attributed to the respective method of fabrication.
96 While in CVD and MBE surface effects need to be taken into account, SiC formation during IBS takes place in the bulk of the Si crystal.
97 However, in another IBS study Nejim et~al.\cite{nejim95} propose a topotactic transformation that is likewise based on the formation of substitutional C.
98 The formation of substitutional C, however, is accompanied by Si self-interstitial atoms that previously occupied the lattice sites and a concurrent reduction of volume due to the lower lattice constant of SiC compared to Si.
99 Both processes are believed to compensate one another.
100 %
101 Solving this controversy and understanding the effective underlying processes will enable significant technological progress in 3C-SiC thin film formation driving the superior polytype for potential applications in high-performance electronic device production.
102 It will likewise offer perspectives for processes that rely upon prevention of precipitation events, e.g. the fabrication of strained pseudomorphic Si$_{1-y}$C$_y$ heterostructures\cite{strane96,laveant2002}.
103
104 Atomistic simulations offer a powerful tool to study materials on a microscopic level providing detailed insight not accessible by experiment.
105 %
106 A lot of theoretical work has been done on intrinsic point defects in Si\cite{bar-yam84,bar-yam84_2,car84,batra87,bloechl93,tang97,leung99,colombo02,goedecker02,al-mushadani03,hobler05,sahli05,posselt08,ma10}, threshold displacement energies in Si\cite{mazzarolo01,holmstroem08} important in ion implantation, C defects and defect reactions in Si\cite{tersoff90,dal_pino93,capaz94,burnard93,leary97,capaz98,zhu98,mattoni2002,park02,jones04}, the SiC/Si interface\cite{chirita97,kitabatake93,cicero02,pizzagalli03} and defects in SiC\cite{bockstedte03,rauls03a,gao04,posselt06,gao07}.
107 However, none of the mentioned studies comprehenisvely investigates all the relevant defect structures and reactions concentrated on the specific problem of 3C-SiC formation in C implanted Si.
108 % but mattoni2002 actually did a lot. maybe this should be mentioned!^M
109 In fact, in a combined analytical potential molecular dynamics and {\em ab initio} study\cite{mattoni2002} the interaction of substitutional C with Si self-interstitials and C interstitials is evaluated.
110 However, investigations are, first of all, restricted to interaction chains along the \hkl[1 1 0] and \hkl[-1 1 0] direction, secondly lacking combinations of C interstitials and, finally, not considering migration barriers providing further information on the probability of defect agglomeration.
111  
112 In particular, molecular dynamics (MD) constitutes a suitable technique to investigate their dynamical and structural properties.
113 Modelling the processes mentioned above requires the simulation of a large number of atoms ($\approx 10^5-10^6$), which inevitably dictates the atomic interaction to be described by computationally efficient classical potentials.
114 These are, however, less accurate compared to quantum-mechanical methods and their applicability for the description of the physical problem has to be verified beforehand.
115 The most common empirical potentials for covalent systems are the Stillinger-Weber\cite{stillinger85}, Brenner\cite{brenner90}, Tersoff\cite{tersoff_si3} and environment-dependent interatomic potential\cite{bazant96,bazant97,justo98}.
116 These potentials are assumed to be reliable for large-scale simulations\cite{balamane92,huang95,godet03} on specific problems under investigation providing insight into phenomena that are otherwise not accessible by experimental or first-principles methods.
117 Until recently\cite{lucas10}, a parametrization to describe the C-Si multicomponent system within the mentioned interaction models did only exist for the Tersoff\cite{tersoff_m} and related potentials, e.g. the one by Gao and Weber\cite{gao02} as well as the one by Erhart and Albe\cite{albe_sic_pot}.
118 All these potentials are short range potentials employing a cut-off function,  which drops the atomic interaction to zero in between the first and second nearest neighbor distance.
119 It was shown that the Tersoff potential properly describes binding energies of combinations of C defects in Si\cite{mattoni2002}.
120 However, investigations of brittleness in covalent materials\cite{mattoni2007} identified the short range character of these potentials to be responsible for overestimated forces necessary to snap the bond of two neighbored atoms.
121 In a previous study\cite{zirkelbach10}, we determined the influence on the migration barrier for C diffusion in Si.
122 Using the Erhart/Albe (EA) potential\cite{albe_sic_pot}, an overestimated barrier height compared to {\em ab initio} calculations and experiment is obtained.
123 A proper description of C diffusion, however, is crucial for the problem under study.
124
125 In this work, a combined {\em ab initio} and empirical potential simulation study on the initially mentioned SiC precipitation mechanism has been performed.
126 %
127 By first-principles atomistic simulations this work aims to shed light on basic processes involved in the precipitation mechanism of SiC in Si.
128 During implantation, defects such as vacancies (V), substitutional C (C$_{\text{s}}$), interstitial C (C$_{\text{i}}$) and Si self-interstitials (Si$_{\text{i}}$) are created, which play a decisive role in the precipitation process.
129 A systematic investigation of density functional theory (DFT) calculations of the structure, energetics and mobility of C defects in Si as well as the influence of other point defects in the surrounding is presented.
130 %
131 Furthermore, highly accurate quantum-mechanical results have been used to identify shortcomings of the classical potentials, which are then taken into account in these type of simulations.
132
133 %  --------------------------------------------------------------------------------
134 \section{Methodology}
135 \label{meth}
136 % ----- DFT ------
137 The first-principles DFT calculations have been performed with the plane-wave based Vienna {\em ab initio} Simulation package (VASP)\cite{kresse96}.
138 The Kohn-Sham equations were solved using the generalized-gradient exchange-correlation functional approximation proposed by Perdew and Wang\cite{perdew86,perdew92}.
139 The electron-ion interaction is described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}.
140 Throughout this work, an energy cut-off of \unit[300]{eV} was used to expand the wave functions into the plane-wave basis.
141 %Sampling of the Brillouin zone was restricted to the $\Gamma$-point.
142 To reduce the computational effort sampling of the Brillouin zone was restricted to the $\Gamma$-point, which has been shown to yield reliable results\cite{dal_pino93}.
143 The defect structures and the migration paths were modelled in cubic supercells with a side length of \unit[1.6]{nm} containing $216$ Si atoms.
144 Formation energies and structures are reasonably converged with respect to the system size.
145 The ions and cell shape were allowed to change in order to realize a constant pressure simulation.
146 The observed changes in volume were less than \unit[0.2]{\%} of the volume indicating a rather low dependence of the results on the ensemble choice.
147 Ionic relaxation was realized by the conjugate gradient algorithm.
148 Spin polarization has been fully accounted for.
149
150 % ------ Albe potential ---------
151 For the classical potential calculations, defect structures were modeled in a supercell of nine Si lattice constants in each direction consisting of 5832 Si atoms.
152 Reproducing the SiC precipitation was attempted by the successive insertion of 6000 C atoms (the number necessary to form a 3C-SiC precipitate with a radius of $\approx 3.1$ nm) into the Si host, which has a size of 31 Si unit cells in each direction consisting of 238328 Si atoms.
153 At constant temperature 10 atoms were inserted at a time.
154 Three different regions within the total simulation volume were considered for a statistically distributed insertion of the C atoms: $V_1$ corresponding to the total simulation volume, $V_2$ corresponding to the size of the precipitate and $V_3$, which holds the necessary amount of Si atoms of the precipitate.
155 After C insertion, the simulation has been continued for \unit[100]{ps} and is cooled down to \unit[20]{$^{\circ}$C} afterwards.
156 A Tersoff-like bond order potential by Erhart and Albe (EA)\cite{albe_sic_pot} has been utilized, which accounts for nearest neighbor interactions realized by a cut-off function dropping the interaction to zero in between the first and second nearest neighbor distance.
157 The potential was used as is, i.e. without any repulsive potential extension at short interatomic distances.
158 Constant pressure simulations are realized by the Berendsen barostat\cite{berendsen84} using a time constant of \unit[100]{fs} and a bulk modulus of \unit[100]{GPa} for Si.
159 The temperature was kept constant by the Berendsen thermostat\cite{berendsen84} with a time constant of \unit[100]{fs}.
160 Integration of the equations of motion was realized by the velocity Verlet algorithm\cite{verlet67} and a fixed time step of \unit[1]{fs}.
161 For structural relaxation of defect structures, the same algorithm was used with the temperature set to 0 K.
162
163 The formation energy $E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}$ of a defect configuration is defined by choosing SiC as a particle reservoir for the C impurity, i.e. the chemical potentials are determined by the cohesive energies of a perfect Si and SiC supercell after ionic relaxation.
164 %
165 This corresponds to the definition utilized in another study on C defects in Si\cite{dal_pino93} that we compare our results to.
166 %
167 Migration and recombination pathways have been investigated utilizing the constraint conjugate gradient relaxation technique\cite{kaukonen98}.
168 %
169 While not guaranteed to find the true minimum energy path, the method turns out to identify reasonable pathways for the investigated structures.
170 %
171 Time constants of \unit[1]{fs}, which corresponds to direct velocity scaling, and \unit[100]{fs}, which results in weaker coupling to the heat bath allowing the diffusing atoms to take different pathways, were used for the Berendsen thermostat for structural relaxation within the migration calculations utilizing classical potentials.
172 %
173 The binding energy of a defect pair is given by the difference of the formation energy of the complex and the sum of the two separated defect configurations.
174 Accordingly, energetically favorable configurations result in binding energies below zero while unfavorable configurations show positive values for the binding energy.
175 The interaction strength, i.e. the absolute value of the binding energy, approaches zero for increasingly non-interacting isolated defects.
176
177 \section{Comparison of classical potential and first-principles methods}
178 \label{sec:comp}
179
180 In a first step, quantum-mechanical calculations of defects in Si and respective diffusion processes are compared to classical potential simulations as well as to results from literature.
181 Shortcomings of the analytical potential approach are revealed and its applicability is discussed.
182
183 \subsection{Carbon and silicon defect configurations}
184 \label{subsection:sep_def}
185
186 %./visualize_cc_bonds -w 640 -h 480 -d results/c_100_2333_nosym_sp -nll -0.20 -0.20 -0.20 -fur 1.20 1.20 1.20 -b 0.0 0.0 0.0 1.0 1.0 1.0 -c 0.3 -1.7 1.1 -L 0.5 -1.0 0.5 -r 0.6 -A 2 109 217 1.9
187 \begin{figure}
188 \begin{minipage}[t]{0.32\columnwidth}
189 \underline{Si$_{\text{i}}$ \hkl<1 1 0> DB}\\
190 \includegraphics[width=\columnwidth]{si110_bonds.eps}
191 \end{minipage}
192 \begin{minipage}[t]{0.32\columnwidth}
193 \underline{Si$_{\text{i}}$ hexagonal}\\
194 \includegraphics[width=\columnwidth]{sihex_bonds.eps}
195 \end{minipage}
196 \begin{minipage}[t]{0.32\columnwidth}
197 \underline{Si$_{\text{i}}$ tetrahedral}\\
198 \includegraphics[width=\columnwidth]{sitet_bonds.eps}
199 \end{minipage}\\
200 \begin{minipage}[t]{0.32\columnwidth}
201 \underline{Si$_{\text{i}}$ \hkl<1 0 0> DB}\\
202 \includegraphics[width=\columnwidth]{si100_bonds.eps}
203 \end{minipage}
204 \begin{minipage}[t]{0.32\columnwidth}
205 \underline{Vacancy}\\
206 \includegraphics[width=\columnwidth]{sivac.eps}
207 \end{minipage}
208 \begin{minipage}[t]{0.32\columnwidth}
209 \underline{C$_{\text{s}}$}\\
210 \includegraphics[width=\columnwidth]{csub_bonds.eps}
211 \end{minipage}\\
212 \begin{minipage}[t]{0.32\columnwidth}
213 \underline{C$_{\text{i}}$ \hkl<1 0 0> DB}\\
214 \includegraphics[width=\columnwidth]{c100_bonds.eps}
215 \end{minipage}
216 \begin{minipage}[t]{0.32\columnwidth}
217 \underline{C$_{\text{i}}$ \hkl<1 1 0> DB}\\
218 \includegraphics[width=\columnwidth]{c110_bonds.eps}
219 \end{minipage}
220 \begin{minipage}[t]{0.32\columnwidth}
221 \underline{C$_{\text{i}}$ bond-centered}\\
222 \includegraphics[width=\columnwidth]{cbc_bonds.eps}
223 \end{minipage}
224 \caption{Configurations of Si and C point defects in Si. Si and C atoms are illustrated by yellow and gray spheres respectively. Bonds of the defect atoms are drawn in red color. Dumbbell configurations are abbreviated by DB.}
225 \label{fig:sep_def}
226 \end{figure}
227 Table~\ref{table:sep_eof} summarizes the formation energies of relevant defect structures for the EA and DFT calculations.
228 The respective structures are shown in Fig.~\ref{fig:sep_def}.
229 %
230 \begin{table*}
231 \begin{ruledtabular}
232 \begin{tabular}{l c c c c c c c c c}
233  & Si$_{\text{i}}$ \hkl<1 1 0> DB & Si$_{\text{i}}$ H & Si$_{\text{i}}$ T & Si$_{\text{i}}$ \hkl<1 0 0> DB & V & C$_{\text{s}}$ & C$_{\text{i}}$ \hkl<1 0 0> DB & C$_{\text{i}}$ \hkl<1 1 0> DB & C$_{\text{i}}$ BC \\
234 \hline
235  \multicolumn{10}{l}{Present study} \\
236  VASP & 3.39 & 3.42 & 3.77 & 4.41 & 3.63 & 1.95 & 3.72 & 4.16 & 4.66 \\
237  Erhart/Albe & 4.39 & 4.48$^*$ & 3.40 & 5.42 & 3.13 & 0.75 & 3.88 & 5.18 & 5.59$^*$ \\
238  \multicolumn{10}{l}{Other {\em ab initio} studies} \\
239  Ref.\cite{al-mushadani03} & 3.40 & 3.45 & - & - & 3.53 & - & - & - & - \\
240  Ref.\cite{leung99} & 3.31 & 3.31 & 3.43 & - & - & - & - & - & - \\
241  Ref.\cite{dal_pino93,capaz94} & - & - & - & - & - & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}
242 \end{tabular}
243 \end{ruledtabular}
244 \caption{Formation energies of C and Si point defects in c-Si determined by classical potential and {\em ab initio} methods. The formation energies are given in electron volts. T denotes the tetrahedral and BC the bond-centered configuration. Subscript i and s indicates the interstitial and substitutional configuration. Dumbbell configurations are abbreviated by DB. Formation energies for unstable configurations obtained by classical potential MD are marked by an asterisk and determined by using the low kinetic energy configuration shortly before the relaxation into the more favorable configuration starts.}
245 \label{table:sep_eof}
246 \end{table*}
247
248 Although discrepancies exist, classical potential and first-principles methods depict the correct order of the formation energies with regard to C defects in Si.
249 Substitutional C (C$_{\text{s}}$) constitutes the energetically most favorable defect configuration.
250 Since the C atom occupies an already vacant Si lattice site, C$_{\text{s}}$ is not an interstitial defect.
251 The quantum-mechanical result agrees well with the result of another {\em ab initio} study\cite{dal_pino93}.
252 Clearly, the empirical potential underestimates the C$_{\text{s}}$ formation energy.
253 The C interstitial defect with the lowest energy of formation has been found to be the C-Si \hkl<1 0 0> interstitial dumbbell (C$_{\text{i}}$ \hkl<1 0 0> DB), which, thus, constitutes the ground state of an additional C impurity in otherwise perfect c-Si.
254 This finding is in agreement with several theoretical\cite{burnard93,leary97,dal_pino93,capaz94} and experimental\cite{watkins76,song90} investigations.
255 However, to our best knowledge, no energy of formation based on first-principles calculations has yet been explicitly stated in literature for the ground-state configuration.
256 %
257 Astonishingly, EA and DFT predict almost equal formation energies.
258 There are, however, geometric differences with regard to the DB position within the tetrahedron spanned by the four neighbored Si atoms, as already reported in a previous study\cite{zirkelbach10}.
259 Since the energetic description is considered more important than the structural description, minor discrepancies of the latter are assumed non-problematic.
260 The second most favorable configuration is the C$_{\text{i}}$ \hkl<1 1 0> DB followed by the C$_{\text{i}}$ bond-centered (BC) configuration.
261 For both configurations EA overestimates the energy of formation by approximately \unit[1]{eV} compared to DFT.
262 Thus, nearly the same difference in energy has been observed for these configurations in both methods.
263 However, we have found the BC configuration to constitute a saddle point within the EA description relaxing into the \hkl<1 1 0> configuration.
264 Due to the high formation energy of the BC defect resulting in a low probability of occurrence of this defect, the wrong description is not posing a serious limitation of the EA potential.
265 A more detailed discussion of C defects in Si modeled by EA and DFT including further defect configurations can be found in our recently published article\cite{zirkelbach10}.
266
267 Regarding intrinsic defects in Si, classical potential and {\em ab initio} methods predict energies of formation that are within the same order of magnitude.
268 %
269 However, discrepancies exist.
270 Quantum-mechanical results reveal the Si$_{\text{i}}$ \hkl<1 1 0> DB to compose the energetically most favorable configuration closely followed by the hexagonal and tetrahedral configuration, which is the consensus view for Si$_{\textrm{i}}$ and compares well to results from literature\cite{leung99,al-mushadani03}.
271 The EA potential does not reproduce the correct ground state.
272 Instead, the tetrahedral defect configuration is favored.
273 This limitation is assumed to arise due to the cut-off.
274 In the tetrahedral configuration the second neighbors are only slightly more distant than the first neighbors, which creates the particular problem.
275 Indeed, an increase of the cut-off results in increased values of the formation energies\cite{albe_sic_pot}, which is most significant for the tetrahedral configuration.
276 The same issue has already been discussed by Tersoff\cite{tersoff90} with regard to the description of the tetrahedral C defect using his potential.
277 % h unstable
278 % todo - really do this?!?!
279 The hexagonal configuration is not stable within the classical potential calculations opposed to results of the authors of the potential\cite{albe_sic_pot}.
280 In the first two pico seconds, while kinetic energy is decoupled from the system, the \si{} seems to condense at the hexagonal site.
281 The formation energy of \unit[4.48]{eV} is determined by this low kinetic energy configuration shortly before the relaxation process starts.
282 The \si{} atom then begins to slowly move towards an energetically more favorable position very close to the tetrahedral one but slightly displaced along the three coordinate axes.
283 The formation energy of \unit[3.96]{eV} for this type of interstitial is equal to the result for the hexagonal one in the original work\cite{albe_sic_pot}.
284 Obviously, the authors did not carefully check the relaxed results assuming a hexagonal configuration.
285 As has been shown, variations of this defect exist, in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\,\text{eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\,\text{eV}$) successively approximating the tetdrahedral configuration and formation energy\cite{zirkelbach09}.
286 The existence of these local minima located near the tetrahedral configuration seems to be an artifact of the analytical potential without physical authenticity revealing fundamental problems of analytical potential models for describing defect structures.
287 However, further investigations revealed the energy barrier of the transition from the artificial into the tetrahedral configuration to be smaller than \unit[0.2]{eV}.
288 Hence, these artifacts have a negligible influence in finite temperature simulations.
289 % nevertheless ...
290 While not completely rendering impossible further, more challenging empirical potential studies on large systems, these artifacts have to be taken into account in the following investigations of defect combinations.
291
292 % spin polarization
293 Instead of giving an explicit value of the energy of formation, Capaz et al.\cite{capaz94}, investigating migration pathways of the C$_{\text{i}}$ \hkl<1 0 0> DB, find this defect to be \unit[2.1]{eV} lower in energy than the BC configuration.
294 The BC configuration is claimed to constitute the saddle point within the C$_{\text{i}}$ \hkl[0 0 -1] DB migration path residing in the \hkl(1 1 0) plane and, thus, interpreted as the barrier of migration for the respective path.
295 However, the present study indicates a local minimum state for the BC defect if spin polarized calculations are performed resulting in a net magnetization of two electrons localized in a torus around the C atom.
296 Another DFT calculation without fully accounting for the electron spin results in the smearing of a single electron over two non-degenerate Kohn-Sham states and an increase of the total energy by \unit[0.3]{eV} for the BC configuration.
297 %
298 A more detailed description can be found in a previous study\cite{zirkelbach10}.
299 Next to the C$_{\text{i}}$ BC configuration, the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.
300 For the vacancy, the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.
301 In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration, the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.
302 No other configuration, within the ones that are mentioned, is affected.
303
304 \subsection{Mobility of carbon defects}
305 \label{subsection:cmob}
306
307 To accurately model the SiC precipitation, which involves the agglomeration of C, a proper description of the migration process of the C impurity is required.
308 As shown in a previous study\cite{zirkelbach10}, quantum-mechanical results properly describe the C$_{\text{i}}$ \hkl<1 0 0> DB diffusion resulting in a migration barrier height of \unit[0.90]{eV} excellently matching experimental values of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90} and, for this reason, reinforcing the respective migration path as already proposed by Capaz et~al.\cite{capaz94}.
309 During transition, a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates towards a  C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
310 However, it turned out that the description fails if the EA potential is used, which overestimates the migration barrier (\unit[2.2]{eV}) by a factor of 2.4.
311 In addition a different diffusion path is found to exhibit the lowest migration barrier.
312 A C$_{\text{i}}$ \hkl[0 0 -1] DB turns into the \hkl[0 0 1] configuration at the neighbored lattice site.
313 The transition involves the C$_{\text{i}}$ BC configuration, which, however, was found to be unstable relaxing into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration.
314 If the migration is considered to occur within a single step, the kinetic energy of \unit[2.2]{eV} is sufficient to turn the \hkl<1 0 0> DB into the BC and back into a \hkl<1 0 0> DB configuration.
315 If, on the other hand, a two step process is assumed, the BC configuration will most probably relax into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration resulting in different relative energies of the intermediate state and the saddle point.
316 For the latter case, a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0> DB configuration, is proposed and displayed in Fig.~\ref{fig:mig}.
317 \begin{figure}
318 \begin{center}
319 \includegraphics[width=\columnwidth]{110mig.ps}
320 \end{center}
321 \caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
322 \label{fig:mig}
323 \end{figure}
324 The activation energy of approximately \unit[2.24]{eV} is needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
325 Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
326 Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10}.
327 The former diffusion process, however, would more nicely agree with the {\em ab initio} path, since the migration is accompanied by a rotation of the DB orientation.
328 By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp\left((\unit[2.24]{eV}+\unit[0.90]{eV})/{k_{\text{B}}T}\right)$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by {\em ab initio} calculations.
329
330 Accordingly, the effective barrier of migration of C$_{\text{i}}$ is overestimated by a factor of 2.4 to 3.5 compared to the highly accurate quantum-mechanical methods.
331 This constitutes a serious limitation that has to be taken into account for modeling the C-Si system using the otherwise quite promising EA potential.
332
333 \section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
334 \label{sec:qm}
335
336 The implantation of highly energetic C atoms results in a multiplicity of possible defect configurations.
337 Next to individual Si$_{\text{i}}$, C$_{\text{i}}$, V and C$_{\text{s}}$ defects, combinations of these defects and their interaction are considered important for the problem under study.
338 In the following, pairs of the ground state and, thus, most probable defect configurations that are believed to be fundamental in the Si to SiC conversion and related diffusion processes are investigated.
339 These systems are small enough to allow for a first-principles treatment.
340
341 \subsection{Pairs of C$_{\text{i}}$}
342
343 % prune next
344 \prune{
345 C$_{\text{i}}$ pairs of the \hkl<1 0 0> type have been investigated in the first part.
346 }
347 Fig.~\ref{fig:combos_ci} schematically displays the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure and various positions for the second defect (1-5) that have been used for investigating defect pairs.
348 Table~\ref{table:dc_c-c} summarizes resulting binding energies for the combination with a second C-Si \hkl<1 0 0> DB obtained for different orientations at positions 1 to 5.
349 \begin{figure}
350 \subfigure[]{\label{fig:combos_ci}\includegraphics[width=0.45\columnwidth]{combos_ci.eps}}
351 \hspace{0.1cm}
352 \subfigure[]{\label{fig:combos_si}\includegraphics[width=0.45\columnwidth]{combos.eps}}
353 \caption{Position of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB (I) (Fig.~\ref{fig:combos_ci}) and of the lattice site chosen for the initial Si$_{\text{i}}$ \hkl<1 1 0> DB (Si$_{\text{i}}$) (Fig.~\ref{fig:combos_si}). Lattice sites for the second defect used for investigating defect pairs are numbered from 1 to 5.} 
354 \label{fig:combos}
355 \end{figure}
356 \begin{table}
357 \begin{ruledtabular}
358 \begin{tabular}{l c c c c c c }
359  & 1 & 2 & 3 & 4 & 5 & R \\
360 \hline
361  \hkl[0 0 -1] & -0.08 & -1.15 & -0.08 & 0.04 & -1.66 & -0.19\\
362  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
363  \hkl[0 -1 0] & -2.39 & -0.17 & -0.10 & -0.27 & -1.88 & -0.05\\
364  \hkl[0 1 0] & -2.25 & -1.90 & -2.25 & -0.12 & -1.38 & -0.06\\
365  \hkl[-1 0 0] & -2.39 & -0.36 & -2.25 & -0.12 & -1.88 & -0.05\\
366  \hkl[1 0 0] & -2.25 & -2.16 & -0.10 & -0.27 & -1.38 & -0.06\\
367 \end{tabular}
368 \end{ruledtabular}
369 \caption{Binding energies in eV of C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs. Equivalent configurations exhibit equal energies. Column 1 lists the orientation of the second defect, which is combined with the initial C$_{\text{i}}$ \hkl[0 0 -1] DB. The position index of the second defect is given in the first row according to Fig.~\ref{fig:combos}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable defect separation distance ($\approx \unit[1.3]{nm}$) due to periodic boundary conditions.}
370 \label{table:dc_c-c}
371 \end{table}
372 Most of the obtained configurations result in binding energies well below zero indicating a preferable agglomeration of this type of defects.
373 For increasing distances of the defect pair, the binding energy approaches to zero (R in Table~\ref{table:dc_c-c}) as it is expected for non-interacting isolated defects.
374 Energetically favorable and unfavorable configurations can be explained by stress compensation and increase respectively based on the resulting net strain of the respective configuration of the defect combination.
375 Antiparallel orientations of the second defect, i.e. \hkl[0 0 1] for positions located below the \hkl(0 0 1) plane with respect to the initial one (positions 1, 2 and 4) form the energetically most unfavorable configurations.
376 In contrast, the parallel and particularly the twisted orientations constitute energetically favorable configurations, in which a vast reduction of strain is enabled by combination of these defects.
377
378 Mattoni et al.\cite{mattoni2002} predict the ground-state configuration for a \hkl[1 0 0] or equivalently a \hkl[0 1 0] defect created at position 1.
379 Both defects basically maintain the as-isolated DB structure resulting in a binding energy of \unit[-2.1]{eV}.
380 In this work, we observed a further relaxation of this defect structure.
381 The C atom of the second and the Si atom of the initial DB move towards each other forming a bond, which results in a somewhat lower binding energy of \unit[-2.25]{eV}.
382 The structure is displayed in the bottom right of Fig.~\ref{fig:188-225}.
383 Apart from that, we found a more favorable configuration for the combination with a \hkl[0 -1 0] and \hkl[-1 0 0] DB respectively, which is assumed to constitute the actual ground-state configuration of two C$_{\text{i}}$ DBs in Si.
384 The atomic arrangement is shown in the bottom right of Fig.~\ref{fig:036-239}.
385 The two C$_{\text{i}}$ atoms form a strong C-C bond, which is responsible for the large gain in energy resulting in a binding energy of \unit[-2.39]{eV}.
386
387 % possibly prune next
388 \possprune{
389 Investigating migration barriers allows to predict the probability of formation of defect complexes by thermally activated diffusion processes.
390 }
391 % ground state configuration, C cluster
392 Based on the lowest energy migration path of a single C$_{\text{i}}$ DB, the configuration, in which the second C$_{\text{i}}$ DB is oriented along \hkl[0 1 0] at position 2, is assumed to constitute an ideal starting point for a transition into the ground state.
393 In addition, the starting configuration exhibits a low binding energy (\unit[-1.90]{eV}) and is, thus, very likely to occur.
394 However, a barrier height of more than \unit[4]{eV} was detected resulting in a low probability for the transition.
395 % possibly prune next
396 \possprune{
397 The high activation energy is attributed to the stability of such a low energy configuration, in which the C atom of the second DB is located close to the initial DB.
398 }
399 Low barriers have only been identified for transitions starting from energetically less favorable configurations, e.g. the configuration of a \hkl[-1 0 0] DB located at position 2 (\unit[-0.36]{eV}).
400 Starting from this configuration, an activation energy of only \unit[1.2]{eV} is necessary for the transition into the ground-state configuration.
401 The corresponding migration energies and atomic configurations are displayed in Fig.~\ref{fig:036-239}.
402 \begin{figure}
403 \includegraphics[width=\columnwidth]{036-239.ps}
404 \caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[-1 0 0] DB at position 2 (left) into a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 1 (right). An activation energy of \unit[1.2]{eV} is observed.}
405 \label{fig:036-239}
406 \end{figure}
407 %  strange mig from -190 -> -2.39 (barrier > 4 eV)
408 % C-C migration -> idea:
409 %  mig from low energy confs has extremely high barrier!
410 %  low barrier only from energetically less/unfavorable confs (?)! <- prove!
411 %  => low probability of C-C clustering ?!?
412 %
413 % should possibly be transfered to discussion section
414 Since thermally activated C clustering is, thus, only possible by traversing energetically unfavored configurations, extensive C clustering is not expected.
415 Furthermore, the migration barrier of \unit[1.2]{eV} is still higher than the activation energy of \unit[0.9]{eV} observed for a single C$_{\text{i}}$ \hkl<1 0 0> DB in c-Si.
416 % possibly prune next until EOP
417 \possprune{
418 The migration barrier of a C$_{\text{i}}$ DB in a complex system is assumed to approximate the barrier of a DB in a separated system with increasing defect separation.
419 Accordingly, lower migration barriers are expected for pathways resulting in larger separations of the C$_{\text{i}}$ DBs.
420 % acknowledged by 188-225 (reverse order) calc
421 However, if the increase of separation is accompanied by an increase in binding energy, this difference is needed in addition to the activation energy for the respective migration process.
422 Configurations, which exhibit both, a low binding energy as well as afferent transitions with low activation energies are, thus, most probable C$_{\text{i}}$ complex structures.
423 On the other hand, if elevated temperatures enable migrations with huge activation energies, comparably small differences in configurational energy can be neglected resulting in an almost equal occupation of such configurations.
424 % EOP
425 In both cases,} the configuration yielding a binding energy of \unit[-2.25]{eV} is promising.
426 First of all, it constitutes the second most energetically favorable structure.
427 Secondly, a migration path with a barrier as low as \unit[0.47]{eV} exists starting from a configuration of largely separated defects exhibiting a low binding energy (\unit[-1.88]{eV}).
428 The migration barrier and corresponding structures are shown in Fig.~\ref{fig:188-225}.
429 \begin{figure}
430 \includegraphics[width=\columnwidth]{188-225.ps}
431 \caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 5 (left) into a C$_{\text{i}}$ \hkl[1 0 0] DB at position 1 (right). An activation energy of \unit[0.47]{eV} is observed.}
432 \label{fig:188-225}
433 \end{figure}
434 Finally, this type of defect pair is represented four times (two times more often than the ground-state configuration) within the systematically investigated configuration space.
435 The latter is considered very important at high temperatures, accompanied by an increase in the entropic contribution to structure formation.
436 As a result, C defect agglomeration indeed is expected, but only a low probability is assumed for C-C clustering by thermally activated processes with regard to the considered process time in IBS.
437 % alternatively: ... considered period of time (of the IBS process).
438 %
439 % ?!?
440 % look for precapture mechanism (local minimum in energy curve)
441 % also: plot energy all confs with respect to C-C distance
442 %       maybe a pathway exists traversing low energy confs ?!?
443
444 % point out that configurations along 110 were extended up to the 6th NN in that direction
445 The binding energies of the energetically most favorable configurations with the second DB located along the \hkl[1 1 0] direction and resulting C-C distances of the relaxed structures are summarized in Table~\ref{table:dc_110}.
446 \begin{table}
447 \begin{ruledtabular}
448 \begin{tabular}{l c c c c c c }
449  & 1 & 2 & 3 & 4 & 5 & 6 \\
450 \hline
451  $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
452 C-C distance [nm] & 0.14 & 0.46 & 0.65 & 0.86 & 1.05 & 1.08 
453 \end{tabular}
454 \end{ruledtabular}
455 \caption{Binding energies $E_{\text{b}}$ and C-C distance of energetically most favorable C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs separated along the \hkl[1 1 0] bond chain.}
456 \label{table:dc_110}
457 \end{table}
458 The binding energy of these configurations with respect to the C-C distance is plotted in Fig.~\ref{fig:dc_110}.
459 \begin{figure}
460 \includegraphics[width=\columnwidth]{db_along_110_cc_n.ps}
461 \caption{Minimum binding energy of dumbbell combinations separated along \hkl[1 1 0] with respect to the C-C distance. The blue line is a guide for the eye and the green curve corresponds to the most suitable fit function consisting of all but the first data point.}
462 \label{fig:dc_110}
463 \end{figure}
464 The interaction is found to be proportional to the reciprocal cube of the C-C distance for extended separations of the C$_{\text{i}}$ and saturates for the smallest possible separation, i.e. the ground-state configuration.
465 Not considering the previously mentioned elevated barriers for migration, an attractive interaction between the C$_{\text{i}}$ defects indeed is detected with a capture radius that clearly exceeds \unit[1]{nm}.
466 The interpolated graph suggests the disappearance of attractive interaction forces, which are proportional to the slope of the graph, in between the two lowest separation distances of the defects.
467 This finding, in turn, supports the previously established assumption of C agglomeration and absence of C clustering.
468
469 \begin{table}
470 \begin{ruledtabular}
471 \begin{tabular}{l c c c c c c }
472  & 1 & 2 & 3 & 4 & 5 & R \\
473 \hline
474 C$_{\text{s}}$ & 0.26$^a$/-1.28$^b$ & -0.51 & -0.93$^A$/-0.95$^B$ & -0.15 & 0.49 & -0.05\\
475 V & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31
476 \end{tabular}
477 \end{ruledtabular}
478 \caption{Binding energies of combinations of the C$_{\text{i}}$ \hkl[0 0 -1] defect with a substitutional C or vacancy located at positions 1 to 5 according to Fig.~\ref{fig:combos_ci}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable distance due to periodic boundary conditions.}
479 \label{table:dc_c-sv}
480 \end{table}
481
482 \subsection{C$_{\text{i}}$ next to C$_{\text{s}}$}
483
484 The first row of Table~\ref{table:dc_c-sv} lists the binding energies of C$_{\text{s}}$ next to the C$_{\text{i}}$ \hkl[0 0 -1] DB.
485 For C$_{\text{s}}$ located at position 1 and 3 the configurations a and A correspond to the naive relaxation of the structure by substituting the Si atom by a C atom in the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure at positions 1 and 3 respectively.
486 However, small displacements of the involved atoms near the defect result in different stable structures labeled b and B respectively.
487 Fig.~\ref{fig:093-095} and \ref{fig:026-128} show structures A, B and a, b together with the barrier of migration for the A to B and a to b transition respectively. 
488
489 % A B
490 %./visualize_contcar -w 640 -h 480 -d results/c_00-1_c3_csub_B -nll -0.20 -0.4 -0.1 -fur 0.9 0.6 0.9 -c 0.5 -1.5 0.375 -L 0.5 0 0.3 -r 0.6 -A -1 2.465
491 \begin{figure}
492 \includegraphics[width=\columnwidth]{093-095.ps}
493 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 3 (left) into a configuration of a twofold coordinated Si$_{\text{i}}$ located in between two C$_{\text{s}}$ atoms occupying the lattice sites of the initial DB and position 3 (right). An activation energy of \unit[0.44]{eV} is observed.}
494 \label{fig:093-095}
495 \end{figure}
496 Configuration A consists of a C$_{\text{i}}$ \hkl[0 0 -1] DB with threefold coordinated Si and C DB atoms slightly disturbed by the C$_{\text{s}}$ at position 3 facing the Si DB atom as a neighbor.
497 By a single bond switch, i.e. the breaking of a Si-Si in favor of a Si-C bond, configuration B is obtained, which shows a twofold coordinated Si atom located in between two substitutional C atoms residing on regular Si lattice sites.
498 This configuration has been identified and described by spectroscopic experimental techniques\cite{song90_2} as well as theoretical studies\cite{leary97,capaz98}.
499 Configuration B is found to constitute the energetically slightly more favorable configuration.
500 However, the gain in energy due to the significantly lower energy of a Si-C compared to a Si-Si bond turns out to be smaller than expected due to a large compensation by introduced strain as a result of the Si interstitial structure.
501 Present results show a difference in energy of states A and B, which exactly matches the experimental value of \unit[0.02]{eV}\cite{song90_2} reinforcing qualitatively correct results of previous theoretical studies on these structures.
502 % mattoni: A favored by 0.4 eV - NO, it is indeed B (reinforce Song and Capaz)!
503 %
504 % AB transition
505 The migration barrier was identified to be \unit[0.44]{eV}, almost three times higher than the experimental value of \unit[0.16]{eV}\cite{song90_2} estimated for the neutral charge state transition in p- and n-type Si.
506 Keeping in mind the formidable agreement of the energy difference with experiment, the overestimated activation energy is quite unexpected.
507 Obviously, either the CRT algorithm fails to seize the actual saddle point structure or the influence of dopants has exceptional effect in the experimentally covered diffusion process being responsible for the low migration barrier.
508 % not satisfactory!
509
510 % a b
511 \begin{figure}
512 \includegraphics[width=\columnwidth]{026-128.ps}
513 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 1 (left) into a C-C \hkl[1 0 0] DB occupying the lattice site at position 1 (right). An activation energy of \unit[0.1]{eV} is observed.}
514 \label{fig:026-128}
515 \end{figure}
516 Configuration a is similar to configuration A, except that the C$_{\text{s}}$ atom at position 1 is facing the C DB atom as a neighbor resulting in the formation of a strong C-C bond and a much more noticeable perturbation of the DB structure.
517 Nevertheless, the C and Si DB atoms remain threefold coordinated.
518 Although the C-C bond exhibiting a distance of \unit[0.15]{nm} close to the distance expected in diamond or graphite should lead to a huge gain in energy, a repulsive interaction with a binding energy of \unit[0.26]{eV} is observed due to compressive strain of the Si DB atom and its top neighbors (\unit[0.230]{nm}/\unit[0.236]{nm}) along with additional tensile strain of the C$_{\text{s}}$ and its three neighboring Si atoms (\unit[0.198-0.209]{nm}/\unit[0.189]{nm}).
519 Again a single bond switch, i.e. the breaking of the bond of the Si atom bound to the fourfold coordinated C$_{\text{s}}$ atom and the formation of a double bond between the two C atoms, results in configuration b.
520 The two C atoms form a \hkl[1 0 0] DB sharing the initial C$_{\text{s}}$ lattice site while the initial Si DB atom occupies its previously regular lattice site.
521 The transition is accompanied by a large gain in energy as can be seen in Fig.~\ref{fig:026-128} making it the ground-state configuration of a C$_{\text{s}}$ and C$_{\text{i}}$ DB in Si yet \unit[0.33]{eV} lower in energy than configuration B.
522 This finding is in good agreement with a combined {\em ab initio} and experimental study of Liu et~al.\cite{liu02}, who first proposed this structure as the ground state identifying an energy difference compared to configuration B of \unit[0.2]{eV}.
523 % mattoni: A favored by 0.2 eV - NO! (again, missing spin polarization?)
524 A net magnetization of two spin up electrons, which are equally localized as in the Si$_{\text{i}}$ \hkl<1 0 0> DB structure is observed.
525 In fact, these two configurations are very similar and are qualitatively different from the C$_{\text{i}}$ \hkl<1 0 0> DB that does not show magnetization but a nearly collinear bond of the C DB atom to its two neighbored Si atoms while the Si DB atom approximates \unit[120]{$^{\circ}$} angles in between its bonds.
526 Configurations a, A and B are not affected by spin polarization and show zero magnetization.
527 Mattoni et~al.\cite{mattoni2002}, in contrast, find configuration b less favorable than configuration A by \unit[0.2]{eV}.
528 Next to differences in the XC functional and plane-wave energy cut-off, this discrepancy might be attributed to the neglect of spin polarization in their calculations, which -- as has been shown for the C$_{\text{i}}$ BC configuration -- results in an increase of configurational energy.
529 Indeed, investigating the migration path from configurations a to b and, in doing so, reusing the wave functions of the previous migration step, the final structure, i.e. configuration b, was obtained with zero magnetization and an increase in configurational energy by \unit[0.2]{eV}.
530 Obviously, a different energy minimum of the electronic system is obtained indicating hysteresis behavior.
531 However, since the total energy is lower for the magnetic result it is believed to constitute the real, i.e. global, minimum with respect to electronic minimization.
532 %
533 % a b transition
534 A low activation energy of \unit[0.1]{eV} is observed for the a$\rightarrow$b transition.
535 Thus, configuration a is very unlikely to occur in favor of configuration b.
536
537 % repulsive along 110
538 A repulsive interaction is observed for C$_{\text{s}}$ at lattice sites along \hkl[1 1 0], i.e. positions 1 (configuration a) and 5.
539 This is due to tensile strain originating from both, the C$_{\text{i}}$ DB and the C$_{\text{s}}$ atom residing within the \hkl[1 1 0] bond chain.
540 This finding agrees well with results by Mattoni et~al.\cite{mattoni2002}.
541 % all other investigated results: attractive interaction. stress compensation.
542 In contrast, all other investigated configurations show attractive interactions.
543 The most favorable configuration is found for C$_{\text{s}}$ at position 3, which corresponds to the lattice site of one of the upper neighbored Si atoms of the DB structure that is compressively strained along \hkl[1 -1 0] and \hkl[0 0 1] by the C-Si DB.
544 The substitution with C allows for most effective compensation of strain.
545 This structure is followed by C$_{\text{s}}$ located at position 2, the lattice site of one of the neighbor atoms below the two Si atoms that are bound to the C$_{\text{i}}$ DB atom.
546 As mentioned earlier, these two lower Si atoms indeed experience tensile strain along the \hkl[1 1 0] bond chain.
547 However, additional compressive strain along \hkl[0 0 1] exists.
548 The latter is partially compensated by the C$_{\text{s}}$ atom.
549 Yet less of compensation is realized if C$_{\text{s}}$ is located at position 4 due to a larger separation although both bottom Si atoms of the DB structure are indirectly affected, i.e. each of them is connected by another Si atom to the C atom enabling the reduction of strain along \hkl[0 0 1].
550
551 % c agglomeration vs c clustering ... migs to b conf
552 % 2 more migs: 051 -> 128 and 026! forgot why ... probably it's about probability of C clustering
553 Obviously agglomeration of C$_{\text{i}}$ and C$_{\text{s}}$ is energetically favorable except for separations along one of the \hkl<1 1 0> directions.
554 The energetically most favorable configuration (configuration b) forms a strong but compressively strained C-C bond with a separation distance of \unit[0.142]{nm} sharing a Si lattice site.
555 \possprune{
556 Again, conclusions concerning the probability of formation are drawn by investigating migration paths.
557 }
558 Since C$_{\text{s}}$ is unlikely to exhibit a low activation energy for migration the focus is on C$_{\text{i}}$.
559 Pathways starting from the two next most favored configurations were investigated, which show activation energies above \unit[2.2]{eV} and \unit[3.5]{eV} respectively.
560 Although lower than the barriers for obtaining the ground state of two C$_{\text{i}}$ defects, the activation energies are yet considered too high.
561 \possprune{
562 For the same reasons as in the last subsection, structures other than the ground-state configuration are, thus, assumed to arise more likely due to much lower activation energies necessary for their formation and still comparatively low binding energies.
563 }
564
565 \subsection{C$_{\text{i}}$ next to V}
566
567 \prune{
568 In the last subsection configurations of a C$_{\text{i}}$ DB with C$_{\text{s}}$ occupying a vacant site have been investigated.
569 }
570 \possprune{
571 Additionally, configurations might arise in IBS, in which the impinging C atom creates a vacant site near a C$_{\text{i}}$ DB, but does not occupy it.
572 }
573 Resulting binding energies of a C$_{\text{i}}$ DB and a nearby vacancy are listed in the second row of Table~\ref{table:dc_c-sv}.
574 All investigated structures are preferred compared to isolated, largely separated defects.
575 In contrast to C$_{\text{s}}$, this is also valid for positions along \hkl[1 1 0] resulting in an entirely attractive interaction between defects of these types.
576 Even for the largest possible distance (R) achieved in the calculations of the periodic supercell, a binding energy as low as \unit[-0.31]{eV} is observed.
577 The ground-state configuration is obtained for a V at position 1.
578 The C atom of the DB moves towards the vacant site forming a stable C$_{\text{s}}$ configuration resulting in the release of a huge amount of energy.
579 The second most favorable configuration is accomplished for a V located at position 3 due to the reduction of compressive strain of the Si DB atom and its two upper Si neighbors present in the C$_{\text{i}}$ DB configuration.
580 This configuration is followed by the structure, in which a vacant site is created at position 2.
581 Similar to the observations for C$_{\text{s}}$ in the last subsection, a reduction of strain along \hkl[0 0 1] is enabled by this configuration.
582 Relaxed structures of the latter two defect combinations are shown in the bottom left of Fig.~\ref{fig:314-539} and \ref{fig:059-539} respectively together with their energetics during transition into the ground state.
583 \begin{figure}
584 \includegraphics[width=\columnwidth]{314-539.ps}
585 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 3 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.1]{eV} is observed.}
586 \label{fig:314-539}
587 \end{figure}
588 \begin{figure}
589 \includegraphics[width=\columnwidth]{059-539.ps}
590 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 2 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.6]{eV} is observed.}
591 \label{fig:059-539}
592 \end{figure}
593 Activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} are observed.
594 In the first case, the Si and C atom of the DB move towards the vacant and initial DB lattice site respectively.
595 In total, three Si-Si and one more Si-C bond is formed during transition.
596 In the second case, the lowest barrier is found for the migration of Si number 1, which is substituted by the C$_{\text{i}}$ atom, towards the vacant site.
597 A net amount of five Si-Si and one Si-C bond are additionally formed during transition.
598 The direct migration of the C$_{\text{i}}$ atom onto the vacant lattice site results in a somewhat higher barrier of \unit[1.0]{eV}.
599 In both cases, the formation of additional bonds is responsible for the vast gain in energy rendering almost impossible the reverse processes.
600
601 In summary, pairs of C$_{\text{i}}$ DBs and Vs, like no other before, show highly attractive interactions for all investigated combinations independent of orientation and separation direction of the defects.
602 Furthermore, small activation energies, even for transitions into the ground state, exist.
603 Based on these results, a high probability for the formation of C$_{\text{s}}$ must be concluded.
604
605 \subsection{C$_{\text{s}}$ next to Si$_{\text{i}}$}
606 \label{subsection:cs_si}
607
608 As shown in section~\ref{subsection:sep_def}, C$_{\text{s}}$ exhibits the lowest energy of formation.
609 Considering a perfect Si crystal and conservation of particles, however, the occupation of a Si lattice site by a slowed down implanted C atom is necessarily accompanied by the formation of a Si self-interstitial.
610 \prune{
611 There are good reasons for the existence of regions exhibiting such configurations with regard to the IBS process.
612 Highly energetic C atoms are able to kick out a Si atom from its lattice site, resulting in a Si self-interstitial accompanied by a vacant site, which might get occupied by another C atom that lost almost all of its kinetic energy.
613 %Thus, configurations of C$_{\text{s}}$ and Si self-interstitials are investigated in the following.
614 Provided that the first C atom, which created the V and Si$_{\text{i}}$ pair has enough kinetic energy to escape the affected region, the C$_{\text{s}}$-Si$_{\text{i}}$ pair can be described as a separated defect complex.
615 }
616 The Si$_{\text{i}}$ \hkl<1 1 0> DB, which was found to exhibit the lowest energy of formation within the investigated self-interstitial configurations, is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.
617
618 \begin{table}
619 \begin{ruledtabular}
620 \begin{tabular}{l c c c c c c}
621  & \hkl[1 1 0] & \hkl[-1 1 0] & \hkl[0 1 1] & \hkl[0 -1 1] &
622    \hkl[1 0 1] & \hkl[-1 0 1] \\
623 \hline
624 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
625 2 & \RM{2} & \RM{6} & \RM{6} & \RM{2} & \RM{8} & \RM{5} \\
626 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
627 4 & \RM{4} & \RM{7} & \RM{9} & \RM{10} & \RM{10} & \RM{9} \\
628 5 & \RM{5} & \RM{8} & \RM{6} & \RM{2} & \RM{6} & \RM{2} \\
629 \end{tabular}
630 \caption{Equivalent configurations labeled \RM{1}-\RM{10} of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}. The respective orientation of the Si$_{\text{i}}$ DB is given in the first row.}
631 \label{table:dc_si-s}
632 \end{ruledtabular}
633 \end{table}
634 \begin{table*}
635 \begin{ruledtabular}
636 \begin{tabular}{l c c c c c c c c c c}
637  & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & \RM{6} & \RM{7} & \RM{8} & \RM{9} & \RM{10} \\
638 \hline
639 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
640 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
641 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
642 \end{tabular}
643 \caption{Formation energies $E_{\text{f}}$, binding energies $E_{\text{b}}$ and C$_{\text{s}}$-Si$_{\text{i}}$ separation distances of configurations combining C$_{\text{s}}$ and Si$_{\text{i}}$ as defined in Table~\ref{table:dc_si-s}.}
644 \label{table:dc_si-s_e}
645 \end{ruledtabular}
646 \end{table*}
647 Table~\ref{table:dc_si-s} classifies equivalent configurations of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}.
648 Corresponding formation as well as binding energies and the separation distances of the C$_{\text{s}}$ atom and the Si$_{\text{i}}$ DB lattice site are listed in Table~\ref{table:dc_si-s_e}.
649 In total, ten different configurations exist within the investigated range.
650 Configuration \RM{1} constitutes the energetically most favorable structure exhibiting a formation energy of \unit[4.37]{eV}.
651 Obviously, the configuration of a Si$_{\text{i}}$ \hkl[1 1 0] DB and a neighbored C$_{\text{s}}$ atom along the bond chain, which has the same direction as the alignment of the DB, enables the largest possible reduction of strain.
652 The relaxed structure is displayed in the bottom right of Fig.~\ref{fig:162-097}.
653 Compressive strain originating from the Si$_{\text{i}}$ is compensated by tensile strain inherent to the C$_{\text{s}}$ configuration.
654 The Si$_{\text{i}}$ DB atoms are displaced towards the lattice site occupied by the C$_{\text{s}}$ atom in such a way that the Si$_{\text{i}}$ DB atom closest to the C atom does no longer form bonds to its top Si neighbors, but to the next neighbored Si atom along \hkl[1 1 0].
655
656 However, the configuration is energetically less favorable than the \hkl<1 0 0> C$_{\text{i}}$ DB, which, thus, remains the ground state of a C atom introduced into otherwise perfect c-Si.
657 The transition involving the latter two configurations is shown in Fig.~\ref{fig:162-097}.
658 \begin{figure}
659 \includegraphics[width=\columnwidth]{162-097.ps}
660 \caption{Migration barrier and structures of the transition of a \hkl[1 1 0] Si$_{\text{i}}$ DB next to C$_{\text{s}}$ (right) into the C$_{\text{i}}$ \hkl[0 0 -1] DB configuration (left). An activation energy of \unit[0.12]{eV} and \unit[0.77]{eV} for the reverse process is observed.}
661 \label{fig:162-097}
662 \end{figure}
663 An activation energy as low as \unit[0.12]{eV} is necessary for the migration into the ground-state configuration.
664 Accordingly, the C$_{\text{i}}$ \hkl<1 0 0> DB configuration is assumed to occur more likely.
665 However, only \unit[0.77]{eV} are needed for the reverse process, i.e. the formation of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB out of the ground state.
666 Due to the low activation energy, this process must be considered to be activated without much effort either thermally or by introduced energy of the implantation process.
667
668 \begin{figure}
669 %\includegraphics[width=\columnwidth]{c_sub_si110.ps}
670 \includegraphics[width=\columnwidth]{c_sub_si110_data.ps}
671 \caption{Binding energies of combinations of a C$_{\text{s}}$ and a Si$_{\text{i}}$ DB with respect to the separation distance.}
672 %\caption{Binding energies of combinations of a C$_{\text{s}}$ and a Si$_{\text{i}}$ DB with respect to the separation distance. The interaction strength of the defect pairs are well approximated by a Lennard-Jones 6-12 potential, which is used for curve fitting.}
673 \label{fig:dc_si-s}
674 \end{figure}
675 Fig.~\ref{fig:dc_si-s} shows the binding energies of pairs of C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB with respect to the separation distance.
676 %The interaction of the defects is well approximated by a Lennard-Jones (LJ) 6-12 potential, which is used for curve fitting.
677 %Unable to model possible positive values of the binding energy, i.e. unfavorable configurations, located to the right of the minimum, the LJ fit should rather be thought as a guide for the eye describing the decrease of the interaction strength, i.e. the absolute value of the binding energy, with increasing separation distance.
678 %The binding energy quickly drops to zero.
679 %The LJ fit estimates almost zero interaction already at \unit[0.6]{nm}, indicating a low interaction capture radius of the defect pair.
680 As can be seen, the interaction strength, i.e. the absolute value of the binding energy, quickly drops to zero with increasing separation distance.
681 Almost zero interaction may be assumed already at distances about \unit[0.5-0.6]{nm}, indicating a low interaction capture radius of the defect pair.
682 In IBS, highly energetic collisions are assumed to easily produce configurations of defects exhibiting separation distances exceeding the capture radius.
683 For this reason, C$_{\text{s}}$ without a Si$_{\text{i}}$ DB located within the immediate proximity, which is, thus, unable to form the thermodynamically stable C$_{\text{i}}$ \hkl<1 0 0> DB, constitutes a most likely configuration to be found in IBS.
684
685 Similar to what was previously mentioned, configurations of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB might be particularly important at higher temperatures due to the low activation energy necessary for its formation.
686 At higher temperatures the contribution of entropy to structural formation increases, which might result in a spatial separation even for defects located within the capture radius.
687 Indeed, an {\em ab initio} molecular dynamics run at \unit[900]{$^{\circ}$C} starting from configuration \RM{1}, which -- based on the above findings -- is assumed to recombine into the ground-state configuration, results in a separation of the C$_{\text{s}}$ and Si$_{\text{i}}$ DB by more than 4 neighbor distances realized in a repeated migration mechanism of annihilating and arising Si$_{\text{i}}$  DBs.
688 The atomic configurations for two different points in time are shown in Fig.~\ref{fig:md}.
689 Si atoms 1 and 2, which form the initial DB, occupy Si lattice sites in the final configuration while Si atom 3 is transferred from a regular lattice site into the interstitial lattice.
690 \begin{figure}
691 \begin{minipage}{0.49\columnwidth}
692 \includegraphics[width=\columnwidth]{md01_bonds.eps}
693 \end{minipage}
694 \begin{minipage}{0.49\columnwidth}
695 \includegraphics[width=\columnwidth]{md02_bonds.eps}\\
696 \end{minipage}\\
697 \begin{minipage}{0.49\columnwidth}
698 \begin{center}
699 $t=\unit[2230]{fs}$
700 \end{center}
701 \end{minipage}
702 \begin{minipage}{0.49\columnwidth}
703 \begin{center}
704 $t=\unit[2900]{fs}$
705 \end{center}
706 \end{minipage}
707 \caption{Atomic configurations of an {\em ab initio} molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ \hkl[1 1 0] DB (atoms 1 and 2). Equal atoms are marked by equal numbers.}
708 \label{fig:md}
709 \end{figure}
710
711 \subsection{Mobility of silicon defects}
712
713 Separated configurations of \cs{} and \si{} become even more likely if Si diffusion exhibits a low barrier of migration.
714 Concerning the mobility of the ground-state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
715 Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
716 These are of the same order of magnitude than values derived from other {\em ab initio} studies\cite{bloechl93,sahli05}.
717 The low barriers indeed enable configurations of further separated \cs{} and \si{} atoms by the highly mobile \si{} atom departing from the \cs{} defect as observed in the previously discussed MD simulation.
718
719 \subsection{Summary}
720
721 Obtained results for separated point defects in Si are in good agreement to previous theoretical work on this subject, both for intrinsic defects\cite{leung99,al-mushadani03} as well as for C point defects\cite{dal_pino93,capaz94}.
722 The ground-state configurations of these defects, i.e. the Si$_{\text{i}}$ \hkl<1 1 0> and C$_{\text{i}}$ \hkl<1 0 0> DB, have been reproduced and compare well to previous findings of theoretical investigations on Si$_{\text{i}}$\cite{leung99,al-mushadani03} as well as theoretical\cite{dal_pino93,capaz94,burnard93,leary97,jones04} and experimental\cite{watkins76,song90} studies on C$_{\text{i}}$.
723 A quantitatively improved activation energy of \unit[0.9]{eV} for a qualitatively equal migration path based on studies by Capaz et.~al.\cite{capaz94} to experimental values\cite{song90,lindner06,tipping87} ranging from \unit[0.70-0.87]{eV} reinforce their derived mechanism of diffusion for C$_{\text{i}}$ in Si.
724
725 The investigation of defect pairs indicated a general trend of defect agglomeration mainly driven by the potential of strain reduction.
726 Obtained results for the most part compare well with results gained in previous studies\cite{leary97,capaz98,mattoni2002,liu02} and show an astonishingly good agreement with experiment\cite{song90}.
727 For configurations involving two C impurities, the ground-state configurations have been found to consist of C-C bonds, which are responsible for the vast gain in energy.
728 However, based on investigations of possible migration pathways, these structures are less likely to arise than structures, in which both C atoms are interconnected by another Si atom, which is due to high activation energies of the respective pathways or alternative pathways featuring less high activation energies, which, however, involve intermediate unfavorable configurations.
729 Thus, agglomeration of C$_{\text{i}}$ is expected while the formation of C-C bonds is assumed to fail to appear by thermally activated diffusion processes.
730
731 In contrast, C$_{\text{i}}$ and Vs were found to efficiently react with each other exhibiting activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} resulting in stable C$_{\text{s}}$ configurations.
732 In addition, we observed a highly attractive interaction exhibiting a large capture radius, effective independent of the orientation and the direction of separation of the defects.
733 Accordingly, the formation of C$_{\text{s}}$ is very likely to occur.
734 Comparatively high energies necessary for the reverse process reveal this configuration to be extremely stable.
735
736 Investigating configurations of C$_{\text{s}}$ and Si$_{\text{i}}$, formation energies higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB were obtained keeping up previously derived assumptions concerning the ground state of C$_{\text{i}}$ in otherwise perfect Si.
737 However, a small capture radius was identified for the respective interaction that might prevent the recombination of defects exceeding a separation of \unit[0.6]{nm} into the ground-state configuration.
738 In addition, a rather small activation energy of \unit[0.77]{eV} allows for the formation of a C$_{\text{s}}$-Si$_{\text{i}}$ pair originating from the C$_{\text{i}}$ \hkl<1 0 0> DB structure by thermally activated processes.
739 Thus, elevated temperatures might lead to configurations of C$_{\text{s}}$ and a remaining Si atom in the near interstitial lattice, which is supported by the result of the molecular dynamics run.
740
741 % add somewhere: nearly same energies of C_i -> Si_i + C_s, Si_i mig and C_i mig
742
743
744
745
746
747
748
749
750 \section{Excursus: Competition of C$_{\text{i}}$ and C$_{\text{s}}$-Si$_{\text{i}}$}
751
752 As has been shown in section \ref{subsection:cs_si}, the energetically most favorable configuration of C$_{\text{s}}$ and Si$_{\text{i}}$ is obtained for C$_{\text{s}}$ located at the neighbored lattice site along the \hkl<1 1 0> bond chain of a Si$_{\text{i}}$ \hkl<1 1 0> DB.
753 However, the energy of formation is slightly higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground state for a C impurity introduced into otherwise perfect c-Si.
754
755 For a possible clarification of the controversial views on the participation of C$_{\text{s}}$ in the precipitation mechanism by classical potential simulations, test calculations need to ensure the proper description of the relative formation energies of combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ compared to C$_{\text{i}}$.
756 This is particularly important since the energy of formation of C$_{\text{s}}$ is drastically underestimated by the EA potential.
757 A possible occurrence of C$_{\text{s}}$ could then be attributed to a lower energy of formation of the C$_{\text{s}}$-Si$_{\text{i}}$ combination due to the low formation energy of  C$_{\text{s}}$, which is obviously wrong.
758
759 Since quantum-mechanical calculations reveal the Si$_{\text{i}}$ \hkl<1 1 0> DB as the ground-state configuration of Si$_{\text{i}}$ in Si, it is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.
760 Empirical potentials, however, predict Si$_{\text{i}}$ T to be the energetically most favorable configuration.
761 Thus, investigations of the relative energies of formation of defect pairs need to include combinations of C$_{\text{s}}$ with Si$_{\text{i}}$ T.
762 Results of VASP and EA calculations are summarized in Table~\ref{tab:defect_combos}.
763 \begin{table}
764 \begin{ruledtabular}
765 \begin{tabular}{l c c c}
766  & C$_{\text{i}}$ \hkl<1 0 0> & C$_{\text{s}}$ \& Si$_{\text{i}}$ \hkl<1 1 0> &  C$_{\text{s}}$ \& Si$_{\text{i}}$ T\\
767 \hline
768  VASP & 3.72 & 4.37 & 4.17$^{\text{a}}$/4.99$^{\text{b}}$/4.96$^{\text{c}}$ \\
769  Erhart/Albe & 3.88 & 4.93 & 5.25$^{\text{a}}$/5.08$^{\text{b}}$/4.43$^{\text{c}}$
770 \end{tabular}
771 \end{ruledtabular}
772 \caption{Formation energies of defect configurations of a single C impurity in otherwise perfect c-Si determined by classical potential and {\em ab initio} methods. The formation energies are given in electron volts. T denotes the tetrahedral and the subscripts i and s indicate the interstitial and substitutional configuration. Superscripts a, b and c denote configurations of C$_{\text{s}}$ located at the first, second and third nearest neighbored lattice site with respect to the Si$_{\text{i}}$ atom.}
773 \label{tab:defect_combos}
774 \end{table}
775 Obviously, the EA potential properly describes the relative energies of formation.
776 Combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ T are energetically less favorable than the ground-state C$_{\text{i}}$ \hkl<1 0 0> DB configuration.
777 With increasing separation distance, the energies of formation decrease.
778 However, even for non-interacting defects, the energy of formation, which is then given by the sum of the formation energies of the separated defects (\unit[4.15]{eV}) is still higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB.
779 Unexpectedly, the structure of a Si$_{\text{i}}$ \hkl<1 1 0> DB and a neighbored C$_{\text{s}}$, which is the most favored configuration of a C$_{\text{s}}$ and Si$_{\text{i}}$ DB according to the quantum-mechanical calculations, likewise constitutes an energetically favorable configuration within the EA description, which is even preferred over the two least separated configurations of C$_{\text{s}}$ and Si$_{\text{i}}$ T.
780 This is attributed to an effective reduction in strain enabled by the respective combination.
781 Quantum-mechanical results reveal a more favorable energy of fomation for the C$_{\text{s}}$ and Si$_{\text{i}}$ T (a) configuration.
782 However, this configuration is unstable involving a structural transition into the C$_{\text{i}}$ \hkl<1 1 0> interstitial, thus, not maintaining the tetrahedral Si nor the substitutional C defect.
783
784 Thus, the underestimated energy of formation of C$_{\text{s}}$ within the EA calculation does not pose a serious limitation in the present context.
785 Since C is introduced into a perfect Si crystal and the number of particles is conserved in simulation, the creation of C$_{\text{s}}$ is accompanied by the creation of Si$_{\text{i}}$, which is energetically less favorable than the ground state, i.e. the C$_{\text{i}}$ \hkl<1 0 0> DB configuration, for both, the EA and {\em ab initio} treatment.
786 In either case, no configuration more favorable than the C$_{\text{i}}$ \hkl<1 0 0> DB has been found.
787 Thus, a proper description with respect to the relative energies of formation is assumed for the EA potential.
788
789
790 \section{Classical potential calculations on the SiC precipitation in Si}
791 \label{sec:md}
792
793 The MD technique is used to gain insight into the behavior of C existing in different concentrations in c-Si on the microscopic level at finite temperatures.
794 Simulations are restricted to classical potential simulations using the procedure introduced in section \ref{meth}.
795 In a first step, simulations are performed, which try to mimic the conditions during IBS.
796 Results reveal limitations of the employed potential and MD in general.
797 With reference to the results of the last section, a workaround is discussed.
798 The approach is follwed and, finally, results gained by the MD simulations are interpreted drawing special attention to the established controversy concerning precipitation of SiC in Si.
799
800 \subsection{Molecular dynamics simulations}
801
802 Fig.~\ref{fig:450} shows the radial distribution functions of simulations, in which C was inserted at \unit[450]{$^{\circ}$C}, an operative and efficient temperature in IBS\cite{lindner99}, for all three insertion volumes.
803 \begin{figure}
804 \begin{center}
805 \subfigure[]{\label{fig:450:a}
806 \includegraphics[width=\columnwidth]{sic_prec_450_si-si_c-c.ps}
807 }
808 \subfigure[]{\label{fig:450:b}
809 \includegraphics[width=\columnwidth]{sic_prec_450_si-c.ps}
810 }
811 \end{center}
812 \caption{Radial distribution function for C-C and Si-Si (Fig.~\ref{fig:450:a}) as well as Si-C (Fig.~\ref{fig:450:b}) pairs for C inserted at \unit[450]{$^{\circ}$C}. In the latter case the resulting C-Si distances for a C$_{\text{i}}$ \hkl<1 0 0> DB are given additionally and the Si-C cut-off distance is marked by an arrow. Insets in Fig.~\ref{fig:450:a} show magnified regions of the respective distribution functions.}
813 \label{fig:450}
814 \end{figure}
815 There is no significant difference between C insertion into $V_2$ and $V_3$.
816 Thus, in the following, the focus is on low ($V_1$) and high ($V_2$, $V_3$) C concentration simulations only.
817
818 In the low C concentration simulation the number of C-C bonds is small, as can be seen in the upper part of Fig.~\ref{fig:450:a}.
819 On average, there are only 0.2 C atoms per Si unit cell.
820 By comparing the Si-C peaks of the low concentration simulation with the resulting Si-C distances of a C$_{\text{i}}$ \hkl<1 0 0> DB in Fig.~\ref{fig:450:b}, it becomes evident that the structure is clearly dominated by this kind of defect.
821 One exceptional peak at \unit[0.26]{nm} (marked with an arrow in Fig.~\ref{fig:450:b}) exists, which is due to the Si-C cut-off, at which the interaction is pushed to zero.
822 Investigating the C-C peak at \unit[0.31]{nm}, which is also available for low C concentrations as can be seen in the upper inset of Fig.~\ref{fig:450:a}, reveals a structure of two concatenated, differently oriented C$_{\text{i}}$ \hkl<1 0 0> DBs to be responsible for this distance.
823 Additionally, in the inset of the bottom part of Fig.\ref{fig:450:a} the Si-Si radial distribution shows non-zero values at distances around \unit[0.3]{nm}, which, again, is due to the DB structure stretching two neighbored Si atoms.
824 This is accompanied by a reduction of the number of bonds at regular Si distances of c-Si.
825 A more detailed description of the resulting C-Si distances in the C$_{\text{i}}$ \hkl<1 0 0> DB configuration and the influence of the defect on the structure is available in a previous study\cite{zirkelbach09}.
826
827 For high C concentrations, the defect concentration is likewise increased and a considerable amount of damage is introduced in the insertion volume.
828 A subsequent superposition of defects generates new displacement arrangements for the C-C as well as Si-C pair distances, which become hard to categorize and trace and obviously lead to a broader distribution.
829 Short range order indeed is observed, i.e. the large amount of strong neighbored C-C bonds at \unit[0.15]{nm} as expected in graphite or diamond and Si-C bonds at \unit[0.19]{nm} as expected in SiC, but hardly visible is the long range order.
830 This indicates the formation of an amorphous SiC-like phase.
831 In fact, resulting Si-C and C-C radial distribution functions compare quite well with these obtained by cascade amorphized and melt-quenched amorphous SiC using a modified Tersoff potential\cite{gao02}.
832
833 In both cases, i.e. low and high C concentrations, the formation of 3C-SiC fails to appear.
834 With respect to the precipitation model, the formation of C$_{\text{i}}$ \hkl<1 0 0> DBs indeed occurs for low C concentrations.
835 However, sufficient defect agglomeration is not observed.
836 For high C concentrations, a rearrangement of the amorphous SiC structure, which is not expected at prevailing temperatures, and a transition into 3C-SiC is not observed either.
837 On closer inspection two reasons for describing this obstacle become evident.
838
839 First of all, there is the time scale problem inherent to MD in general.
840 To minimize the integration error, the discretized time step must be chosen smaller than the reciprocal of the fastest vibrational mode resulting in a time step of \unit[1]{fs} for the investigated materials system.
841 Limitations in computer power result in a slow propagation in phase space.
842 Several local minima exist, which are separated by large energy barriers.
843 Due to the low probability of escaping such a local minimum, a single transition event corresponds to a multiple of vibrational periods.
844 Long-term evolution, such as a phase transformation and defect diffusion, in turn, are made up of a multiple of these infrequent transition events.
845 Thus, time scales to observe long-term evolution are not accessible by traditional MD.
846 New accelerated methods have been developed to bypass the time scale problem retaining proper thermodynamic sampling\cite{voter97,voter97_2,voter98,sorensen2000,wu99}.
847
848 However, the applied potential comes up with an additional limitation, as previously mentioned in the introduction.
849 %The cut-off function of the short range potential limits the interaction to nearest neighbors, which results in overestimated and unphysical high forces between neighbored atoms.
850 The cut-off function of the short range potential limits the interaction to nearest neighbors.
851 Since the total binding energy is, thus, accommodated within this short distance, which according to the universal energy relation would usually correspond to a much larger distance, unphysical high forces between two neighbored atoms arise.
852 While cohesive and formational energies are often well described, these effects increase for non-equilibrium structures and dynamics.
853 This behavior, as observed and discussed for the Tersoff potential\cite{tang95,mattoni2007}, is supported by the overestimated activation energies necessary for C diffusion as investigated in section \ref{subsection:cmob}.
854 Indeed, it is not only the strong, hard to break C-C bond inhibiting C diffusion and further rearrangements in the case of the high C concentration simulations.
855 This is also true for the low concentration simulations dominated by the occurrence of C$_{\text{i}}$ \hkl<1 0 0> DBs spread over the whole simulation volume, which are unable to agglomerate due to the high migration barrier.
856
857 \subsection{Increased temperature simulations}
858
859 Due to the problem of slow phase space propagation, which is enhanced by the employed potential, pushing the time scale to the limits of computational resources or applying one of the above mentioned accelerated dynamics methods exclusively, might not be sufficient.
860 Instead, higher temperatures are utilized to compensate overestimated diffusion barriers.
861 These are overestimated by a factor of 2.4 to 3.5.
862 Scaling the absolute temperatures accordingly results in maximum temperatures of \unit[1460-2260]{$^{\circ}$C}.
863 Since melting already occurs shortly below the melting point of the potential (2450 K)\cite{albe_sic_pot} due to the presence of defects, a maximum temperature of \unit[2050]{$^{\circ}$C} is used.
864
865 Fig.~\ref{fig:tot} shows the resulting radial distribution functions for various temperatures.
866 \begin{figure}
867 \begin{center}
868 \subfigure[]{\label{fig:tot:si-c}
869 \includegraphics[width=\columnwidth]{tot_pc_thesis.ps}
870 }
871 \subfigure[]{\label{fig:tot:si-si}
872 \includegraphics[width=\columnwidth]{tot_pc3_thesis.ps}
873 }
874 \subfigure[]{\label{fig:tot:c-c}
875 \includegraphics[width=\columnwidth]{tot_pc2_thesis.ps}
876 }
877 \end{center}
878 \caption{Radial distribution function for Si-C (Fig.~\ref{fig:tot:si-c}), Si-Si (Fig.~\ref{fig:tot:si-si}) and C-C (Fig.~\ref{fig:tot:c-c}) pairs for the C insertion into $V_1$ at elevated temperatures. For the Si-C distribution resulting Si-C distances of a C$_{\text{s}}$ configuration are plotted. In the C-C distribution dashed arrows mark C-C distances occurring from C$_{\text{i}}$ \hkl<1 0 0> DB combinations, solid arrows mark C-C distances of pure C$_{\text{s}}$ combinations and the dashed line marks C-C distances of a C$_{\text{i}}$ and C$_{\text{s}}$ combination.}
879 \label{fig:tot}
880 \end{figure}
881 In Fig.~\ref{fig:tot:si-c}, the first noticeable and promising change observed for the Si-C bonds is the successive decline of the artificial peak at the cut-off distance with increasing temperature.
882 Obviously, sufficient kinetic energy is provided to affected atoms that are enabled to escape the cut-off region.
883 Additionally, a more important structural change was observed, which is illustrated in the two shaded areas in Fig.~\ref{fig:tot:si-c}.
884 Obviously, the structure obtained at \unit[450]{$^{\circ}$C}, which was found to be dominated by C$_{\text{i}}$, transforms into a C$_{\text{s}}$ dominated structure with increasing temperature.
885 Comparing the radial distribution at \unit[2050]{$^{\circ}$C} to the resulting bonds of C$_{\text{s}}$ in c-Si excludes all possibility of doubt.
886
887 The phase transformation is accompanied by an arising Si-Si peak at \unit[0.325]{nm} in Fig.~\ref{fig:tot:si-si}, which corresponds to the distance of next neighbored Si atoms along the \hkl<1 1 0> bond chain with C$_{\text{s}}$ in between.
888 Since the expected distance of these Si pairs in 3C-SiC is \unit[0.308]{nm}, the existing SiC structures embedded in the c-Si host are stretched.
889
890 According to the C-C radial distribution displayed in Fig.~\ref{fig:tot:c-c}, agglomeration of C fails to appear even for elevated temperatures, as can be seen on the total amount of C pairs within the investigated separation range, which does not change significantly.
891 However, a small decrease in the amount of neighbored C pairs can be observed with increasing temperature.
892 This high temperature behavior is promising since breaking of these diamond- and graphite-like bonds is mandatory for the formation of 3C-SiC.
893 Obviously, acceleration of the dynamics occurred by supplying additional kinetic energy.
894 A slight shift towards higher distances can be observed for the maximum located shortly above \unit[0.3]{nm}.
895 Arrows with dashed lines mark C-C distances resulting from C$_{\text{i}}$ \hkl<1 0 0> DB combinations while arrows with solid lines mark distances arising from combinations of C$_{\text{s}}$.
896 The continuous dashed line corresponds to the distance of C$_{\text{s}}$ and a neighbored C$_{\text{i}}$ DB.
897 Obviously, the shift of the peak is caused by the advancing transformation of the C$_{\text{i}}$ DB into the C$_{\text{s}}$ defect.
898 Quite high g(r) values are obtained for distances in between the continuous dashed line and the first arrow with a solid line.
899 For the most part, these structures can be identified as configurations of C$_{\text{s}}$ with either another C atom that basically occupies a Si lattice site but is displaced by a Si interstitial residing in the very next surrounding or a C atom that nearly occupies a Si lattice site forming a defect other than the \hkl<1 0 0>-type with the Si atom.
900 Again, this is a quite promising result since the C atoms are taking the appropriate coordination as expected in 3C-SiC.
901
902 Fig.~\ref{fig:v2} displays the radial distribution for high C concentrations.
903 \begin{figure}
904 \begin{center}
905 \subfigure[]{\label{fig:v2:si-c}
906 \includegraphics[width=\columnwidth]{12_pc_thesis.ps}
907 }
908 \subfigure[]{\label{fig:v2:c-c}
909 \includegraphics[width=\columnwidth]{12_pc_c_thesis.ps}
910 }
911 \end{center}
912 \caption{Radial distribution function for Si-C (Fig.~\ref{fig:v2:si-c}) and C-C (Fig.~\ref{fig:v2:c-c}) pairs for the C insertion into $V_2$ at elevated temperatures. Arrows mark the respective cut-off distances.}
913 \label{fig:v2}
914 \end{figure}
915 \begin{figure}
916 \begin{center}
917 \includegraphics[width=\columnwidth]{2050.eps}
918 \end{center}
919 \caption{Cross section along the \hkl(1 -1 0) plane of the atomic structure of the high concentration simulation for a C insertion temperature of \unit[2050]{$^{\circ}$C}.}
920 \label{fig:v2as}
921 \end{figure}
922 A cross-section along the \hkl(1 -1 0) plane of the atomic structure for a  C insertion temperature of \unit[2050]{$^{\circ}$C} is shown in Fig.~\ref{fig:v2as}.
923 The amorphous SiC-like phase remains.
924 No significant change in structure is observed.
925 However, the decrease of the cut-off artifact and slightly sharper peaks observed with increasing temperature, in turn, indicate a slight acceleration of the dynamics realized by the supply of kinetic energy.
926 However, it is not sufficient to enable the amorphous to crystalline transition.
927 In contrast, even though bonds of neighbored C atoms could be partially dissolved in the system exhibiting low C concentrations, the amount of neighbored C pairs even increased in the latter case.
928 Moreover, the C-C peak at \unit[0.252]{nm} in Fig.~\ref{fig:v2:c-c}, which gets slightly more distinct, equals the second nearest neighbor distance in diamond and indeed is made up by a structure of two C atoms interconnected by a third C atom.
929 Obviously, processes that appear to be non-conducive are likewise accelerated in a system, in which high amounts of C are incorporated within a short period of time, which is accompanied by a concurrent introduction of accumulating, for the reason of time non-degradable damage.
930 % non-degradable, non-regenerative, non-recoverable
931 Thus, for these systems even larger time scales, which are not accessible within traditional MD, must be assumed for an amorphous to crystalline transition or structural evolution in general.
932 % maybe put description of bonds in here ...
933 Nevertheless, some results likewise indicate the acceleration of other processes that, again, involve C$_{\text{s}}$.
934 The increasingly pronounced Si-C peak at \unit[0.35]{nm} in Fig.~\ref{fig:v2:si-c} corresponds to the distance of a C and a Si atom interconnected by another Si atom.
935 Additionally, the C-C peak at \unit[0.31]{nm} in Fig.~\ref{fig:v2:c-c} corresponds to the distance of two C atoms bound to a central Si atom.
936 For both structures the C atom appears to reside on a substitutional rather than an interstitial lattice site.
937 However, huge amounts of damage hamper identification.
938 The alignment of the investigated structures to the c-Si host is lost in many cases, which suggests the necessity of much more time for structural evolution to maintain the topotactic orientation of the precipitate.
939
940 \subsection{Summary of classical potential calculations}
941
942 Investigations are targeted at the initially stated controversy of SiC precipitation, i.e. whether precipitation occurs abruptly after enough C$_{\text{i}}$ agglomerated or after a successive agglomeration of C$_{\text{s}}$ on usual Si lattice sites (and Si$_{\text{i}}$) followed by a contraction into incoherent SiC.
943 Results of the previous {\em ab initio} study on defects and defect combinations in C implanted Si suggest C$_{\text{s}}$ to play a decisive role in the precipitation of SiC in Si.
944 To support previous assumptions, MD simulations, which are capable of modeling the necessary amount of atoms, i.e. the precipitate and the surrounding c-Si structure, have been employed in the current study.
945
946 In a previous comparative study\cite{zirkelbach10}, we have shown that the utilized empirical potential fails to describe some selected processes.
947 Thus, limitations of the employed potential have been further investigated and taken into account in the present study.
948 We focussed on two major shortcomings: the overestimated activation energy and the improper description of intrinsic and C point defects in Si.
949 Overestimated forces between nearest neighbor atoms that are expected for short range potentials\cite{mattoni2007} have been confirmed to influence the C$_{\text{i}}$ diffusion.
950 The migration barrier was estimated to be larger by a factor of 2.4 to 3.5 compared to highly accurate quantum-mechanical calculations\cite{zirkelbach10}.
951 Concerning point defects, the drastically underestimated formation energy of C$_{\text{s}}$ and deficiency in the description of the Si$_{\text{i}}$ ground state necessitated further investigations on structures that are considered important for the problem under study.
952 It turned out that the EA potential still favors a C$_{\text{i}}$ \hkl<1 0 0> DB over a C$_{\text{s}}$-Si$_{\text{i}}$ configuration, which, thus, does not constitute any limitation for the simulations aiming to resolve the present controversy of the proposed SiC precipitation models.
953
954 MD simulations at temperatures used in IBS resulted in structures that were dominated by the C$_{\text{i}}$ \hkl<1 0 0> DB and its combinations if C is inserted into the total volume.
955 Incorporation into volumes $V_2$ and $V_3$ led to an amorphous SiC-like structure within the respective volume.
956 To compensate overestimated diffusion barriers, we performed simulations at accordingly increased temperatures.
957 No significant change was observed for high C concentrations.
958 The amorphous phase is maintained.
959 Due to the incorporation of a huge amount of C into a small volume within a short period of time, damage is produced, which obviously decelerates structural evolution.
960 For the low C concentrations, time scales are still too low to observe C agglomeration sufficient for SiC precipitation, which is attributed to the slow phase space propagation inherent to MD in general.
961 However, we observed a phase transition of the C$_{\text{i}}$-dominated into a clearly C$_{\text{s}}$-dominated structure.
962 The amount of substitutionally occupied C atoms increases with increasing temperature.
963 Entropic contributions are assumed to be responsible for these structures at elevated temperatures that deviate from the ground state at 0 K.
964 Indeed, in the {\em ab initio} MD simulation performed at \unit[900]{$^{\circ}$C}, we observed the departing of a Si$_{\text{i}}$ \hkl<1 1 0> DB located next to a C$_{\text{s}}$ atom instead of a recombination into the ground-state configuration, i.e. a C$_{\text{i}}$ \hkl<1 0 0> DB.
965
966 \section{Conclusions}
967
968 Results of the present atomistic simulation study based on first-principles as well as classical potential methods allow to draw conclusions on mechanisms involved in the process of SiC conversion in Si.
969 Agglomeration of C$_{\text{i}}$ is energetically favored and enabled by a low activation energy for migration.
970 Although ion implantation is a process far from thermodynamic equilibrium, which might result in phases not described by the Si/C phase diagram, i.e. a C phase in Si, high activation energies are believed to be responsible for a low probability of the formation of C-C clusters.
971
972 In the context of the initially stated controversy present in the precipitation model, quantum-mechanical results suggest an increased participation of C$_{\text{s}}$ already in the initial stage due to its high probability of incidence.
973 %
974 In the MD calculations, increased temperatures simulate the conditions prevalent in IBS that deviate the system from thermodynamic equilibrium enabling C$_{\text{i}}$ to turn into C$_{\text{s}}$.
975 %
976 The associated emission of Si$_{\text{i}}$ serves two needs: as a vehicle for other C$_{\text{s}}$ atoms and as a supply of Si atoms needed elsewhere to form the SiC structure.
977 As for the vehicle, Si$_{\text{i}}$ is believed to react with C$_{\text{s}}$ turning it into highly mobile C$_{\text{i}}$ again, allowing for the rearrangement of the C atom.
978 The rearrangement is crucial to end up in a configuration of C atoms only occupying substitutionally the lattice sites of one of the two fcc lattices that build up the diamond lattice.
979 % TODO: add SiC structure info to intro
980 On the other hand, the conversion of some region of Si into SiC by substitutional C is accompanied by a reduction of the volume since SiC exhibits a \unit[20]{\%} smaller lattice constant than Si.
981 The reduction in volume is compensated by excess Si$_{\text{i}}$ serving as building blocks for the surrounding Si host or a further formation of SiC.
982
983
984
985
986 It is worth to mention that there is no contradiction to results of the HREM studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}.
987 Regions showing dark contrasts in an otherwise undisturbed Si lattice are attributed to C atoms in the interstitial lattice.
988 However, there is no particular reason for the C species to reside in the interstitial lattice.
989 Contrasts are also assumed for Si$_{\text{i}}$.
990 Once precipitation occurs, regions of dark contrasts disappear in favor of Moir\'e patterns indicating 3C-SiC in c-Si due to the mismatch in the lattice constant.
991 Until then, however, these regions are either composed of stretched coherent SiC and interstitials or of already contracted incoherent SiC surrounded by Si and interstitials, where the latter is too small to be detected in HREM.
992 In both cases Si$_{\text{i}}$ might be attributed a third role, which is the partial compensation of tensile strain that is present either in the stretched SiC or at the interface of the contracted SiC and the Si host.
993
994 In addition, the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate is satisfied by the mechanism of successive positioning of C$_{\text{s}}$.
995 In contrast, there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.
996
997 Moreover, results of the MD simulations at different temperatures and C concentrations can be correlated to experimental findings.
998 % postannealing less efficient than hot implantation
999 Experimental studies revealed increased implantation temperatures to be more efficient than postannealing methods for the formation of topotactically aligned precipitates\cite{kimura82,eichhorn02}.
1000 In particular, restructuring of strong C-C bonds is affected\cite{deguchi92}, which preferentially arise if additional kinetic energy provided by an increase of the implantation temperature is missing to accelerate or even enable atomic rearrangements.
1001 We assume this to be related to the problem of slow structural evolution encountered in the high C concentration simulations due to the insertion of high amounts of C into a small volume within a short period of time resulting in essentially no time for the system to rearrange.
1002 % rt implantation + annealing
1003 More substantially, understoichiometric implantations at room temperature into preamorphized Si followed by a solid phase epitaxial regrowth step at \degc{700} result in Si$_{1-x}$C$_x$ layers in the diamond cubic phase with C residing on substitutional Si lattice sites \cite{strane93}.
1004 The strained structure is found to be stable up to \degc{810}.
1005 Coherent clustering followed by precipitation is suggested if these structures are annealed at higher temperatures.
1006 %
1007 Similar, implantations of an understoichiometric dose at room temperature followed by thermal annealing results in small spherical sized C$_{\text{i}}$ agglomerates at temperatures below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size at temperatures above \unit[700]{$^{\circ}$C}\cite{werner96}.
1008 Since, however, the implantation temperature is considered more efficient than the postannealing temperature, SiC precipitates are expected and indeed observed for as-implanted samples in implantations performed at \unit[450]{$^{\circ}$C}\cite{lindner99,lindner01}.
1009 Thus, implanted C is likewise expected to occupy substitutionally usual Si lattice sites right from the start for implantations into c-Si at elevated temperatures.
1010
1011 Thus, we propose an increased participation of C$_{\text{s}}$ already in the initial stages of the implantation process at temperatures above \unit[450]{$^{\circ}$C}, the temperature most applicable for the formation of SiC layers of high crystalline quality and topotactical alignment\cite{lindner99}.
1012 Thermally activated, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by Si$_{\text{i}}$.
1013 The associated emission of Si$_{\text{i}}$ is needed for several reasons.
1014 For the agglomeration and rearrangement of C, Si$_{\text{i}}$ is needed to turn C$_{\text{s}}$ into highly mobile C$_{\text{i}}$ again.
1015 Since the conversion of a coherent SiC structure, i.e. C$_{\text{s}}$ occupying the Si lattice sites of one of the two fcc lattices that build up the c-Si diamond lattice, into incoherent SiC is accompanied by a reduction in volume, large amounts of strain are assumed to reside in the coherent as well as at the surface of the incoherent structure.
1016 Si$_{\text{i}}$ serves either as a supply of Si atoms needed in the surrounding of the contracted precipitates or as an interstitial defect minimizing the emerging strain energy of a coherent precipitate.
1017 The latter has been directly identified in the present simulation study, i.e. structures of two C$_{\text{s}}$ atoms and Si$_{\text{i}}$ located in the vicinity.
1018
1019 \section{Summary}
1020
1021 In summary, C and Si point defects in Si, combinations of these defects and diffusion processes within such configurations have been investigated.
1022 We have shown that C interstitials in Si tend to agglomerate, which is mainly driven by a reduction of strain.
1023 Investigations of migration pathways, however, allow to conclude that C clustering is hindered due to high activation energies of the respective diffusion processes.
1024 A highly attractive interaction and a large capture radius has been identified for the C$_{\text{i}}$ \hkl<1 0 0> DB and the vacancy indicating a high probability for the formation of C$_{\text{s}}$.
1025 In contrast, a rapidly decreasing interaction with respect to the separation distance has been identified for C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB resulting in a low probability of defects exhibiting respective separations to transform into the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground-state configuration for a C atom introduced into otherwise perfect Si. 
1026 An increased participation of \cs{} during implantation at elevated temperatures is concluded.
1027
1028 Results of the classical potential MD simulations reinforce conclusions drawn from first-principles calculations.
1029 Increased temperatures were utilized to compensate overestimated diffusion barriers and simulate conditions of the IBS process, which is far from equilibrium.
1030 A transition of a \ci-dominated structure at low temperatures into a \cs-dominated structure at high temperatures was observed.
1031 The associated \si{} existing in structures of the high temperature simulations is directly identified to compensate tensile strain available in stretched structures of \cs, which are considered initial, coherently aligned SiC precipitates.
1032
1033 We conclude that precipitation occurs by successive agglomeration of C$_{\text{s}}$ as already proposed by Nejim et~al.\cite{nejim95}.
1034 However, agglomeration and rearrangement is enabled by mobile C$_{\text{i}}$, which has to be present at the same time and is formed by recombination of C$_{\text{s}}$ and Si$_{\text{i}}$.
1035 In contrast to assumptions of an abrupt precipitation of an agglomerate of C$_{\text{i}}$\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}, however, structural evolution is believed to occur by a successive occupation of usual Si lattice sites with substitutional C.
1036 This mechanism satisfies the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate, whereas there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.
1037
1038
1039
1040 % ----------------------------------------------------
1041 \section*{Acknowledgment}
1042 We gratefully acknowledge financial support by the Bayerische Forschungsstiftung (DPA-61/05) and the Deutsche Forschungsgemeinschaft (DFG SCHM 1361/11).
1043 %Meta Schnell is greatly acknowledged for a critical revision of the present manuscript.
1044
1045 % --------------------------------- references -------------------
1046
1047 %\bibliography{../../bibdb/bibdb}{}
1048 %\bibliographystyle{h-physrev3}
1049
1050
1051 \begin{thebibliography}{100}
1052
1053 \bibitem{edgar92}
1054 J.~H. Edgar,
1055 \newblock J. Mater. Res. {\bf 7}, 235 (1992).
1056
1057 \bibitem{morkoc94}
1058 H.~Morko\c{c}, S.~Strite, G.~B. Gao, M.~E. Lin, B.~Sverdlov, and M.~Burns,
1059 \newblock J. Appl. Phys. {\bf 76}, 1363 (1994).
1060
1061 \bibitem{wesch96}
1062 W.~Wesch,
1063 \newblock Nucl. Instrum. Methods Phys. Res. B {\bf 116}, 305 (1996).
1064
1065 \bibitem{capano97}
1066 M.~A. Capano and R.~J. Trew,
1067 \newblock MRS Bull. {\bf 22}, 19 (1997).
1068
1069 \bibitem{park98}
1070 Y.~S. Park,
1071 \newblock {\em Si{C} Materials and Devices} (Academic Press, San Diego, 1998).
1072
1073 \bibitem{fischer90}
1074 G.~R. Fisher and P.~Barnes,
1075 \newblock Philos. Mag. B {\bf 61}, 217 (1990).
1076
1077 \bibitem{powell90}
1078 J.~A. Powell, D.~J. Larkin, L.~G. Matus, W.~J. Choyke, J.~L. Bradshaw,
1079   L.~Henderson, M.~Yoganathan, J.~Yang, and P.~Pirouz,
1080 \newblock Appl. Phys. Lett. {\bf 56}, 1353 (1990).
1081
1082 \bibitem{fissel95}
1083 A.~Fissel, U.~Kaiser, E.~Ducke, B.~Schr{\"{o}}ter, and W.~Richter,
1084 \newblock J. Cryst. Growth {\bf 154}, 72 (1995).
1085
1086 \bibitem{fissel95_apl}
1087 A.~Fissel, B.~Schr{\"{o}}ter, and W.~Richter,
1088 \newblock Appl. Phys. Lett. {\bf 66}, 3182 (1995).
1089
1090 \bibitem{nishino83}
1091 S.~Nishino, J.~A. Powell, and H.~A. Will,
1092 \newblock Appl. Phys. Lett. {\bf 42}, 460 (1983).
1093
1094 \bibitem{nishino87}
1095 S.~Nishino, H.~Suhara, H.~Ono, and H.~Matsunami,
1096 \newblock J. Appl. Phys. {\bf 61}, 4889 (1987).
1097
1098 \bibitem{kitabatake93}
1099 M.~Kitabatake, M.~Deguchi, and T.~Hirao,
1100 \newblock J. Appl. Phys. {\bf 74}, 4438 (1993).
1101
1102 \bibitem{borders71}
1103 J.~A. Borders, S.~T. Picraux, and W.~Beezhold,
1104 \newblock Appl. Phys. Lett. {\bf 18}, 509 (1971).
1105
1106 \bibitem{lindner99}
1107 J.~K.~N. Lindner and B.~Stritzker,
1108 \newblock Nucl. Instrum. Methods Phys. Res. B {\bf 147}, 249 (1999).
1109
1110 \bibitem{lindner01}
1111 J.~K.~N. Lindner,
1112 \newblock Nucl. Instrum. Methods Phys. Res. B {\bf 178}, 44 (2001).
1113
1114 \bibitem{lindner02}
1115 J.~K.~N. Lindner,
1116 \newblock Appl. Phys. A {\bf 77}, 27 (2003).
1117
1118 \bibitem{lindner99_2}
1119 J.~K.~N. Lindner and B.~Stritzker,
1120 \newblock Nucl. Instrum. Methods Phys. Res. B {\bf 148}, 528 (1999).
1121
1122 \bibitem{werner96}
1123 P.~Werner, R.~K{\"{o}}gler, W.~Skorupa, and D.~Eichler,
1124 \newblock in {\em Proceedings of the 11th International Conference on Ion Implantation Technology}, pp. 675--678, 1996.
1125
1126 \bibitem{werner97}
1127 P.~Werner, S.~Eichler, G.~Mariani, R.~K{\"{o}}gler, and W.~Skorupa,
1128 \newblock Appl. Phys. Lett. {\bf 70}, 252 (1997).
1129
1130 \bibitem{eichhorn99}
1131 F.~Eichhorn, N.~Schell, W.~Matz, and R.~K{\"{o}}gler,
1132 \newblock J. Appl. Phys. {\bf 86}, 4184 (1999).
1133
1134 \bibitem{koegler03}
1135 R.~K{\"{o}}gler, F.~Eichhorn, J.~R. Kaschny, A.~M{\"{u}}cklich, H.~Reuther,
1136   W.~Skorupa, C.~Serre, and A.~Perez-Rodriguez,
1137 \newblock Appl. Phys. A: Mater. Sci. Process. {\bf 76}, 827 (2003).
1138
1139 \bibitem{strane94}
1140 J.~W. Strane, H.~J. Stein, S.~R. Lee, S.~T. Picraux, J.~K. Watanabe, and J.~W.
1141   Mayer,
1142 \newblock J. Appl. Phys. {\bf 76}, 3656 (1994).
1143
1144 \bibitem{guedj98}
1145 C.~Guedj, M.~W. Dashiell, L.~Kulik, J.~Kolodzey, and A.~Hairie,
1146 \newblock J. Appl. Phys. {\bf 84}, 4631 (1998).
1147
1148 \bibitem{nejim95}
1149 A.~Nejim, P.~L.~F. Hemment, and J.~Stoemenos,
1150 \newblock Appl. Phys. Lett. {\bf 66}, 2646 (1995).
1151
1152 \bibitem{strane96}
1153 J.~W. Strane, S.~R. Lee, H.~J. Stein, S.~T. Picraux, J.~K. Watanabe, and J.~W.
1154   Mayer,
1155 \newblock J. Appl. Phys. {\bf 79}, 637 (1996).
1156
1157 \bibitem{laveant2002}
1158 P.~Lav\'eant, G.~Gerth, P.~Werner, and U.~G{\"{o}}sele,
1159 \newblock Mater. Sci. Eng., B {\bf 89}, 241 (2002).
1160
1161 \bibitem{bar-yam84}
1162 Y.~Bar-Yam and J.~D. Joannopoulos,
1163 \newblock Phys. Rev. Lett. {\bf 52}, 1129 (1984).
1164
1165 \bibitem{bar-yam84_2}
1166 Y.~Bar-Yam and J.~D. Joannopoulos,
1167 \newblock Phys. Rev. B {\bf 30}, 1844 (1984).
1168
1169 \bibitem{car84}
1170 R.~Car, P.~J. Kelly, A.~Oshiyama, and S.~T. Pantelides,
1171 \newblock Phys. Rev. Lett. {\bf 52}, 1814 (1984).
1172
1173 \bibitem{batra87}
1174 I.~P. Batra, F.~F. Abraham, and S.~Ciraci,
1175 \newblock Phys. Rev. B {\bf 35}, 9552 (1987).
1176
1177 \bibitem{bloechl93}
1178 P.~E. Bl{\"o}chl, E.~Smargiassi, R.~Car, D.~B. Laks, W.~Andreoni, and S.~T.
1179   Pantelides,
1180 \newblock Phys. Rev. Lett. {\bf 70}, 2435 (1993).
1181
1182 \bibitem{tang97}
1183 M.~Tang, L.~Colombo, J.~Zhu, and T.~Diaz de~la Rubia,
1184 \newblock Phys. Rev. B {\bf 55}, 14279 (1997).
1185
1186 \bibitem{leung99}
1187 W.-K. Leung, R.~J. Needs, G.~Rajagopal, S.~Itoh, and S.~Ihara,
1188 \newblock Phys. Rev. Lett. {\bf 83}, 2351 (1999).
1189
1190 \bibitem{colombo02}
1191 L.~Colombo,
1192 \newblock Annu. Rev. Mater. Res. {\bf 32}, 271 (2002).
1193
1194 \bibitem{goedecker02}
1195 S.~Goedecker, T.~Deutsch, and L.~Billard,
1196 \newblock Phys. Rev. Lett. {\bf 88}, 235501 (2002).
1197
1198 \bibitem{al-mushadani03}
1199 O.~K. Al-Mushadani and R.~J. Needs,
1200 \newblock Phys. Rev. B {\bf 68}, 235205 (2003).
1201
1202 \bibitem{hobler05}
1203 G.~Hobler and G.~Kresse,
1204 \newblock Mater. Sci. Eng., B {\bf 124-125}, 368 (2005).
1205
1206 \bibitem{sahli05}
1207 B.~Sahli and W.~Fichtner,
1208 \newblock Phys. Rev. B {\bf 72}, 245210 (2005).
1209
1210 \bibitem{posselt08}
1211 M.~Posselt, F.~Gao, and H.~Bracht,
1212 \newblock Phys. Rev. B {\bf 78}, 035208 (2008).
1213
1214 \bibitem{ma10}
1215 S.~Ma and S.~Wang,
1216 \newblock Phys. Rev. B {\bf 81}, 193203 (2010).
1217
1218 \bibitem{mazzarolo01}
1219 M.~Mazzarolo, L.~Colombo, G.~Lulli, and E.~Albertazzi,
1220 \newblock Phys. Rev. B {\bf 63}, 195207 (2001).
1221
1222 \bibitem{holmstroem08}
1223 E.~Holmstr{\"o}m, A.~Kuronen, and K.~Nordlund,
1224 \newblock Phys. Rev. B {\bf 78}, 045202 (2008).
1225
1226 \bibitem{tersoff90}
1227 J.~Tersoff,
1228 \newblock Phys. Rev. Lett. {\bf 64}, 1757 (1990).
1229
1230 \bibitem{dal_pino93}
1231 A.~{Dal Pino}, A.~M. Rappe, and J.~D. Joannopoulos,
1232 \newblock Phys. Rev. B {\bf 47}, 12554 (1993).
1233
1234 \bibitem{capaz94}
1235 R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos,
1236 \newblock Phys. Rev. B {\bf 50}, 7439 (1994).
1237
1238 \bibitem{burnard93}
1239 M.~J. Burnard and G.~G. DeLeo,
1240 \newblock Phys. Rev. B {\bf 47}, 10217 (1993).
1241
1242 \bibitem{leary97}
1243 P.~Leary, R.~Jones, S.~{\"O}berg, and V.~J.~B. Torres,
1244 \newblock Phys. Rev. B {\bf 55}, 2188 (1997).
1245
1246 \bibitem{capaz98}
1247 R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos,
1248 \newblock Phys. Rev. B {\bf 58}, 9845 (1998).
1249
1250 \bibitem{zhu98}
1251 J.~Zhu,
1252 \newblock Comput. Mater. Sci. {\bf 12}, 309 (1998).
1253
1254 \bibitem{mattoni2002}
1255 A.~Mattoni, F.~Bernardini, and L.~Colombo,
1256 \newblock Phys. Rev. B {\bf 66}, 195214 (2002).
1257
1258 \bibitem{park02}
1259 S.~Y. Park, J.~D'Arcy-Gall, D.~Gall, J.~A. N.~T. Soares, Y.-W. Kim, H.~Kim,
1260   P.~Desjardins, J.~E. Greene, and S.~G. Bishop,
1261 \newblock J. Appl. Phys. {\bf 91}, 5716 (2002).
1262
1263 \bibitem{jones04}
1264 R.~Jones, B.~J. Coomer, and P.~R. Briddon,
1265 \newblock J. Phys.: Condens. Matter {\bf 16}, S2643 (2004).
1266
1267 \bibitem{chirita97}
1268 V.~Chirita, L.~Hultman, and L.~R. Wallenberg,
1269 \newblock Thin Solid Films {\bf 294}, 47 (1997).
1270
1271 \bibitem{cicero02}
1272 G.~Cicero, L.~Pizzagalli, and A.~Catellani,
1273 \newblock Phys. Rev. Lett. {\bf 89}, 156101 (2002).
1274
1275 \bibitem{pizzagalli03}
1276 L.~Pizzagalli, G.~Cicero, and A.~Catellani,
1277 \newblock Phys. Rev. B {\bf 68}, 195302 (2003).
1278
1279 \bibitem{bockstedte03}
1280 M.~Bockstedte, A.~Mattausch, and O.~Pankratov,
1281 \newblock Phys. Rev. B {\bf 68}, 205201 (2003).
1282
1283 \bibitem{rauls03a}
1284 E.~Rauls, T.~Frauenheim, A.~Gali, and P.~De\'ak,
1285 \newblock Phys. Rev. B {\bf 68}, 155208 (2003).
1286
1287 \bibitem{gao04}
1288 F.~Gao, W.~J. Weber, M.~Posselt, and V.~Belko,
1289 \newblock Phys. Rev. B {\bf 69}, 245205 (2004).
1290
1291 \bibitem{posselt06}
1292 M.~Posselt, F.~Gao, and W.~J. Weber,
1293 \newblock Phys. Rev. B {\bf 73}, 125206 (2006).
1294
1295 \bibitem{gao07}
1296 F.~Gao, J.~Du, E.~J. Bylaska, M.~Posselt, and W.~J. Weber,
1297 \newblock Appl. Phys. Lett. {\bf 90}, 221915 (2007).
1298
1299 \bibitem{stillinger85}
1300 F.~H. Stillinger and T.~A. Weber,
1301 \newblock Phys. Rev. B {\bf 31}, 5262 (1985).
1302
1303 \bibitem{brenner90}
1304 D.~W. Brenner,
1305 \newblock Phys. Rev. B {\bf 42}, 9458 (1990).
1306
1307 \bibitem{tersoff_si3}
1308 J.~Tersoff,
1309 \newblock Phys. Rev. B {\bf 38}, 9902 (1988).
1310
1311 \bibitem{bazant96}
1312 M.~Z. Bazant and E.~Kaxiras,
1313 \newblock Phys. Rev. Lett. {\bf 77}, 4370 (1996).
1314
1315 \bibitem{bazant97}
1316 M.~Z. Bazant, E.~Kaxiras, and J.~F. Justo,
1317 \newblock Phys. Rev. B {\bf 56}, 8542 (1997).
1318
1319 \bibitem{justo98}
1320 J.~F. Justo, M.~Z. Bazant, E.~Kaxiras, V.~V. Bulatov, and S.~Yip,
1321 \newblock Phys. Rev. B {\bf 58}, 2539 (1998).
1322
1323 \bibitem{balamane92}
1324 H.~Balamane, T.~Halicioglu, and W.~A. Tiller,
1325 \newblock Phys. Rev. B {\bf 46}, 2250 (1992).
1326
1327 \bibitem{huang95}
1328 H.~Huang, N.~M. Ghoniem, J.~K. Wong, and M.~Baskes,
1329 \newblock Modell. Simul. Mater. Sci. Eng. {\bf 3}, 615 (1995).
1330
1331 \bibitem{godet03}
1332 J.~Godet, L.~Pizzagalli, S.~Brochard, and P.~Beauchamp,
1333 \newblock J. Phys.: Condens. Matter {\bf 15}, 6943 (2003).
1334
1335 \bibitem{lucas10}
1336 G.~Lucas, M.~Bertolus, and L.~Pizzagalli,
1337 \newblock J. Phys.: Condens. Matter {\bf 22}, 035802 (2010).
1338
1339 \bibitem{tersoff_m}
1340 J.~Tersoff,
1341 \newblock Phys. Rev. B {\bf 39}, 5566 (1989).
1342
1343 \bibitem{gao02}
1344 F.~Gao and W.~J. Weber,
1345 \newblock Nucl. Instrum. Methods Phys. Res. B {\bf 191}, 487 (2002).
1346
1347 \bibitem{albe_sic_pot}
1348 P.~Erhart and K.~Albe,
1349 \newblock Phys. Rev. B {\bf 71}, 035211 (2005).
1350
1351 \bibitem{mattoni2007}
1352 A.~{Mattoni}, M.~{Ippolito}, and L.~{Colombo},
1353 \newblock Phys. Rev. B {\bf 76}, 224103 (2007).
1354
1355 \bibitem{zirkelbach10}
1356 F.~Zirkelbach, B.~Stritzker, K.~Nordlund, J.~K.~N. Lindner, W.~G. Schmidt, and
1357   E.~Rauls,
1358 \newblock Phys. Rev. B {\bf 82}, 094110 (2010).
1359
1360 \bibitem{kresse96}
1361 G.~Kresse and J.~Furthm{\"{u}}ller,
1362 \newblock Comput. Mater. Sci. {\bf 6}, 15 (1996).
1363
1364 \bibitem{perdew86}
1365 J.~P. Perdew and Y.~Wang,
1366 \newblock Phys. Rev. B {\bf 33}, 8800 (1986).
1367
1368 \bibitem{perdew92}
1369 J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J.
1370   Singh, and C.~Fiolhais,
1371 \newblock Phys. Rev. B {\bf 46}, 6671 (1992).
1372
1373 \bibitem{hamann79}
1374 D.~R. Hamann, M.~Schl{\"u}ter, and C.~Chiang,
1375 \newblock Phys. Rev. Lett. {\bf 43}, 1494 (1979).
1376
1377 \bibitem{vanderbilt90}
1378 D.~Vanderbilt,
1379 \newblock Phys. Rev. B {\bf 41}, 7892 (1990).
1380
1381 \bibitem{berendsen84}
1382 H.~J.~C. Berendsen, J.~P.~M. Postma, W.~F. van Gunsteren, A.~DiNola, and J.~R.
1383   Haak,
1384 \newblock J. Chem. Phys. {\bf 81}, 3684 (1984).
1385
1386 \bibitem{verlet67}
1387 L.~Verlet,
1388 \newblock Phys. Rev. {\bf 159}, 98 (1967).
1389
1390 \bibitem{kaukonen98}
1391 M.~Kaukonen, P.~K. Sitch, G.~Jungnickel, R.~M. Nieminen, S.~P{\"o}ykk{\"o},
1392   D.~Porezag, and T.~Frauenheim,
1393 \newblock Phys. Rev. B {\bf 57}, 9965 (1998).
1394
1395 \bibitem{watkins76}
1396 G.~D. Watkins and K.~L. Brower,
1397 \newblock Phys. Rev. Lett. {\bf 36}, 1329 (1976).
1398
1399 \bibitem{song90}
1400 L.~W. Song and G.~D. Watkins,
1401 \newblock Phys. Rev. B {\bf 42}, 5759 (1990).
1402
1403 \bibitem{zirkelbach09}
1404 F.~Zirkelbach, J.~K.~N. Lindner, K.~Nordlund, and B.~Stritzker,
1405 \newblock Mater. Sci. Eng., B {\bf 159-160}, 149 (2009).
1406
1407 \bibitem{lindner06}
1408 J.~K.~N. Lindner, M.~H{\"a}berlen, G.~Thorwarth, and B.~Stritzker,
1409 \newblock Mater. Sci. Eng., C {\bf 26}, 857 (2006).
1410
1411 \bibitem{tipping87}
1412 A.~K. Tipping and R.~C. Newman,
1413 \newblock Semicond. Sci. Technol. {\bf 2}, 315 (1987).
1414
1415 \bibitem{song90_2}
1416 L.~W. Song, X.~D. Zhan, B.~W. Benson, and G.~D. Watkins,
1417 \newblock Phys. Rev. B {\bf 42}, 5765 (1990).
1418
1419 \bibitem{liu02}
1420 C.-L. Liu, W.~Windl, L.~Borucki, S.~Lu, and X.-Y. Liu,
1421 \newblock Appl. Phys. Lett. {\bf 80}, 52 (2002).
1422
1423 \bibitem{voter97}
1424 A.~F. Voter,
1425 \newblock Phys. Rev. Lett. {\bf 78}, 3908 (1997).
1426
1427 \bibitem{voter97_2}
1428 A.~F. Voter,
1429 \newblock J. Chem. Phys. {\bf 106}, 4665 (1997).
1430
1431 \bibitem{voter98}
1432 A.~F. Voter,
1433 \newblock Phys. Rev. B {\bf 57}, R13985 (1998).
1434
1435 \bibitem{sorensen2000}
1436 M.~R. S{\o }rensen and A.~F. Voter,
1437 \newblock J. Chem. Phys. {\bf 112}, 9599 (2000).
1438
1439 \bibitem{wu99}
1440 X.~Wu and S.~Wang,
1441 \newblock J. Chem. Phys. {\bf 110}, 9401 (1999).
1442
1443 \bibitem{tang95}
1444 M.~Tang and S.~Yip,
1445 \newblock Phys. Rev. B {\bf 52}, 15150 (1995).
1446
1447 \bibitem{kimura82}
1448 T.~Kimura, S.~Kagiyama, and S.~Yugo,
1449 \newblock Thin Solid Films {\bf 94}, 191 (1982).
1450
1451 \bibitem{eichhorn02}
1452 F.~Eichhorn, N.~Schell, A.~M{\"{u}}cklich, H.~Metzger, W.~Matz, and
1453   R.~K{\"{o}}gler,
1454 \newblock J. Appl. Phys. {\bf 91}, 1287 (2002).
1455
1456 \bibitem{deguchi92}
1457 M.~Deguchi, M.~Kitabatake, T.~Hirao, N.~Arai, and T.~Izumi,
1458 \newblock Japanese J. Appl. Phys. {\bf 31}, 343 (1992).
1459
1460 \bibitem{strane93}
1461 J.~W. Strane, H.~J. Stein, S.~R. Lee, B.~L. Doyle, S.~T. Picraux, and J.~W.
1462   Mayer,
1463 \newblock Appl. Phys. Lett. {\bf 63}, 2786 (1993).
1464
1465 \end{thebibliography}
1466
1467 \end{document}
1468