2ae5461209d75b91dc221065859efd36b3ac678e
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143 \begin{center}
144
145  \vspace{16pt}
146
147  {\Large\bf
148   \hrule
149   \vspace{5pt}
150   Atomistic simulation study on silicon carbide\\[0.2cm]
151   precipitation in silicon\\
152   \vspace{10pt}
153   \hrule
154  }
155
156  \vspace{60pt}
157
158  \textsc{Frank Zirkelbach}
159
160  \vspace{60pt}
161
162  Defense of doctor's thesis
163
164  \vspace{08pt}
165
166  Augsburg, 10.01.2012
167
168 \end{center}
169 \end{slide}
170
171 % no vertical centering
172 \centerslidesfalse
173
174 % skip for preparation
175 %\ifnum1=0
176
177 % intro
178
179 % motivation / properties / applications of silicon carbide
180
181 \begin{slide}
182
183 \vspace*{1.8cm}
184
185 \small
186
187 \begin{pspicture}(0,0)(13.5,5)
188
189  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
190
191  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
193
194  \rput[lt](0,4.6){\color{gray}PROPERTIES}
195
196  \rput[lt](0.3,4){wide band gap}
197  \rput[lt](0.3,3.5){high electric breakdown field}
198  \rput[lt](0.3,3){good electron mobility}
199  \rput[lt](0.3,2.5){high electron saturation drift velocity}
200  \rput[lt](0.3,2){high thermal conductivity}
201
202  \rput[lt](0.3,1.5){hard and mechanically stable}
203  \rput[lt](0.3,1){chemically inert}
204
205  \rput[lt](0.3,0.5){radiation hardness}
206
207  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
208
209  \rput[rt](12.5,3.85){high-temperature, high power}
210  \rput[rt](12.5,3.5){and high-frequency}
211  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
212
213  \rput[rt](12.5,2.35){material suitable for extreme conditions}
214  \rput[rt](12.5,2){microelectromechanical systems}
215  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
216
217  \rput[rt](12.5,0.85){first wall reactor material, detectors}
218  \rput[rt](12.5,0.5){and electronic devices for space}
219
220 \end{pspicture}
221
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
230 \end{picture}
231 %%%%
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
234 \end{picture}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
238 \end{picture}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
242 \end{picture}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
245 \end{picture}
246
247 \end{slide}
248
249 % fabrication
250
251 \ifnum1=0
252 \begin{slide}
253
254 \headphd
255  {\large\bf
256   Fabrication of silicon carbide
257  }
258
259  \small
260  
261  \vspace{2pt}
262
263 \begin{center}
264  {\color{gray}
265  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
266  }
267 \end{center}
268
269 \vspace{2pt}
270
271 SiC thin films by MBE \& CVD
272 \begin{itemize}
273  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
274  \item \underline{Commercially available} semiconductor power devices based on
275        \underline{\foreignlanguage{greek}{a}-SiC}
276  \item Production of favored \underline{3C-SiC} material
277        \underline{less advanced}
278  \item Quality and size not yet sufficient
279 \end{itemize}
280 \begin{picture}(0,0)(-310,-20)
281   \includegraphics[width=2.0cm]{cree.eps}
282 \end{picture}
283
284 \vspace{-0.5cm}
285
286 %\begin{center}
287 %\color{red}
288 %\framebox{
289 %{\footnotesize\color{black}
290 % Mismatch in \underline{thermal expansion coeefficient}
291 % and \underline{lattice parameter} w.r.t. substrate
292 %}
293 %}
294 %\end{center}
295
296 \vspace{0.1cm}
297
298 {\bf Alternative approach}\\
299 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
300
301 \vspace{0.1cm}
302
303 \scriptsize
304
305 \framebox{
306 \begin{minipage}{3.15cm}
307  \begin{center}
308 \includegraphics[width=3cm]{imp.eps}\\
309  {\tiny
310   Carbon implantation
311  }
312  \end{center}
313 \end{minipage}
314 \begin{minipage}{3.15cm}
315  \begin{center}
316 \includegraphics[width=3cm]{annealing.eps}\\
317  {\tiny
318  Postannealing at $>$ \degc{1200}
319  }
320  \end{center}
321 \end{minipage}
322 }
323 \begin{minipage}{5.5cm}
324  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
325  \begin{center}
326  {\tiny
327   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
328  }
329  \end{center}
330 \end{minipage}
331
332 %\begin{minipage}{5.5cm}
333 %\begin{center}
334 %{\footnotesize
335 %No surface bending effects\\
336 %High areal homogenity\\[0.1cm]
337 %$\Downarrow$\\[0.1cm]
338 %Synthesis of large area SiC films possible
339 %}
340 %\end{center}
341 %\end{minipage}
342
343 \end{slide}
344 \fi
345
346 \begin{slide}
347
348 \headphd
349 {\large\bf
350  IBS of epitaxial single crystalline 3C-SiC
351 }
352
353 \footnotesize
354
355 \vspace{0.2cm}
356
357 \begin{center}
358 \begin{itemize}
359  \item \underline{Implantation step 1}\\[0.1cm]
360         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
361         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
362         {\color{blue}precipitates}
363  \item \underline{Implantation step 2}\\[0.1cm]
364         Low remaining amount of dose | \unit[180]{keV} | \degc{250}\\
365         $\Rightarrow$
366         Destruction/Amorphization of precipitates at layer interface
367  \item \underline{Annealing}\\[0.1cm]
368        \unit[10]{h} at \degc{1250}\\
369        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
370 \end{itemize}
371 \end{center}
372
373 \begin{minipage}{6.9cm}
374 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
375 \begin{center}
376 {\tiny
377  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
378 }
379 \end{center}
380 \end{minipage}
381 \begin{minipage}{5cm}
382 \begin{pspicture}(0,0)(0,0)
383 \rnode{box}{
384 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
385 \begin{minipage}{5.3cm}
386  \begin{center}
387  {\color{blue}
388   3C-SiC precipitation\\
389   not yet fully understood
390  }
391  \end{center}
392  \vspace*{0.1cm}
393  \renewcommand\labelitemi{$\Rightarrow$}
394  Details of the SiC precipitation
395  \begin{itemize}
396   \item significant technological progress\\
397         in SiC thin film formation
398   \item perspectives for processes relying\\
399         upon prevention of SiC precipitation
400  \end{itemize}
401 \end{minipage}
402 }}
403 \rput(-6.8,5.5){\pnode{h0}}
404 \rput(-3.0,5.5){\pnode{h1}}
405 \ncline[linecolor=blue]{-}{h0}{h1}
406 \ncline[linecolor=blue]{->}{h1}{box}
407 \end{pspicture}
408 \end{minipage}
409
410 \end{slide}
411
412 \begin{slide}
413
414 \headphd
415 {\large\bf
416   Supposed precipitation mechanism of SiC in Si
417 }
418
419  \scriptsize
420
421  \vspace{0.1cm}
422
423  \framebox{
424  \begin{minipage}{3.6cm}
425  \begin{center}
426  Si \& SiC lattice structure\\[0.1cm]
427  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
428  \end{center}
429 {\tiny
430  \begin{minipage}{1.7cm}
431 \underline{Silicon}\\
432 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
433 $a=\unit[5.429]{\\A}$\\
434 $\rho^*_{\text{Si}}=\unit[100]{\%}$
435  \end{minipage}
436  \begin{minipage}{1.7cm}
437 \underline{Silicon carbide}\\
438 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
439 $a=\unit[4.359]{\\A}$\\
440 $\rho^*_{\text{Si}}=\unit[97]{\%}$
441  \end{minipage}
442 }
443  \end{minipage}
444  }
445  \hspace{0.1cm}
446  \begin{minipage}{4.1cm}
447  \begin{center}
448  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
449  \end{center}
450  \end{minipage}
451  \hspace{0.1cm}
452  \begin{minipage}{4.0cm}
453  \begin{center}
454  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
455  \end{center}
456  \end{minipage}
457
458  \vspace{0.1cm}
459
460  \begin{minipage}{4.0cm}
461  \begin{center}
462  C-Si dimers (dumbbells)\\[-0.1cm]
463  on Si lattice sites
464  \end{center}
465  \end{minipage}
466  \hspace{0.1cm}
467  \begin{minipage}{4.1cm}
468  \begin{center}
469  Agglomeration of C-Si dumbbells\\[-0.1cm]
470  $\Rightarrow$ dark contrasts
471  \end{center}
472  \end{minipage}
473  \hspace{0.1cm}
474  \begin{minipage}{4.0cm}
475  \begin{center}
476  Precipitation of 3C-SiC in Si\\[-0.1cm]
477  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
478  \& release of Si self-interstitials
479  \end{center}
480  \end{minipage}
481
482  \vspace{0.1cm}
483
484  \begin{minipage}{4.0cm}
485  \begin{center}
486  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
487  \end{center}
488  \end{minipage}
489  \hspace{0.1cm}
490  \begin{minipage}{4.1cm}
491  \begin{center}
492  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
493  \end{center}
494  \end{minipage}
495  \hspace{0.1cm}
496  \begin{minipage}{4.0cm}
497  \begin{center}
498  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
499  \end{center}
500  \end{minipage}
501
502 \begin{pspicture}(0,0)(0,0)
503 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
504 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
505 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
506 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
507 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
508  $4a_{\text{Si}}=5a_{\text{SiC}}$
509  }}}
510 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
511 \hkl(h k l) planes match
512  }}}
513 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
514 r = \unit[2--4]{nm}
515  }}}
516 \end{pspicture}
517
518 \end{slide}
519
520 \begin{slide}
521
522 \headphd
523 {\large\bf
524  Supposed precipitation mechanism of SiC in Si
525 }
526
527  \scriptsize
528
529  \vspace{0.1cm}
530
531  \framebox{
532  \begin{minipage}{3.6cm}
533  \begin{center}
534  Si \& SiC lattice structure\\[0.1cm]
535  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
536  \end{center}
537 {\tiny
538  \begin{minipage}{1.7cm}
539 \underline{Silicon}\\
540 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
541 $a=\unit[5.429]{\\A}$\\
542 $\rho^*_{\text{Si}}=\unit[100]{\%}$
543  \end{minipage}
544  \begin{minipage}{1.7cm}
545 \underline{Silicon carbide}\\
546 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
547 $a=\unit[4.359]{\\A}$\\
548 $\rho^*_{\text{Si}}=\unit[97]{\%}$
549  \end{minipage}
550 }
551  \end{minipage}
552  }
553  \hspace{0.1cm}
554  \begin{minipage}{4.1cm}
555  \begin{center}
556  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
557  \end{center}
558  \end{minipage}
559  \hspace{0.1cm}
560  \begin{minipage}{4.0cm}
561  \begin{center}
562  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
563  \end{center}
564  \end{minipage}
565
566  \vspace{0.1cm}
567
568  \begin{minipage}{4.0cm}
569  \begin{center}
570  C-Si dimers (dumbbells)\\[-0.1cm]
571  on Si interstitial sites
572  \end{center}
573  \end{minipage}
574  \hspace{0.1cm}
575  \begin{minipage}{4.1cm}
576  \begin{center}
577  Agglomeration of C-Si dumbbells\\[-0.1cm]
578  $\Rightarrow$ dark contrasts
579  \end{center}
580  \end{minipage}
581  \hspace{0.1cm}
582  \begin{minipage}{4.0cm}
583  \begin{center}
584  Precipitation of 3C-SiC in Si\\[-0.1cm]
585  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
586  \& release of Si self-interstitials
587  \end{center}
588  \end{minipage}
589
590  \vspace{0.1cm}
591
592  \begin{minipage}{4.0cm}
593  \begin{center}
594  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
595  \end{center}
596  \end{minipage}
597  \hspace{0.1cm}
598  \begin{minipage}{4.1cm}
599  \begin{center}
600  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
601  \end{center}
602  \end{minipage}
603  \hspace{0.1cm}
604  \begin{minipage}{4.0cm}
605  \begin{center}
606  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
607  \end{center}
608  \end{minipage}
609
610 \begin{pspicture}(0,0)(0,0)
611 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
612 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
613 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
614 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
615 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
616  $4a_{\text{Si}}=5a_{\text{SiC}}$
617  }}}
618 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
619 \hkl(h k l) planes match
620  }}}
621 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
622 r = \unit[2--4]{nm}
623  }}}
624 % controversial view!
625 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
626 \begin{minipage}{14cm}
627 \hfill
628 \vspace{12cm}
629 \end{minipage}
630 }}
631 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
632 \begin{minipage}{10cm}
633 \small
634 \vspace*{0.2cm}
635 \begin{center}
636 {\color{gray}\bf Controversial findings}
637 \end{center}
638 \begin{itemize}
639 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
640  \begin{itemize}
641   \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
642   \item \si{} reacting with further C in cleared volume
643  \end{itemize}
644 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
645  \begin{itemize}
646   \item Room temperature implantation $\rightarrow$ high C diffusion
647   \item Elevated temperature implantation $\rightarrow$ no C redistribution
648  \end{itemize}
649  $\Rightarrow$ mobile {\color{red}\ci} opposed to
650  stable {\color{blue}\cs{}} configurations
651 \item Strained silicon \& Si$_{1-y}$C$_y$ heterostructures
652       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
653  \begin{itemize}
654   \item Initial {\color{blue}coherent} SiC precipitates (tensile strain)
655   \item Incoherent SiC (strain relaxation)
656  \end{itemize}
657 \end{itemize}
658 \vspace{0.1cm}
659 \begin{center}
660 {\Huge${\lightning}$} \hspace{0.3cm}
661 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
662 {\Huge${\lightning}$}
663 \end{center}
664 \vspace{0.2cm}
665 \end{minipage}
666  }}}
667 \end{pspicture}
668
669 \end{slide}
670
671 \begin{slide}
672
673 % contents
674
675 \headphd
676 {\large\bf
677  Outline
678 }
679
680  \begin{itemize}
681   {\color{gray}
682   \item Introduction / Motivation
683   \item Assumed SiC precipitation mechanisms / Controversy
684   }
685   \item Utilized simulation techniques
686         \begin{itemize}
687          \item Molecular dynamics (MD) simulations
688          \item Density functional theory (DFT) calculations
689         \end{itemize}
690   \item Simulation results
691         \begin{itemize}
692          \item C and Si self-interstitial point defects in silicon
693          \item Silicon carbide precipitation simulations
694         \end{itemize}
695   \item Summary / Conclusion
696  \end{itemize}
697
698 \end{slide}
699
700 \begin{slide}
701
702 \headphd
703 {\large\bf
704  Utilized computational methods
705 }
706
707 \vspace{0.3cm}
708
709 \small
710
711 {\bf Molecular dynamics (MD)}\\[0.1cm]
712 \scriptsize
713 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
714 \hline
715 System of $N$ particles &
716 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
717 Phase space propagation &
718 Velocity Verlet | timestep: \unit[1]{fs} \\
719 Analytical interaction potential &
720 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
721 (Erhart/Albe)
722 $\displaystyle
723 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
724     \pot_{ij} = {\color{red}f_C(r_{ij})}
725     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
726 $\\
727 Observables: time/ensemble averages &
728 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
729 \hline
730 \end{tabular}
731
732 \small
733
734 \vspace{0.3cm}
735
736 {\bf Density functional theory (DFT)}
737
738 \scriptsize
739
740 \begin{minipage}[t]{6cm}
741 \begin{itemize}
742  \item Hohenberg-Kohn theorem:\\
743        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
744  \item Kohn-Sham approach:\\
745        Single-particle effective theory
746 \end{itemize}
747 \hrule
748 \begin{itemize}
749 \item Code: \textsc{vasp}
750 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
751 %$\displaystyle
752 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
753 %$\\
754 %$\displaystyle
755 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
756 %$
757 \item Ultrasoft pseudopotential
758 \item Exchange \& correlation: GGA
759 \item Brillouin zone sampling: $\Gamma$-point
760 \item Supercell: $N=216\pm2$
761 \end{itemize}
762 \end{minipage}
763 \begin{minipage}{6cm}
764 \begin{pspicture}(0,0)(0,0)
765 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
766 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
767 $\displaystyle
768 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
769 $
770 }}
771 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
772 $\displaystyle
773 n(r)=\sum_i^N|\Phi_i(r)|^2
774 $
775 }}
776 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
777 $\displaystyle
778 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
779                  +V_{\text{XC}}[n(r)]
780 $
781 }}
782 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
783 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
784 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
785
786 \end{pspicture}
787 \end{minipage}
788
789 \end{slide}
790
791 \begin{slide}
792
793 \headphd
794  {\large\bf
795   Point defects \& defect migration
796  }
797
798  \small
799
800  \vspace{0.2cm}
801
802 \begin{minipage}[b]{7.5cm}
803 {\bf Defect structure}\\
804   \begin{pspicture}(0,0)(7,4.4)
805   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
806    \parbox{7cm}{
807    \begin{itemize}
808     \item Creation of c-Si simulation volume
809     \item Periodic boundary conditions
810     \item $T=0\text{ K}$, $p=0\text{ bar}$
811    \end{itemize}
812   }}}}
813 \rput(3.5,1.3){\rnode{insert}{\psframebox{
814  \parbox{7cm}{
815   \begin{center}
816   Insertion of interstitial C/Si atoms
817   \end{center}
818   }}}}
819   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
820    \parbox{7cm}{
821    \begin{center}
822    Relaxation / structural energy minimization
823    \end{center}
824   }}}}
825   \ncline[]{->}{init}{insert}
826   \ncline[]{->}{insert}{cool}
827  \end{pspicture}
828 \end{minipage}
829 \begin{minipage}[b]{4.5cm}
830 \begin{center}
831 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
832 \end{center}
833 \begin{minipage}{2.21cm}
834 {\scriptsize
835 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
836 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
837 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
838 }
839 \end{minipage}
840 \begin{minipage}{2.21cm}
841 {\scriptsize
842 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
843 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
844 {\color{black}$\bullet$} Vac. / Sub.
845 }
846 \end{minipage}
847 \end{minipage}
848
849 \vspace{0.2cm}
850
851 \begin{minipage}[b]{6cm}
852 {\bf Defect formation energy}\\
853 \framebox{
854 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
855 Particle reservoir: Si \& SiC\\[0.2cm]
856 {\bf Binding energy}\\
857 \framebox{
858 $
859 E_{\text{b}}=
860 E_{\text{f}}^{\text{comb}}-
861 E_{\text{f}}^{1^{\text{st}}}-
862 E_{\text{f}}^{2^{\text{nd}}}
863 $
864 }\\[0.1cm]
865 \footnotesize
866 $E_{\text{b}}<0$: energetically favorable configuration\\
867 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
868 \end{minipage}
869 \begin{minipage}[b]{6cm}
870 {\bf Migration barrier}
871 \footnotesize
872 \begin{itemize}
873  \item Displace diffusing atom
874  \item Constrain relaxation of (diffusing) atoms
875  \item Record configurational energy
876 \end{itemize}
877 \begin{picture}(0,0)(-60,-33)
878 \includegraphics[width=4.5cm]{crt_mod.eps}
879 \end{picture}
880 \end{minipage}
881
882 \end{slide}
883
884 \begin{slide}
885
886 \footnotesize
887
888 \headphd
889 {\large\bf
890  Si self-interstitial point defects in silicon\\[0.1cm]
891 }
892
893 \begin{center}
894 \begin{tabular}{l c c c c c}
895 \hline
896  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
897 \hline
898  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
899  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
900 \hline
901 \end{tabular}\\[0.4cm]
902 \end{center}
903
904 \begin{minipage}{3cm}
905 \begin{center}
906 \underline{Vacancy}\\
907 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
908 \end{center}
909 \end{minipage}
910 \begin{minipage}{3cm}
911 \begin{center}
912 \underline{\hkl<1 1 0> DB}\\
913 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
914 \end{center}
915 \end{minipage}
916 \begin{minipage}{3cm}
917 \begin{center}
918 \underline{\hkl<1 0 0> DB}\\
919 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
920 \end{center}
921 \end{minipage}
922 \begin{minipage}{3cm}
923 \begin{center}
924 \underline{Tetrahedral}\\
925 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
926 \end{center}
927 \end{minipage}\\
928
929 \underline{Hexagonal} \hspace{2pt}
930 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
931 \framebox{
932 \begin{minipage}{2.7cm}
933 $E_{\text{f}}^*=4.48\text{ eV}$\\
934 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
935 \end{minipage}
936 \begin{minipage}{0.4cm}
937 \begin{center}
938 $\Rightarrow$
939 \end{center}
940 \end{minipage}
941 \begin{minipage}{2.7cm}
942 $E_{\text{f}}=3.96\text{ eV}$\\
943 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
944 \end{minipage}
945 }
946 \begin{minipage}{5.5cm}
947 \begin{center}
948 {\tiny nearly T $\rightarrow$ T}\\
949 \end{center}
950 \includegraphics[width=6.0cm]{nhex_tet.ps}
951 \end{minipage}
952
953 \end{slide}
954
955 \begin{slide}
956
957 \footnotesize
958
959 \headphd
960 {\large\bf
961  C interstitial point defects in silicon\\
962 }
963
964 \begin{tabular}{l c c c c c c r}
965 \hline
966  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
967  {\color{black} \cs{} \& \si}\\
968 \hline
969  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
970  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
971 \hline
972 \end{tabular}\\[0.1cm]
973
974 \framebox{
975 \begin{minipage}{2.8cm}
976 \underline{Hexagonal} \hspace{2pt}
977 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
978 $E_{\text{f}}^*=9.05\text{ eV}$\\
979 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
980 \end{minipage}
981 \begin{minipage}{0.4cm}
982 \begin{center}
983 $\Rightarrow$
984 \end{center}
985 \end{minipage}
986 \begin{minipage}{2.8cm}
987 \underline{\hkl<1 0 0>}\\
988 $E_{\text{f}}=3.88\text{ eV}$\\
989 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
990 \end{minipage}
991 }
992 \begin{minipage}{1.4cm}
993 \hfill
994 \end{minipage}
995 \begin{minipage}{3.0cm}
996 \begin{flushright}
997 \underline{Tetrahedral}\\
998 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
999 \end{flushright}
1000 \end{minipage}
1001
1002 \framebox{
1003 \begin{minipage}{2.8cm}
1004 \underline{Bond-centered}\\
1005 $E_{\text{f}}^*=5.59\text{ eV}$\\
1006 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1007 \end{minipage}
1008 \begin{minipage}{0.4cm}
1009 \begin{center}
1010 $\Rightarrow$
1011 \end{center}
1012 \end{minipage}
1013 \begin{minipage}{2.8cm}
1014 \underline{\hkl<1 1 0> dumbbell}\\
1015 $E_{\text{f}}=5.18\text{ eV}$\\
1016 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1017 \end{minipage}
1018 }
1019 \begin{minipage}{1.4cm}
1020 \hfill
1021 \end{minipage}
1022 \begin{minipage}{3.0cm}
1023 \begin{flushright}
1024 \underline{Substitutional}\\
1025 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1026 \end{flushright}
1027 \end{minipage}
1028
1029 \end{slide}
1030
1031 \begin{slide}
1032
1033 \headphd
1034 {\large\bf\boldmath
1035  C-Si dimer \& bond-centered interstitial configuration
1036 }
1037
1038 \footnotesize
1039
1040 \vspace{0.1cm}
1041
1042 \begin{minipage}[t]{4.1cm}
1043 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1044 \begin{minipage}{2.0cm}
1045 \begin{center}
1046 \underline{Erhart/Albe}
1047 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1048 \end{center}
1049 \end{minipage}
1050 \begin{minipage}{2.0cm}
1051 \begin{center}
1052 \underline{\textsc{vasp}}
1053 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1054 \end{center}
1055 \end{minipage}\\[0.2cm]
1056 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1057 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1058 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1059 $\Rightarrow$ $sp^2$ hybridization
1060 \begin{center}
1061 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1062 {\tiny Charge density isosurface}
1063 \end{center}
1064 \end{minipage}
1065 \begin{minipage}{0.2cm}
1066 \hfill
1067 \end{minipage}
1068 \begin{minipage}[t]{8.1cm}
1069 \begin{flushright}
1070 {\bf Bond-centered interstitial}\\[0.1cm]
1071 \begin{minipage}{4.4cm}
1072 %\scriptsize
1073 \begin{itemize}
1074  \item Linear Si-C-Si bond
1075  \item Si: one C \& 3 Si neighbours
1076  \item Spin polarized calculations
1077  \item No saddle point!\\
1078        Real local minimum!
1079 \end{itemize}
1080 \end{minipage}
1081 \begin{minipage}{2.7cm}
1082 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1083 \vspace{0.2cm}
1084 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1085 \end{minipage}
1086
1087 \framebox{
1088  \tiny
1089  \begin{minipage}[t]{6.5cm}
1090   \begin{minipage}[t]{1.2cm}
1091   {\color{red}Si}\\
1092   {\tiny sp$^3$}\\[0.8cm]
1093   \underline{${\color{black}\uparrow}$}
1094   \underline{${\color{black}\uparrow}$}
1095   \underline{${\color{black}\uparrow}$}
1096   \underline{${\color{red}\uparrow}$}\\
1097   sp$^3$
1098   \end{minipage}
1099   \begin{minipage}[t]{1.4cm}
1100   \begin{center}
1101   {\color{red}M}{\color{blue}O}\\[0.8cm]
1102   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1103   $\sigma_{\text{ab}}$\\[0.5cm]
1104   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1105   $\sigma_{\text{b}}$
1106   \end{center}
1107   \end{minipage}
1108   \begin{minipage}[t]{1.0cm}
1109   \begin{center}
1110   {\color{blue}C}\\
1111   {\tiny sp}\\[0.2cm]
1112   \underline{${\color{white}\uparrow\uparrow}$}
1113   \underline{${\color{white}\uparrow\uparrow}$}\\
1114   2p\\[0.4cm]
1115   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1116   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1117   sp
1118   \end{center}
1119   \end{minipage}
1120   \begin{minipage}[t]{1.4cm}
1121   \begin{center}
1122   {\color{blue}M}{\color{green}O}\\[0.8cm]
1123   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1124   $\sigma_{\text{ab}}$\\[0.5cm]
1125   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1126   $\sigma_{\text{b}}$
1127   \end{center}
1128   \end{minipage}
1129   \begin{minipage}[t]{1.2cm}
1130   \begin{flushright}
1131   {\color{green}Si}\\
1132   {\tiny sp$^3$}\\[0.8cm]
1133   \underline{${\color{green}\uparrow}$}
1134   \underline{${\color{black}\uparrow}$}
1135   \underline{${\color{black}\uparrow}$}
1136   \underline{${\color{black}\uparrow}$}\\
1137   sp$^3$
1138   \end{flushright}
1139   \end{minipage}
1140  \end{minipage}
1141 }\\[0.4cm]
1142
1143 %\framebox{
1144 \begin{minipage}{3.0cm}
1145 %\scriptsize
1146 \underline{Charge density}\\
1147 {\color{gray}$\bullet$} Spin up\\
1148 {\color{green}$\bullet$} Spin down\\
1149 {\color{blue}$\bullet$} Resulting spin up\\
1150 {\color{yellow}$\bullet$} Si atoms\\
1151 {\color{red}$\bullet$} C atom
1152 \end{minipage}
1153 \begin{minipage}{3.6cm}
1154 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1155 \end{minipage}
1156 %}
1157
1158 \end{flushright}
1159
1160 \end{minipage}
1161 \begin{pspicture}(0,0)(0,0)
1162 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1163 \end{pspicture}
1164
1165 \end{slide}
1166
1167 \begin{slide}
1168
1169 \headphd
1170 {\large\bf\boldmath
1171  C interstitial migration --- ab initio
1172 }
1173
1174 \scriptsize
1175
1176 \vspace{0.2cm}
1177
1178 \begin{minipage}{6.8cm}
1179 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1180 \begin{minipage}{2.0cm}
1181 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1182 \end{minipage}
1183 \begin{minipage}{0.2cm}
1184 $\rightarrow$
1185 \end{minipage}
1186 \begin{minipage}{2.0cm}
1187 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1188 \end{minipage}
1189 \begin{minipage}{0.2cm}
1190 $\rightarrow$
1191 \end{minipage}
1192 \begin{minipage}{2.0cm}
1193 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1194 \end{minipage}\\[0.1cm]
1195 Spin polarization\\
1196 $\Rightarrow$ BC configuration constitutes local minimum\\
1197 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1198 \end{minipage}
1199 \begin{minipage}{5.4cm}
1200 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1201 %\end{minipage}\\[0.2cm]
1202 \end{minipage}\\[0.3cm]
1203 %\hrule
1204 %
1205 \begin{minipage}{6.8cm}
1206 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1207 \begin{minipage}{2.0cm}
1208 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1209 \end{minipage}
1210 \begin{minipage}{0.2cm}
1211 $\rightarrow$
1212 \end{minipage}
1213 \begin{minipage}{2.0cm}
1214 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1215 \end{minipage}
1216 \begin{minipage}{0.2cm}
1217 $\rightarrow$
1218 \end{minipage}
1219 \begin{minipage}{2.0cm}
1220 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1221 \end{minipage}\\[0.1cm]
1222 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1223 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1224 Note: Change in orientation
1225 \end{minipage}
1226 \begin{minipage}{5.4cm}
1227 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1228 \end{minipage}\\[0.1cm]
1229 %
1230 %\begin{center}
1231 %Reorientation pathway composed of two consecutive processes of the above type
1232 %\end{center}
1233
1234 \end{slide}
1235
1236 \begin{slide}
1237
1238 \headphd
1239 {\large\bf\boldmath
1240  C interstitial migration --- analytical potential
1241 }
1242
1243 \scriptsize
1244
1245 \vspace{0.3cm}
1246
1247 \begin{minipage}[t]{6.0cm}
1248 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1249 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1250 \begin{itemize}
1251  \item Lowermost migration barrier
1252  \item $\Delta E \approx \unit[2.2]{eV}$
1253  \item 2.4 times higher than ab initio result
1254  \item Different pathway
1255 \end{itemize}
1256 \end{minipage}
1257 \begin{minipage}[t]{0.2cm}
1258 \hfill
1259 \end{minipage}
1260 \begin{minipage}[t]{6.0cm}
1261 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1262 \vspace{0.1cm}
1263 \begin{itemize}
1264  \item Bond-centered configuration unstable\\
1265        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1266  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1267        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1268 \end{itemize}
1269 \vspace{0.1cm}
1270 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1271 \begin{itemize}
1272  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1273  \item 2.4 -- 3.4 times higher than ab initio result
1274  \item After all: Change of the DB orientation
1275 \end{itemize}
1276 \end{minipage}
1277
1278 \vspace{0.5cm}
1279 \begin{center}
1280 {\color{red}\bf Drastically overestimated diffusion barrier}
1281 \end{center}
1282
1283 \begin{pspicture}(0,0)(0,0)
1284 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1285 \end{pspicture}
1286
1287 \end{slide}
1288
1289 \begin{slide}
1290
1291 \headphd
1292 {\large\bf\boldmath
1293  Defect combinations
1294 }
1295
1296 \footnotesize
1297
1298 \vspace{0.3cm}
1299
1300 \begin{minipage}{9cm}
1301 {\bf
1302  Summary of combinations}\\[0.1cm]
1303 {\scriptsize
1304 \begin{tabular}{l c c c c c c}
1305 \hline
1306  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1307  \hline
1308  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1309  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1310  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1311  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1312  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1313  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1314  \hline
1315  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1316  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1317 \hline
1318 \end{tabular}
1319 }
1320 \vspace{0.2cm}
1321 \begin{center}
1322 {\color{blue}
1323  $E_{\text{b}}$ explainable by stress compensation / increase
1324 }
1325 \end{center}
1326 \end{minipage}
1327 \begin{minipage}{3cm}
1328 \includegraphics[width=3.5cm]{comb_pos.eps}
1329 \end{minipage}
1330
1331 \vspace{0.2cm}
1332
1333 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1334 \begin{minipage}[t]{3.2cm}
1335 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1336 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1337 \end{minipage}
1338 \begin{minipage}[t]{3.0cm}
1339 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1340 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1341 \end{minipage}
1342 \begin{minipage}[t]{6.1cm}
1343 \vspace{0.7cm}
1344 \begin{itemize}
1345  \item \ci{} agglomeration energetically favorable
1346  \item Most favorable: C clustering\\
1347        {\color{red}However \ldots}\\
1348         \ldots high migration barrier ($>4\,\text{eV}$)\\
1349         \ldots entropy:
1350         $4\times{\color{cyan}[-2.25]}$ versus
1351         $2\times{\color{orange}[-2.39]}$
1352 \end{itemize}
1353 \begin{center}
1354 {\color{blue}\ci{} agglomeration / no C clustering}
1355 \end{center}
1356 \end{minipage}
1357
1358 \end{slide}
1359
1360 \begin{slide}
1361
1362 \headphd
1363 {\large\bf\boldmath
1364  Defect combinations
1365 }
1366
1367 \footnotesize
1368
1369 \vspace{0.3cm}
1370
1371 \begin{minipage}{9cm}
1372 {\bf
1373  Summary of combinations}\\[0.1cm]
1374 {\scriptsize
1375 \begin{tabular}{l c c c c c c}
1376 \hline
1377  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1378  \hline
1379  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1380  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1381  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1382  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1383  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1384  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1385  \hline
1386  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1387  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1388 \hline
1389 \end{tabular}
1390 }
1391 \vspace{0.2cm}
1392 \begin{center}
1393 {\color{blue}
1394  $E_{\text{b}}$ explainable by stress compensation / increase
1395 }
1396 \end{center}
1397 \end{minipage}
1398 \begin{minipage}{3cm}
1399 \includegraphics[width=3.5cm]{comb_pos.eps}
1400 \end{minipage}
1401
1402 \vspace{0.2cm}
1403
1404 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1405 \begin{minipage}[t]{3.2cm}
1406 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1407 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1408 \end{minipage}
1409 \begin{minipage}[t]{3.0cm}
1410 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1411 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1412 \end{minipage}
1413 \begin{minipage}[t]{6.1cm}
1414 \vspace{0.7cm}
1415 \begin{itemize}
1416  \item \ci{} agglomeration energetically favorable
1417  \item Most favorable: C clustering\\
1418        {\color{red}However \ldots}\\
1419         \ldots high migration barrier ($>4\,\text{eV}$)\\
1420         \ldots entropy:
1421         $4\times{\color{cyan}[-2.25]}$ versus
1422         $2\times{\color{orange}[-2.39]}$
1423 \end{itemize}
1424 \begin{center}
1425 {\color{blue}\ci{} agglomeration / no C clustering}
1426 \end{center}
1427 \end{minipage}
1428
1429 % insert graph ...
1430 \begin{pspicture}(0,0)(0,0)
1431 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1432 \begin{minipage}{14cm}
1433 \hfill
1434 \vspace{12cm}
1435 \end{minipage}
1436 }}
1437 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1438 \begin{minipage}{8cm}
1439 \begin{center}
1440 \vspace{0.2cm}
1441 \scriptsize
1442 Interaction along \hkl[1 1 0]
1443 \includegraphics[width=7cm]{db_along_110_cc.ps}
1444 \end{center}
1445 \end{minipage}
1446 }}}
1447 \end{pspicture}
1448
1449 \end{slide}
1450
1451 \begin{slide}
1452
1453 \headphd
1454 {\large\bf
1455  Defect combinations of C-Si dimers and vacancies
1456 }
1457 \footnotesize
1458
1459 \vspace{0.2cm}
1460
1461 \begin{minipage}[b]{2.6cm}
1462 \begin{flushleft}
1463 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1464 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1465 \end{flushleft}
1466 \end{minipage}
1467 \begin{minipage}[b]{7cm}
1468 \hfill
1469 \end{minipage}
1470 \begin{minipage}[b]{2.6cm}
1471 \begin{flushright}
1472 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1473 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1474 \end{flushright}
1475 \end{minipage}\\[0.2cm]
1476
1477 \begin{minipage}{6.5cm}
1478 \includegraphics[width=6.0cm]{059-539.ps}
1479 \end{minipage}
1480 \begin{minipage}{5.7cm}
1481 \includegraphics[width=6.0cm]{314-539.ps}
1482 \end{minipage}
1483
1484 \begin{pspicture}(0,0)(0,0)
1485 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1486
1487 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1488 \begin{minipage}{6.5cm}
1489 \begin{center}
1490 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1491 Low migration barrier towards C$_{\text{sub}}$\\
1492 \&\\
1493 High barrier for reverse process\\[0.3cm]
1494 {\color{blue}
1495 High probability of stable C$_{\text{sub}}$ configuration
1496 }
1497 \end{center}
1498 \end{minipage}
1499 }}}
1500 \end{pspicture}
1501
1502 \end{slide}
1503
1504 \begin{slide}
1505
1506 \headphd
1507 {\large\bf
1508  Combinations of substitutional C and Si self-interstitials
1509 }
1510
1511 \scriptsize
1512
1513 \vspace{0.3cm}
1514
1515 \begin{minipage}{6.2cm}
1516 \begin{center}
1517 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1518 \begin{itemize}
1519  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1520  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1521  \item Interaction drops quickly to zero\\
1522        $\rightarrow$ low capture radius
1523 \end{itemize}
1524 \end{center}
1525 \end{minipage}
1526 \begin{minipage}{0.2cm}
1527 \hfill
1528 \end{minipage}
1529 \begin{minipage}{6.0cm}
1530 \begin{center}
1531 {\bf Transition from the ground state}
1532 \begin{itemize}
1533  \item Low transition barrier
1534  \item Barrier smaller than \ci{} migration barrier
1535  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1536        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1537 \end{itemize}
1538 \end{center}
1539 \end{minipage}\\[0.3cm]
1540
1541 \begin{minipage}{6.0cm}
1542 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1543 \end{minipage}
1544 \begin{minipage}{0.4cm}
1545 \hfill
1546 \end{minipage}
1547 \begin{minipage}{6.0cm}
1548 \begin{flushright}
1549 \includegraphics[width=6.0cm]{162-097.ps}
1550 \end{flushright}
1551 \end{minipage}
1552
1553 \begin{pspicture}(0,0)(0,0)
1554 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1555 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1556 \begin{minipage}{8cm}
1557 \begin{center}
1558 \vspace{0.1cm}
1559 {\color{black}
1560 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1561 IBS --- process far from equilibrium\\
1562 }
1563 \end{center}
1564 \end{minipage}
1565 }}}
1566 \end{pspicture}
1567
1568 \end{slide}
1569
1570 \begin{slide}
1571
1572 \headphd
1573 {\large\bf
1574  Combinations of substitutional C and Si self-interstitials
1575 }
1576
1577 \scriptsize
1578
1579 \vspace{0.3cm}
1580
1581 \begin{minipage}{6.2cm}
1582 \begin{center}
1583 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1584 \begin{itemize}
1585  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1586  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1587  \item Interaction drops quickly to zero\\
1588        $\rightarrow$ low capture radius
1589 \end{itemize}
1590 \end{center}
1591 \end{minipage}
1592 \begin{minipage}{0.2cm}
1593 \hfill
1594 \end{minipage}
1595 \begin{minipage}{6.0cm}
1596 \begin{center}
1597 {\bf Transition from the ground state}
1598 \begin{itemize}
1599  \item Low transition barrier
1600  \item Barrier smaller than \ci{} migration barrier
1601  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1602        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1603 \end{itemize}
1604 \end{center}
1605 \end{minipage}\\[0.3cm]
1606
1607 \begin{minipage}{6.0cm}
1608 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1609 \end{minipage}
1610 \begin{minipage}{0.4cm}
1611 \hfill
1612 \end{minipage}
1613 \begin{minipage}{6.0cm}
1614 \begin{flushright}
1615 \includegraphics[width=6.0cm]{162-097.ps}
1616 \end{flushright}
1617 \end{minipage}
1618
1619 \begin{pspicture}(0,0)(0,0)
1620 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1621 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1622 \begin{minipage}{8cm}
1623 \begin{center}
1624 \vspace{0.1cm}
1625 {\color{black}
1626 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1627 IBS --- process far from equilibrium\\
1628 }
1629 \end{center}
1630 \end{minipage}
1631 }}}
1632 \end{pspicture}
1633
1634 % md support
1635 \begin{pspicture}(0,0)(0,0)
1636 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1637 \begin{minipage}{14cm}
1638 \hfill
1639 \vspace{14cm}
1640 \end{minipage}
1641 }}
1642 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1643 \begin{minipage}{11cm}
1644 \begin{center}
1645 \vspace{0.2cm}
1646 \scriptsize
1647 Ab initio MD at \degc{900}\\[0.4cm]
1648 \begin{minipage}{5.4cm}
1649 \centering
1650 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1651 $t=\unit[2230]{fs}$
1652 \end{minipage}
1653 \begin{minipage}{5.4cm}
1654 \centering
1655 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1656 $t=\unit[2900]{fs}$
1657 \end{minipage}\\[0.5cm]
1658 {\color{blue}
1659 Contribution of entropy to structural formation\\[0.1cm]
1660 }
1661 \end{center}
1662 \end{minipage}
1663 }}}
1664 \end{pspicture}
1665
1666 \end{slide}
1667
1668 \begin{slide}
1669
1670 \headphd
1671 {\large\bf
1672  Silicon carbide precipitation simulations
1673 }
1674
1675 \small
1676
1677 \vspace{0.2cm}
1678
1679 {\bf Procedure}
1680
1681 {\scriptsize
1682  \begin{pspicture}(0,0)(12,6.5)
1683   % nodes
1684   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1685    \parbox{7cm}{
1686    \begin{itemize}
1687     \item Create c-Si volume
1688     \item Periodc boundary conditions
1689     \item Set requested $T$ and $p=0\text{ bar}$
1690     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1691    \end{itemize}
1692   }}}}
1693   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1694    \parbox{7cm}{
1695    Insertion of C atoms at constant T
1696    \begin{itemize}
1697     \item total simulation volume {\pnode{in1}}
1698     \item volume of minimal SiC precipitate size {\pnode{in2}}
1699     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1700           precipitate
1701    \end{itemize} 
1702   }}}}
1703   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1704    \parbox{7.0cm}{
1705    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1706   }}}}
1707   \ncline[]{->}{init}{insert}
1708   \ncline[]{->}{insert}{cool}
1709   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1710   \rput(7.6,6){\footnotesize $V_1$}
1711   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1712   \rput(8.9,4.85){\tiny $V_2$}
1713   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1714   \rput(9.25,4.45){\footnotesize $V_3$}
1715   \rput(7.9,3.2){\pnode{ins1}}
1716   \rput(8.92,2.8){\pnode{ins2}}
1717   \rput(10.8,2.4){\pnode{ins3}}
1718   \ncline[]{->}{in1}{ins1}
1719   \ncline[]{->}{in2}{ins2}
1720   \ncline[]{->}{in3}{ins3}
1721  \end{pspicture}
1722 }
1723
1724 \vspace{-0.5cm}
1725
1726 {\bf Note}
1727
1728 \footnotesize
1729
1730 \begin{minipage}{5.7cm}
1731 \begin{itemize}
1732  \item Amount of C atoms: 6000\\
1733        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1734  \item Simulation volume: $31^3$ Si unit cells\\
1735        (238328 Si atoms)
1736 \end{itemize}
1737 \end{minipage}
1738 \begin{minipage}{0.3cm}
1739 \hfill
1740 \end{minipage}
1741 \framebox{
1742 \begin{minipage}{6.0cm}
1743 Restricted to classical potential caclulations\\
1744 $\rightarrow$ Low C diffusion / overestimated barrier\\
1745 $\rightarrow$ Consider $V_2$ and $V_3$
1746 %\begin{itemize}
1747 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1748 %\end{itemize}
1749 \end{minipage}
1750 }
1751
1752 \end{slide}
1753
1754 \begin{slide}
1755
1756 \headphd
1757 {\large\bf\boldmath
1758  Silicon carbide precipitation simulations at \degc{450} as in IBS
1759 }
1760
1761 \small
1762
1763 \begin{minipage}{6.3cm}
1764 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1765 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1766 \hfill
1767 \end{minipage} 
1768 \begin{minipage}{6.1cm}
1769 \scriptsize
1770 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1771 \hkl<1 0 0> C-Si dumbbell dominated structure
1772 \begin{itemize}
1773  \item Si-C bumbs around \unit[0.19]{nm}
1774  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1775        concatenated differently oriented \ci{} DBs
1776  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1777 \end{itemize}
1778 \begin{pspicture}(0,0)(6.0,1.0)
1779 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1780 \begin{minipage}{6cm}
1781 \centering
1782 Formation of \ci{} dumbbells\\
1783 C atoms in proper 3C-SiC distance first
1784 \end{minipage}
1785 }}
1786 \end{pspicture}\\[0.1cm]
1787 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1788 \begin{itemize}
1789 \item High amount of strongly bound C-C bonds
1790 \item Increased defect \& damage density\\
1791       $\rightarrow$ Arrangements hard to categorize and trace
1792 \item Only short range order observable
1793 \end{itemize}
1794 \begin{pspicture}(0,0)(6.0,0.8)
1795 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1796 \begin{minipage}{6cm}
1797 \centering
1798 Amorphous SiC-like phase
1799 \end{minipage}
1800 }}
1801 \end{pspicture}\\[0.3cm]
1802 \begin{pspicture}(0,0)(6.0,2.0)
1803 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1804 \begin{minipage}{6cm}
1805 \hfill
1806 \vspace{2.5cm}
1807 \end{minipage}
1808 }}
1809 \end{pspicture}
1810 \end{minipage} 
1811
1812 \end{slide}
1813
1814 \begin{slide}
1815
1816 \headphd
1817 {\large\bf\boldmath
1818  Silicon carbide precipitation simulations at \degc{450} as in IBS
1819 }
1820
1821 \small
1822
1823 \begin{minipage}{6.3cm}
1824 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1825 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1826 \hfill
1827 \end{minipage} 
1828 \begin{minipage}{6.1cm}
1829 \scriptsize
1830 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1831 \hkl<1 0 0> C-Si dumbbell dominated structure
1832 \begin{itemize}
1833  \item Si-C bumbs around \unit[0.19]{nm}
1834  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1835        concatenated differently oriented \ci{} DBs
1836  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1837 \end{itemize}
1838 \begin{pspicture}(0,0)(6.0,1.0)
1839 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1840 \begin{minipage}{6cm}
1841 \centering
1842 Formation of \ci{} dumbbells\\
1843 C atoms in proper 3C-SiC distance first
1844 \end{minipage}
1845 }}
1846 \end{pspicture}\\[0.1cm]
1847 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1848 \begin{itemize}
1849 \item High amount of strongly bound C-C bonds
1850 \item Increased defect \& damage density\\
1851       $\rightarrow$ Arrangements hard to categorize and trace
1852 \item Only short range order observable
1853 \end{itemize}
1854 \begin{pspicture}(0,0)(6.0,0.8)
1855 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1856 \begin{minipage}{6cm}
1857 \centering
1858 Amorphous SiC-like phase
1859 \end{minipage}
1860 }}
1861 \end{pspicture}\\[0.3cm]
1862 \begin{pspicture}(0,0)(6.0,2.0)
1863 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1864 \begin{minipage}{6cm}
1865 \vspace{0.1cm}
1866 \centering
1867 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1868 \begin{minipage}{0.8cm}
1869 {\bf\boldmath $V_1$:}
1870 \end{minipage}
1871 \begin{minipage}{5.1cm}
1872 Formation of \ci{} indeed occurs\\
1873 Agllomeration not observed
1874 \end{minipage}\\[0.3cm]
1875 \begin{minipage}{0.8cm}
1876 {\bf\boldmath $V_{2,3}$:}
1877 \end{minipage}
1878 \begin{minipage}{5.1cm}
1879 Amorphous SiC-like structure\\
1880 (not expected at \degc{450})\\[0.05cm]
1881 No rearrangement/transition into 3C-SiC
1882 \end{minipage}\\[0.1cm]
1883 \end{minipage}
1884 }}
1885 \end{pspicture}
1886 \end{minipage} 
1887
1888 \end{slide}
1889
1890 \begin{slide}
1891
1892 \headphd
1893 {\large\bf
1894  Limitations of MD and short range potentials
1895 }
1896
1897 \small
1898
1899 \vspace{0.2cm}
1900
1901 {\bf Time scale problem of MD}\\[0.2cm]
1902 Precise integration \& thermodynamic sampling\\
1903 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1904               $\omega$: vibrational mode\\
1905 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1906 Several local minima separated by large energy barriers\\
1907 $\Rightarrow$ Transition event corresponds to a multiple
1908               of vibrational periods\\
1909 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1910               infrequent transition events\\[0.2cm]
1911 {\color{blue}Accelerated methods:}
1912 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1913
1914 \vspace{0.2cm}
1915
1916 {\bf Limitations related to the short range potential}\\[0.2cm]
1917 Cut-off function limits interaction to next neighbours\\
1918 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1919               (factor: 2.4--3.4)
1920
1921 \vspace{1.4cm}
1922
1923 {\bf Approach to the (twofold) problem}\\[0.2cm]
1924 Increased temperature simulations without TAD corrections\\
1925 Accelerated methods or higher time scales exclusively not sufficient!
1926
1927 \begin{pspicture}(0,0)(0,0)
1928 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1929 \begin{minipage}{7.5cm}
1930 \centering
1931 \vspace{0.05cm}
1932 Potential enhanced slow phase space propagation
1933 \end{minipage}
1934 }}
1935 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1936 \begin{minipage}{2.7cm}
1937 \tiny
1938 \centering
1939 retain proper\\
1940 thermodynamic sampling
1941 \end{minipage}
1942 }}
1943 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1944 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1945 \begin{minipage}{3.6cm}
1946 \tiny
1947 \centering
1948 \underline{IBS}\\[0.1cm]
1949 3C-SiC also observed for higher T\\[0.1cm]
1950 Higher T inside sample\\[0.1cm]
1951 Structural evolution vs.\\
1952 equilibrium properties
1953 \end{minipage}
1954 }}
1955 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1956 \end{pspicture}
1957
1958 \end{slide}
1959
1960 \begin{slide}
1961
1962 \headphd
1963 {\large\bf\boldmath
1964  Increased temperature simulations --- $V_1$
1965 }
1966
1967 \small
1968
1969 \begin{minipage}{6.2cm}
1970 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1971 \hfill
1972 \end{minipage}
1973 \begin{minipage}{6.2cm}
1974 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1975 \end{minipage}
1976
1977 \begin{minipage}{6.2cm}
1978 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1979 \hfill
1980 \end{minipage}
1981 \begin{minipage}{6.3cm}
1982 \scriptsize
1983  \underline{Si-C bonds:}
1984  \begin{itemize}
1985   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1986   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1987  \end{itemize}
1988  \underline{Si-Si bonds:}
1989  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1990  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1991  \underline{C-C bonds:}
1992  \begin{itemize}
1993   \item C-C next neighbour pairs reduced (mandatory)
1994   \item Peak at 0.3 nm slightly shifted
1995         \begin{itemize}
1996          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1997                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1998                combinations (|)\\
1999                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2000                ($\downarrow$)
2001          \item Range [|-$\downarrow$]:
2002                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2003                with nearby Si$_{\text{I}}$}
2004         \end{itemize}
2005  \end{itemize}
2006 \end{minipage}
2007
2008 \end{slide}
2009
2010 \begin{slide}
2011
2012 \headphd
2013 {\large\bf\boldmath
2014  Increased temperature simulations --- $V_1$
2015 }
2016
2017 \small
2018
2019 \begin{minipage}{6.2cm}
2020 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2021 \hfill
2022 \end{minipage}
2023 \begin{minipage}{6.2cm}
2024 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2025 \end{minipage}
2026
2027 \begin{minipage}{6.2cm}
2028 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2029 \hfill
2030 \end{minipage}
2031 \begin{minipage}{6.3cm}
2032 \scriptsize
2033  \underline{Si-C bonds:}
2034  \begin{itemize}
2035   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2036   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2037  \end{itemize}
2038  \underline{Si-Si bonds:}
2039  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2040  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2041  \underline{C-C bonds:}
2042  \begin{itemize}
2043   \item C-C next neighbour pairs reduced (mandatory)
2044   \item Peak at 0.3 nm slightly shifted
2045         \begin{itemize}
2046          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2047                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2048                combinations (|)\\
2049                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2050                ($\downarrow$)
2051          \item Range [|-$\downarrow$]:
2052                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2053                with nearby Si$_{\text{I}}$}
2054         \end{itemize}
2055  \end{itemize}
2056 \end{minipage}
2057
2058 % conclusions
2059 \begin{pspicture}(0,0)(0,0)
2060 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2061 \begin{minipage}{14cm}
2062 \hfill
2063 \vspace{14cm}
2064 \end{minipage}
2065 }}
2066 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2067 \begin{minipage}{9cm}
2068 \vspace{0.2cm}
2069 \small
2070 \begin{center}
2071 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2072 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2073 \end{center}
2074 \begin{itemize}
2075 \item Stretched coherent SiC structures\\
2076 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2077 \item Role of \si{}
2078       \begin{itemize}
2079        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2080        \item Building block for surrounding Si host \& further SiC
2081        \item Strain compensation \ldots\\
2082              \ldots Si/SiC interface\\
2083              \ldots within stretched coherent SiC structure
2084       \end{itemize}
2085 \item Explains annealing behavior of high/low T C implantations
2086       \begin{itemize}
2087        \item Low T: highly mobile {\color{red}\ci}
2088        \item High T: stable configurations of {\color{blue}\cs}
2089       \end{itemize}
2090 \end{itemize}
2091 \vspace{0.2cm}
2092 \centering
2093 \psframebox[linecolor=blue,linewidth=0.05cm]{
2094 \begin{minipage}{7cm}
2095 \centering
2096 Precipitation mechanism involving \cs\\
2097 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2098 \end{minipage}
2099 }
2100 \end{minipage}
2101 \vspace{0.2cm}
2102 }}
2103 \end{pspicture}
2104
2105 \end{slide}
2106
2107 % skip high c conc results
2108 \ifnum1=0
2109
2110 \begin{slide}
2111
2112  {\large\bf
2113   Increased temperature simulations at high C concentration
2114  }
2115
2116 \footnotesize
2117
2118 \begin{minipage}{6.0cm}
2119 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2120 \end{minipage}
2121 \begin{minipage}{6.0cm}
2122 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2123 \end{minipage}
2124
2125 \vspace{0.1cm}
2126
2127 \scriptsize
2128
2129 \framebox{
2130 \begin{minipage}[t]{6.0cm}
2131 0.186 nm: Si-C pairs $\uparrow$\\
2132 (as expected in 3C-SiC)\\[0.2cm]
2133 0.282 nm: Si-C-C\\[0.2cm]
2134 $\approx$0.35 nm: C-Si-Si
2135 \end{minipage}
2136 }
2137 \begin{minipage}{0.2cm}
2138 \hfill
2139 \end{minipage}
2140 \framebox{
2141 \begin{minipage}[t]{6.0cm}
2142 0.15 nm: C-C pairs $\uparrow$\\
2143 (as expected in graphite/diamond)\\[0.2cm]
2144 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2145 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2146 \end{minipage}
2147 }
2148
2149 \begin{itemize}
2150 \item Decreasing cut-off artifact
2151 \item {\color{red}Amorphous} SiC-like phase remains
2152 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2153 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2154 \end{itemize}
2155
2156 \vspace{-0.1cm}
2157
2158 \begin{center}
2159 {\color{blue}
2160 \framebox{
2161 {\color{black}
2162 High C \& small $V$ \& short $t$
2163 $\Rightarrow$
2164 }
2165 Slow restructuring due to strong C-C bonds
2166 {\color{black}
2167 $\Leftarrow$
2168 High C \& low T implants
2169 }
2170 }
2171 }
2172 \end{center}
2173
2174 \end{slide}
2175
2176 % skip high c conc
2177 \fi
2178
2179 % for preparation
2180 %\fi
2181
2182 \begin{slide}
2183
2184 \headphd
2185 {\large\bf
2186  Summary and Conclusions
2187 }
2188
2189 \footnotesize
2190
2191 \vspace{0.1cm}
2192
2193 \framebox{
2194 \begin{minipage}{12.3cm}
2195  \underline{Defects}
2196  \begin{itemize}
2197    \item DFT / EA
2198         \begin{itemize}
2199          \item Point defects excellently / fairly well described
2200                by DFT / EA
2201          \item Identified \ci{} migration path
2202          \item EA drastically overestimates the diffusion barrier
2203         \end{itemize}
2204    \item Combinations of defects
2205          \begin{itemize}
2206           \item Agglomeration of point defects energetically favorable
2207           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2208           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2209                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2210         \end{itemize}
2211  \end{itemize}
2212 \end{minipage}
2213 }
2214
2215 \framebox{
2216 \begin{minipage}[t]{12.3cm}
2217  \underline{Pecipitation simulations}
2218  \begin{itemize}
2219   \item Problem of potential enhanced slow phase space propagation
2220   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2221   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2222   \item High T necessary to simulate IBS conditions (far from equilibrium)
2223   \item Increased participation of \cs{} in the precipitation process
2224   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2225         (stretched SiC, interface)
2226  \end{itemize}
2227 \end{minipage}
2228 }
2229
2230 \begin{center}
2231 {\color{blue}\bf
2232 \framebox{Precipitation by successive agglomeration of \cs{}}
2233 }
2234 \end{center}
2235
2236 \end{slide}
2237
2238 \begin{slide}
2239
2240 \headphd
2241 {\large\bf
2242  Acknowledgements
2243 }
2244
2245  \vspace{0.1cm}
2246
2247  \small
2248
2249  Thanks to \ldots
2250
2251  \underline{Augsburg}
2252  \begin{itemize}
2253   \item Prof. B. Stritzker
2254   \item Ralf Utermann
2255  \end{itemize}
2256  
2257  \underline{Helsinki}
2258  \begin{itemize}
2259   \item Prof. K. Nordlund
2260  \end{itemize}
2261  
2262  \underline{Munich}
2263  \begin{itemize}
2264   \item Bayerische Forschungsstiftung
2265  \end{itemize}
2266  
2267  \underline{Paderborn}
2268  \begin{itemize}
2269   \item Prof. J. Lindner
2270   \item Prof. G. Schmidt
2271   \item Dr. E. Rauls
2272  \end{itemize}
2273
2274 \vspace{ 0.2cm}
2275
2276 \begin{center}
2277 \framebox{
2278 \normalsize\bf Thank you for your attention!
2279 }
2280 \end{center}
2281
2282 \end{slide}
2283
2284 \begin{slide}
2285
2286 \headphd
2287  {\large\bf
2288   Polytypes of SiC\\[0.6cm]
2289  }
2290
2291 \vspace{0.6cm}
2292
2293 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
2294 \begin{minipage}{1.9cm}
2295 {\tiny cubic (twist)}
2296 \end{minipage}
2297 \begin{minipage}{2.9cm}
2298 {\tiny hexagonal (no twist)}
2299 \end{minipage}
2300
2301 \begin{picture}(0,0)(-150,0)
2302  \includegraphics[width=7cm]{polytypes.eps}
2303 \end{picture}
2304
2305 \vspace{0.6cm}
2306
2307 \footnotesize
2308
2309 \begin{tabular}{l c c c c c c}
2310 \hline
2311  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
2312 \hline
2313 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
2314 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
2315 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
2316 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
2317 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
2318 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
2319 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
2320 \hline
2321 \end{tabular}
2322
2323 \begin{pspicture}(0,0)(0,0)
2324 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
2325 \end{pspicture}
2326 \begin{pspicture}(0,0)(0,0)
2327 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
2328 \end{pspicture}
2329 \begin{pspicture}(0,0)(0,0)
2330 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
2331 \end{pspicture}
2332
2333 \end{slide}
2334
2335 \end{document}
2336