knapp, aber koennte gehen
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143 \begin{center}
144
145  \vspace{16pt}
146
147  {\Large\bf
148   \hrule
149   \vspace{5pt}
150   Atomistic simulation study on silicon carbide\\[0.2cm]
151   precipitation in silicon\\
152   \vspace{10pt}
153   \hrule
154  }
155
156  \vspace{60pt}
157
158  \textsc{Frank Zirkelbach}
159
160  \vspace{60pt}
161
162  Defense of doctor's thesis
163
164  \vspace{08pt}
165
166  Augsburg, 10.01.2012
167
168 \end{center}
169 \end{slide}
170
171 % no vertical centering
172 \centerslidesfalse
173
174 % skip for preparation
175 %\ifnum1=0
176
177 % intro
178
179 % motivation / properties / applications of silicon carbide
180
181 \begin{slide}
182
183 \vspace*{1.8cm}
184
185 \small
186
187 \begin{pspicture}(0,0)(13.5,5)
188
189  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
190
191  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
193
194  \rput[lt](0,4.6){\color{gray}PROPERTIES}
195
196  \rput[lt](0.3,4){wide band gap}
197  \rput[lt](0.3,3.5){high electric breakdown field}
198  \rput[lt](0.3,3){good electron mobility}
199  \rput[lt](0.3,2.5){high electron saturation drift velocity}
200  \rput[lt](0.3,2){high thermal conductivity}
201
202  \rput[lt](0.3,1.5){hard and mechanically stable}
203  \rput[lt](0.3,1){chemically inert}
204
205  \rput[lt](0.3,0.5){radiation hardness}
206
207  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
208
209  \rput[rt](12.5,3.85){high-temperature, high power}
210  \rput[rt](12.5,3.5){and high-frequency}
211  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
212
213  \rput[rt](12.5,2.35){material suitable for extreme conditions}
214  \rput[rt](12.5,2){microelectromechanical systems}
215  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
216
217  \rput[rt](12.5,0.85){first wall reactor material, detectors}
218  \rput[rt](12.5,0.5){and electronic devices for space}
219
220 \end{pspicture}
221
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
230 \end{picture}
231 %%%%
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
234 \end{picture}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
238 \end{picture}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
242 \end{picture}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
245 \end{picture}
246
247 \end{slide}
248
249 % fabrication
250
251 \ifnum1=0
252 \begin{slide}
253
254 \headphd
255  {\large\bf
256   Fabrication of silicon carbide
257  }
258
259  \small
260  
261  \vspace{2pt}
262
263 \begin{center}
264  {\color{gray}
265  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
266  }
267 \end{center}
268
269 \vspace{2pt}
270
271 SiC thin films by MBE \& CVD
272 \begin{itemize}
273  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
274  \item \underline{Commercially available} semiconductor power devices based on
275        \underline{\foreignlanguage{greek}{a}-SiC}
276  \item Production of favored \underline{3C-SiC} material
277        \underline{less advanced}
278  \item Quality and size not yet sufficient
279 \end{itemize}
280 \begin{picture}(0,0)(-310,-20)
281   \includegraphics[width=2.0cm]{cree.eps}
282 \end{picture}
283
284 \vspace{-0.5cm}
285
286 %\begin{center}
287 %\color{red}
288 %\framebox{
289 %{\footnotesize\color{black}
290 % Mismatch in \underline{thermal expansion coeefficient}
291 % and \underline{lattice parameter} w.r.t. substrate
292 %}
293 %}
294 %\end{center}
295
296 \vspace{0.1cm}
297
298 {\bf Alternative approach}\\
299 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
300
301 \vspace{0.1cm}
302
303 \scriptsize
304
305 \framebox{
306 \begin{minipage}{3.15cm}
307  \begin{center}
308 \includegraphics[width=3cm]{imp.eps}\\
309  {\tiny
310   Carbon implantation
311  }
312  \end{center}
313 \end{minipage}
314 \begin{minipage}{3.15cm}
315  \begin{center}
316 \includegraphics[width=3cm]{annealing.eps}\\
317  {\tiny
318  Postannealing at $>$ \degc{1200}
319  }
320  \end{center}
321 \end{minipage}
322 }
323 \begin{minipage}{5.5cm}
324  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
325  \begin{center}
326  {\tiny
327   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
328  }
329  \end{center}
330 \end{minipage}
331
332 %\begin{minipage}{5.5cm}
333 %\begin{center}
334 %{\footnotesize
335 %No surface bending effects\\
336 %High areal homogenity\\[0.1cm]
337 %$\Downarrow$\\[0.1cm]
338 %Synthesis of large area SiC films possible
339 %}
340 %\end{center}
341 %\end{minipage}
342
343 \end{slide}
344 \fi
345
346 \begin{slide}
347
348 \headphd
349 {\large\bf
350  IBS of epitaxial single crystalline 3C-SiC
351 }
352
353 \footnotesize
354
355 \vspace{0.2cm}
356
357 \begin{center}
358 \begin{itemize}
359  \item \underline{Implantation step 1}\\[0.1cm]
360         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
361         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
362         {\color{blue}precipitates}
363  \item \underline{Implantation step 2}\\[0.1cm]
364         Low remaining amount of dose | \unit[180]{keV} | \degc{250}\\
365         $\Rightarrow$
366         Destruction/Amorphization of precipitates at layer interface
367  \item \underline{Annealing}\\[0.1cm]
368        \unit[10]{h} at \degc{1250}\\
369        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
370 \end{itemize}
371 \end{center}
372
373 \begin{minipage}{6.9cm}
374 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
375 \begin{center}
376 {\tiny
377  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
378 }
379 \end{center}
380 \end{minipage}
381 \begin{minipage}{5cm}
382 \begin{pspicture}(0,0)(0,0)
383 \rnode{box}{
384 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
385 \begin{minipage}{5.3cm}
386  \begin{center}
387  {\color{blue}
388   3C-SiC precipitation\\
389   not yet fully understood
390  }
391  \end{center}
392  \vspace*{0.1cm}
393  \renewcommand\labelitemi{$\Rightarrow$}
394  Details of the SiC precipitation
395  \begin{itemize}
396   \item significant technological progress\\
397         in SiC thin film formation
398   \item perspectives for processes relying\\
399         upon prevention of SiC precipitation
400  \end{itemize}
401 \end{minipage}
402 }}
403 \rput(-6.8,5.5){\pnode{h0}}
404 \rput(-3.0,5.5){\pnode{h1}}
405 \ncline[linecolor=blue]{-}{h0}{h1}
406 \ncline[linecolor=blue]{->}{h1}{box}
407 \end{pspicture}
408 \end{minipage}
409
410 \end{slide}
411
412 \begin{slide}
413
414 \headphd
415 {\large\bf
416   Supposed precipitation mechanism of SiC in Si
417 }
418
419  \scriptsize
420
421  \vspace{0.1cm}
422
423  \framebox{
424  \begin{minipage}{3.6cm}
425  \begin{center}
426  Si \& SiC lattice structure\\[0.1cm]
427  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
428  \end{center}
429 {\tiny
430  \begin{minipage}{1.7cm}
431 \underline{Silicon}\\
432 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
433 $a=\unit[5.429]{\\A}$\\
434 $\rho^*_{\text{Si}}=\unit[100]{\%}$
435  \end{minipage}
436  \begin{minipage}{1.7cm}
437 \underline{Silicon carbide}\\
438 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
439 $a=\unit[4.359]{\\A}$\\
440 $\rho^*_{\text{Si}}=\unit[97]{\%}$
441  \end{minipage}
442 }
443  \end{minipage}
444  }
445  \hspace{0.1cm}
446  \begin{minipage}{4.1cm}
447  \begin{center}
448  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
449  \end{center}
450  \end{minipage}
451  \hspace{0.1cm}
452  \begin{minipage}{4.0cm}
453  \begin{center}
454  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
455  \end{center}
456  \end{minipage}
457
458  \vspace{0.1cm}
459
460  \begin{minipage}{4.0cm}
461  \begin{center}
462  C-Si dimers (dumbbells)\\[-0.1cm]
463  on Si lattice sites
464  \end{center}
465  \end{minipage}
466  \hspace{0.1cm}
467  \begin{minipage}{4.1cm}
468  \begin{center}
469  Agglomeration of C-Si dumbbells\\[-0.1cm]
470  $\Rightarrow$ dark contrasts
471  \end{center}
472  \end{minipage}
473  \hspace{0.1cm}
474  \begin{minipage}{4.0cm}
475  \begin{center}
476  Precipitation of 3C-SiC in Si\\[-0.1cm]
477  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
478  \& release of Si self-interstitials
479  \end{center}
480  \end{minipage}
481
482  \vspace{0.1cm}
483
484  \begin{minipage}{4.0cm}
485  \begin{center}
486  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
487  \end{center}
488  \end{minipage}
489  \hspace{0.1cm}
490  \begin{minipage}{4.1cm}
491  \begin{center}
492  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
493  \end{center}
494  \end{minipage}
495  \hspace{0.1cm}
496  \begin{minipage}{4.0cm}
497  \begin{center}
498  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
499  \end{center}
500  \end{minipage}
501
502 \begin{pspicture}(0,0)(0,0)
503 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
504 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
505 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
506 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
507 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
508  $4a_{\text{Si}}=5a_{\text{SiC}}$
509  }}}
510 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
511 \hkl(h k l) planes match
512  }}}
513 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
514 r = \unit[2--4]{nm}
515  }}}
516 \end{pspicture}
517
518 \end{slide}
519
520 \begin{slide}
521
522 \headphd
523 {\large\bf
524  Supposed precipitation mechanism of SiC in Si
525 }
526
527  \scriptsize
528
529  \vspace{0.1cm}
530
531  \framebox{
532  \begin{minipage}{3.6cm}
533  \begin{center}
534  Si \& SiC lattice structure\\[0.1cm]
535  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
536  \end{center}
537 {\tiny
538  \begin{minipage}{1.7cm}
539 \underline{Silicon}\\
540 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
541 $a=\unit[5.429]{\\A}$\\
542 $\rho^*_{\text{Si}}=\unit[100]{\%}$
543  \end{minipage}
544  \begin{minipage}{1.7cm}
545 \underline{Silicon carbide}\\
546 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
547 $a=\unit[4.359]{\\A}$\\
548 $\rho^*_{\text{Si}}=\unit[97]{\%}$
549  \end{minipage}
550 }
551  \end{minipage}
552  }
553  \hspace{0.1cm}
554  \begin{minipage}{4.1cm}
555  \begin{center}
556  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
557  \end{center}
558  \end{minipage}
559  \hspace{0.1cm}
560  \begin{minipage}{4.0cm}
561  \begin{center}
562  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
563  \end{center}
564  \end{minipage}
565
566  \vspace{0.1cm}
567
568  \begin{minipage}{4.0cm}
569  \begin{center}
570  C-Si dimers (dumbbells)\\[-0.1cm]
571  on Si interstitial sites
572  \end{center}
573  \end{minipage}
574  \hspace{0.1cm}
575  \begin{minipage}{4.1cm}
576  \begin{center}
577  Agglomeration of C-Si dumbbells\\[-0.1cm]
578  $\Rightarrow$ dark contrasts
579  \end{center}
580  \end{minipage}
581  \hspace{0.1cm}
582  \begin{minipage}{4.0cm}
583  \begin{center}
584  Precipitation of 3C-SiC in Si\\[-0.1cm]
585  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
586  \& release of Si self-interstitials
587  \end{center}
588  \end{minipage}
589
590  \vspace{0.1cm}
591
592  \begin{minipage}{4.0cm}
593  \begin{center}
594  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
595  \end{center}
596  \end{minipage}
597  \hspace{0.1cm}
598  \begin{minipage}{4.1cm}
599  \begin{center}
600  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
601  \end{center}
602  \end{minipage}
603  \hspace{0.1cm}
604  \begin{minipage}{4.0cm}
605  \begin{center}
606  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
607  \end{center}
608  \end{minipage}
609
610 \begin{pspicture}(0,0)(0,0)
611 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
612 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
613 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
614 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
615 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
616  $4a_{\text{Si}}=5a_{\text{SiC}}$
617  }}}
618 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
619 \hkl(h k l) planes match
620  }}}
621 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
622 r = \unit[2--4]{nm}
623  }}}
624 % controversial view!
625 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
626 \begin{minipage}{14cm}
627 \hfill
628 \vspace{12cm}
629 \end{minipage}
630 }}
631 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
632 \begin{minipage}{10cm}
633 \small
634 \vspace*{0.2cm}
635 \begin{center}
636 {\color{gray}\bf Controversial findings}
637 \end{center}
638 \begin{itemize}
639 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
640  \begin{itemize}
641   \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
642   \item \si{} reacting with further C in cleared volume
643  \end{itemize}
644 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
645  \begin{itemize}
646   \item Room temperature implantation $\rightarrow$ high C diffusion
647   \item Elevated temperature implantation $\rightarrow$ no C redistribution
648  \end{itemize}
649  $\Rightarrow$ mobile {\color{red}\ci} opposed to
650  stable {\color{blue}\cs{}} configurations
651 \item Strained silicon \& Si$_{1-y}$C$_y$ heterostructures
652       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
653  \begin{itemize}
654   \item Initial {\color{blue}coherent} SiC precipitates (tensile strain)
655   \item Incoherent SiC (strain relaxation)
656  \end{itemize}
657 \end{itemize}
658 \vspace{0.1cm}
659 \begin{center}
660 {\Huge${\lightning}$} \hspace{0.3cm}
661 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
662 {\Huge${\lightning}$}
663 \end{center}
664 \vspace{0.2cm}
665 \end{minipage}
666  }}}
667 \end{pspicture}
668
669 \end{slide}
670
671 \begin{slide}
672
673 % contents
674
675 \headphd
676 {\large\bf
677  Outline
678 }
679
680  \begin{itemize}
681   {\color{gray}
682   \item Introduction / Motivation
683   \item Assumed SiC precipitation mechanisms / Controversy
684   }
685   \item Utilized simulation techniques
686         \begin{itemize}
687          \item Molecular dynamics (MD) simulations
688          \item Density functional theory (DFT) calculations
689         \end{itemize}
690   \item Simulation results
691         \begin{itemize}
692          \item C and Si self-interstitial point defects in silicon
693          \item Silicon carbide precipitation simulations
694         \end{itemize}
695   \item Summary / Conclusion
696  \end{itemize}
697
698 \end{slide}
699
700 \begin{slide}
701
702 \headphd
703 {\large\bf
704  Utilized computational methods
705 }
706
707 \vspace{0.3cm}
708
709 \small
710
711 {\bf Molecular dynamics (MD)}\\[0.1cm]
712 \scriptsize
713 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
714 \hline
715 System of $N$ particles &
716 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
717 Phase space propagation &
718 Velocity Verlet | timestep: \unit[1]{fs} \\
719 Analytical interaction potential &
720 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
721 (Erhart/Albe)
722 $\displaystyle
723 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
724     \pot_{ij} = {\color{red}f_C(r_{ij})}
725     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
726 $\\
727 Observables: time/ensemble averages &
728 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
729 \hline
730 \end{tabular}
731
732 \small
733
734 \vspace{0.3cm}
735
736 {\bf Density functional theory (DFT)}
737
738 \scriptsize
739
740 \begin{minipage}[t]{6cm}
741 \begin{itemize}
742  \item Hohenberg-Kohn theorem:\\
743        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
744  \item Kohn-Sham approach:\\
745        Single-particle effective theory
746 \end{itemize}
747 \hrule
748 \begin{itemize}
749 \item Code: \textsc{vasp}
750 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
751 %$\displaystyle
752 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
753 %$\\
754 %$\displaystyle
755 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
756 %$
757 \item Ultrasoft pseudopotential
758 \item Exchange \& correlation: GGA
759 \item Brillouin zone sampling: $\Gamma$-point
760 \item Supercell: $N=216\pm2$
761 \end{itemize}
762 \end{minipage}
763 \begin{minipage}{6cm}
764 \begin{pspicture}(0,0)(0,0)
765 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
766 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
767 $\displaystyle
768 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
769 $
770 }}
771 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
772 $\displaystyle
773 n(r)=\sum_i^N|\Phi_i(r)|^2
774 $
775 }}
776 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
777 $\displaystyle
778 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
779                  +V_{\text{XC}}[n(r)]
780 $
781 }}
782 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
783 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
784 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
785
786 \end{pspicture}
787 \end{minipage}
788
789 \end{slide}
790
791 \begin{slide}
792
793 \headphd
794  {\large\bf
795   Point defects \& defect migration
796  }
797
798  \small
799
800  \vspace{0.2cm}
801
802 \begin{minipage}[b]{7.5cm}
803 {\bf Defect structure}\\
804   \begin{pspicture}(0,0)(7,4.4)
805   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
806    \parbox{7cm}{
807    \begin{itemize}
808     \item Creation of c-Si simulation volume
809     \item Periodic boundary conditions
810     \item $T=0\text{ K}$, $p=0\text{ bar}$
811    \end{itemize}
812   }}}}
813 \rput(3.5,1.3){\rnode{insert}{\psframebox{
814  \parbox{7cm}{
815   \begin{center}
816   Insertion of interstitial C/Si atoms
817   \end{center}
818   }}}}
819   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
820    \parbox{7cm}{
821    \begin{center}
822    Relaxation / structural energy minimization
823    \end{center}
824   }}}}
825   \ncline[]{->}{init}{insert}
826   \ncline[]{->}{insert}{cool}
827  \end{pspicture}
828 \end{minipage}
829 \begin{minipage}[b]{4.5cm}
830 \begin{center}
831 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
832 \end{center}
833 \begin{minipage}{2.21cm}
834 {\scriptsize
835 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
836 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
837 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
838 }
839 \end{minipage}
840 \begin{minipage}{2.21cm}
841 {\scriptsize
842 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
843 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
844 {\color{black}$\bullet$} Vac. / Sub.
845 }
846 \end{minipage}
847 \end{minipage}
848
849 \vspace{0.2cm}
850
851 \begin{minipage}[b]{6cm}
852 {\bf Defect formation energy}\\
853 \framebox{
854 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
855 Particle reservoir: Si \& SiC\\[0.2cm]
856 {\bf Binding energy}\\
857 \framebox{
858 $
859 E_{\text{b}}=
860 E_{\text{f}}^{\text{comb}}-
861 E_{\text{f}}^{1^{\text{st}}}-
862 E_{\text{f}}^{2^{\text{nd}}}
863 $
864 }\\[0.1cm]
865 \footnotesize
866 $E_{\text{b}}<0$: energetically favorable configuration\\
867 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
868 \end{minipage}
869 \begin{minipage}[b]{6cm}
870 {\bf Migration barrier}
871 \footnotesize
872 \begin{itemize}
873  \item Displace diffusing atom
874  \item Constrain relaxation of (diffusing) atoms
875  \item Record configurational energy
876 \end{itemize}
877 \begin{picture}(0,0)(-60,-33)
878 \includegraphics[width=4.5cm]{crt_mod.eps}
879 \end{picture}
880 \end{minipage}
881
882 \end{slide}
883
884 \begin{slide}
885
886 \footnotesize
887
888 \headphd
889 {\large\bf
890  C interstitial point defects in silicon\\
891 }
892
893 \begin{tabular}{l c c c c c c r}
894 \hline
895  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
896  {\color{black} \cs{} \& \si}\\
897 \hline
898  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
899  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
900 \hline
901 \end{tabular}\\[0.1cm]
902
903 \framebox{
904 \begin{minipage}{2.8cm}
905 \underline{Hexagonal} \hspace{2pt}
906 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
907 $E_{\text{f}}^*=9.05\text{ eV}$\\
908 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
909 \end{minipage}
910 \begin{minipage}{0.4cm}
911 \begin{center}
912 $\Rightarrow$
913 \end{center}
914 \end{minipage}
915 \begin{minipage}{2.8cm}
916 \underline{\hkl<1 0 0>}\\
917 $E_{\text{f}}=3.88\text{ eV}$\\
918 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
919 \end{minipage}
920 }
921 \begin{minipage}{1.4cm}
922 \hfill
923 \end{minipage}
924 \begin{minipage}{3.0cm}
925 \begin{flushright}
926 \underline{Tetrahedral}\\
927 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
928 \end{flushright}
929 \end{minipage}
930
931 \framebox{
932 \begin{minipage}{2.8cm}
933 \underline{Bond-centered}\\
934 $E_{\text{f}}^*=5.59\text{ eV}$\\
935 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
936 \end{minipage}
937 \begin{minipage}{0.4cm}
938 \begin{center}
939 $\Rightarrow$
940 \end{center}
941 \end{minipage}
942 \begin{minipage}{2.8cm}
943 \underline{\hkl<1 1 0> dumbbell}\\
944 $E_{\text{f}}=5.18\text{ eV}$\\
945 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
946 \end{minipage}
947 }
948 \begin{minipage}{1.4cm}
949 \hfill
950 \end{minipage}
951 \begin{minipage}{3.0cm}
952 \begin{flushright}
953 \underline{Substitutional}\\
954 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
955 \end{flushright}
956 \end{minipage}
957
958 \end{slide}
959
960 \begin{slide}
961
962 \headphd
963 {\large\bf\boldmath
964  C interstitial migration --- ab initio
965 }
966
967 \scriptsize
968
969 \vspace{0.3cm}
970
971 \begin{minipage}{6.8cm}
972 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
973 \begin{minipage}{2.0cm}
974 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
975 \end{minipage}
976 \begin{minipage}{0.2cm}
977 $\rightarrow$
978 \end{minipage}
979 \begin{minipage}{2.0cm}
980 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
981 \end{minipage}
982 \begin{minipage}{0.2cm}
983 $\rightarrow$
984 \end{minipage}
985 \begin{minipage}{2.0cm}
986 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
987 \end{minipage}\\[0.1cm]
988 Symmetry:\\
989 $\Rightarrow$ Sufficient to consider \hkl[00-1] to BC transition\\
990 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
991 \end{minipage}
992 \begin{minipage}{5.4cm}
993 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
994 %\end{minipage}\\[0.2cm]
995 \end{minipage}\\[0.4cm]
996 %\hrule
997 %
998 \begin{minipage}{6.8cm}
999 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1000 \begin{minipage}{2.0cm}
1001 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1002 \end{minipage}
1003 \begin{minipage}{0.2cm}
1004 $\rightarrow$
1005 \end{minipage}
1006 \begin{minipage}{2.0cm}
1007 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1008 \end{minipage}
1009 \begin{minipage}{0.2cm}
1010 $\rightarrow$
1011 \end{minipage}
1012 \begin{minipage}{2.0cm}
1013 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1014 \end{minipage}\\[0.1cm]
1015 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1016 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1017 Note: Change in orientation
1018 \end{minipage}
1019 \begin{minipage}{5.4cm}
1020 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1021 \end{minipage}\\[0.1cm]
1022 %
1023 %\begin{center}
1024 %Reorientation pathway composed of two consecutive processes of the above type
1025 %\end{center}
1026
1027 \end{slide}
1028
1029 \begin{slide}
1030
1031 \headphd
1032 {\large\bf\boldmath
1033  C interstitial migration --- analytical potential
1034 }
1035
1036 \scriptsize
1037
1038 \vspace{0.3cm}
1039
1040 \begin{minipage}[t]{6.0cm}
1041 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1042 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1043 \begin{itemize}
1044  \item Lowermost migration barrier
1045  \item $\Delta E \approx \unit[2.2]{eV}$
1046  \item 2.4 times higher than ab initio result
1047  \item Different pathway
1048 \end{itemize}
1049 \end{minipage}
1050 \begin{minipage}[t]{0.2cm}
1051 \hfill
1052 \end{minipage}
1053 \begin{minipage}[t]{6.0cm}
1054 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1055 \vspace{0.1cm}
1056 \begin{itemize}
1057  \item Bond-centered configuration unstable\\
1058        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1059  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1060        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1061 \end{itemize}
1062 \vspace{0.1cm}
1063 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1064 \begin{itemize}
1065  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1066  \item 2.4 -- 3.4 times higher than ab initio result
1067  \item After all: Change of the DB orientation
1068 \end{itemize}
1069 \end{minipage}
1070
1071 \vspace{0.5cm}
1072 \begin{center}
1073 {\color{red}\bf Drastically overestimated diffusion barrier}
1074 \end{center}
1075
1076 \begin{pspicture}(0,0)(0,0)
1077 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1078 \end{pspicture}
1079
1080 \end{slide}
1081
1082 \begin{slide}
1083
1084 \headphd
1085 {\large\bf\boldmath
1086  Defect combinations --- ab inito
1087 }
1088
1089 \footnotesize
1090
1091 \vspace{0.3cm}
1092
1093 \begin{minipage}{9cm}
1094 {\bf
1095  Summary of combinations}\\[0.1cm]
1096 {\scriptsize
1097 \begin{tabular}{l c c c c c c}
1098 \hline
1099  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1100  \hline
1101  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1102  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1103  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1104  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1105  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1106  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1107  \hline
1108  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1109  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1110 \hline
1111 \end{tabular}
1112 }
1113 \vspace{0.2cm}
1114 \begin{center}
1115 {\color{blue}
1116  $E_{\text{b}}$ explainable by stress compensation / increase
1117 }
1118 \end{center}
1119 \end{minipage}
1120 \begin{minipage}{3cm}
1121 \includegraphics[width=3.5cm]{comb_pos.eps}
1122 \end{minipage}
1123
1124 \vspace{0.2cm}
1125
1126 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1127 \begin{minipage}[t]{3.2cm}
1128 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1129 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1130 \end{minipage}
1131 \begin{minipage}[t]{3.0cm}
1132 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1133 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1134 \end{minipage}
1135 \begin{minipage}[t]{6.1cm}
1136 \vspace{0.7cm}
1137 \begin{itemize}
1138  \item \ci{} agglomeration energetically favorable
1139  \item Most favorable: C clustering\\
1140        {\color{red}However \ldots}\\
1141         \ldots high migration barrier ($>4\,\text{eV}$)\\
1142         \ldots entropy:
1143         $4\times{\color{cyan}[-2.25]}$ versus
1144         $2\times{\color{orange}[-2.39]}$
1145 \end{itemize}
1146 \begin{center}
1147 {\color{blue}\ci{} agglomeration / no C clustering}
1148 \end{center}
1149 \end{minipage}
1150
1151 \end{slide}
1152
1153 \begin{slide}
1154
1155 \headphd
1156 {\large\bf\boldmath
1157  Defect combinations
1158 }
1159
1160 \footnotesize
1161
1162 \vspace{0.3cm}
1163
1164 \begin{minipage}{9cm}
1165 {\bf
1166  Summary of combinations}\\[0.1cm]
1167 {\scriptsize
1168 \begin{tabular}{l c c c c c c}
1169 \hline
1170  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1171  \hline
1172  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1173  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1174  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1175  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1176  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1177  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1178  \hline
1179  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1180  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1181 \hline
1182 \end{tabular}
1183 }
1184 \vspace{0.2cm}
1185 \begin{center}
1186 {\color{blue}
1187  $E_{\text{b}}$ explainable by stress compensation / increase
1188 }
1189 \end{center}
1190 \end{minipage}
1191 \begin{minipage}{3cm}
1192 \includegraphics[width=3.5cm]{comb_pos.eps}
1193 \end{minipage}
1194
1195 \vspace{0.2cm}
1196
1197 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1198 \begin{minipage}[t]{3.2cm}
1199 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1200 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1201 \end{minipage}
1202 \begin{minipage}[t]{3.0cm}
1203 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1204 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1205 \end{minipage}
1206 \begin{minipage}[t]{6.1cm}
1207 \vspace{0.7cm}
1208 \begin{itemize}
1209  \item \ci{} agglomeration energetically favorable
1210  \item Most favorable: C clustering\\
1211        {\color{red}However \ldots}\\
1212         \ldots high migration barrier ($>4\,\text{eV}$)\\
1213         \ldots entropy:
1214         $4\times{\color{cyan}[-2.25]}$ versus
1215         $2\times{\color{orange}[-2.39]}$
1216 \end{itemize}
1217 \begin{center}
1218 {\color{blue}\ci{} agglomeration / no C clustering}
1219 \end{center}
1220 \end{minipage}
1221
1222 % insert graph ...
1223 \begin{pspicture}(0,0)(0,0)
1224 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1225 \begin{minipage}{14cm}
1226 \hfill
1227 \vspace{12cm}
1228 \end{minipage}
1229 }}
1230 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1231 \begin{minipage}{8cm}
1232 \begin{center}
1233 \vspace{0.2cm}
1234 \scriptsize
1235 Interaction along \hkl[1 1 0]
1236 \includegraphics[width=7cm]{db_along_110_cc.ps}
1237 \end{center}
1238 \end{minipage}
1239 }}}
1240 \end{pspicture}
1241
1242 \end{slide}
1243
1244 \begin{slide}
1245
1246 \headphd
1247 {\large\bf
1248  Defect combinations of C-Si dimers and vacancies
1249 }
1250 \footnotesize
1251
1252 \vspace{0.2cm}
1253
1254 \begin{minipage}[b]{2.6cm}
1255 \begin{flushleft}
1256 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1257 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1258 \end{flushleft}
1259 \end{minipage}
1260 \begin{minipage}[b]{7cm}
1261 \hfill
1262 \end{minipage}
1263 \begin{minipage}[b]{2.6cm}
1264 \begin{flushright}
1265 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1266 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1267 \end{flushright}
1268 \end{minipage}\\[0.2cm]
1269
1270 \begin{minipage}{6.5cm}
1271 \includegraphics[width=6.0cm]{059-539.ps}
1272 \end{minipage}
1273 \begin{minipage}{5.7cm}
1274 \includegraphics[width=6.0cm]{314-539.ps}
1275 \end{minipage}
1276
1277 \begin{pspicture}(0,0)(0,0)
1278 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1279
1280 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1281 \begin{minipage}{6.5cm}
1282 \begin{center}
1283 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1284 Low migration barrier towards C$_{\text{sub}}$\\
1285 \&\\
1286 High barrier for reverse process\\[0.3cm]
1287 {\color{blue}
1288 High probability of stable C$_{\text{sub}}$ configuration
1289 }
1290 \end{center}
1291 \end{minipage}
1292 }}}
1293 \end{pspicture}
1294
1295 \end{slide}
1296
1297 \begin{slide}
1298
1299 \headphd
1300 {\large\bf
1301  Combinations of substitutional C and Si self-interstitials
1302 }
1303
1304 \scriptsize
1305
1306 \vspace{0.3cm}
1307
1308 \begin{minipage}{6.2cm}
1309 \begin{center}
1310 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1311 \begin{itemize}
1312  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1313  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1314  \item Interaction drops quickly to zero\\
1315        $\rightarrow$ low capture radius
1316 \end{itemize}
1317 \end{center}
1318 \end{minipage}
1319 \begin{minipage}{0.2cm}
1320 \hfill
1321 \end{minipage}
1322 \begin{minipage}{6.0cm}
1323 \begin{center}
1324 {\bf Transition from the ground state}
1325 \begin{itemize}
1326  \item Low transition barrier
1327  \item Barrier smaller than \ci{} migration barrier
1328  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1329        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1330 \end{itemize}
1331 \end{center}
1332 \end{minipage}\\[0.3cm]
1333
1334 \begin{minipage}{6.0cm}
1335 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1336 \end{minipage}
1337 \begin{minipage}{0.4cm}
1338 \hfill
1339 \end{minipage}
1340 \begin{minipage}{6.0cm}
1341 \begin{flushright}
1342 \includegraphics[width=6.0cm]{162-097.ps}
1343 \end{flushright}
1344 \end{minipage}
1345
1346 \begin{pspicture}(0,0)(0,0)
1347 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1348 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1349 \begin{minipage}{8cm}
1350 \begin{center}
1351 \vspace{0.1cm}
1352 {\color{black}
1353 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1354 IBS --- process far from equilibrium\\
1355 }
1356 \end{center}
1357 \end{minipage}
1358 }}}
1359 \end{pspicture}
1360
1361 \end{slide}
1362
1363 \begin{slide}
1364
1365 \headphd
1366 {\large\bf
1367  Combinations of substitutional C and Si self-interstitials
1368 }
1369
1370 \scriptsize
1371
1372 \vspace{0.3cm}
1373
1374 \begin{minipage}{6.2cm}
1375 \begin{center}
1376 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1377 \begin{itemize}
1378  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1379  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1380  \item Interaction drops quickly to zero\\
1381        $\rightarrow$ low capture radius
1382 \end{itemize}
1383 \end{center}
1384 \end{minipage}
1385 \begin{minipage}{0.2cm}
1386 \hfill
1387 \end{minipage}
1388 \begin{minipage}{6.0cm}
1389 \begin{center}
1390 {\bf Transition from the ground state}
1391 \begin{itemize}
1392  \item Low transition barrier
1393  \item Barrier smaller than \ci{} migration barrier
1394  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1395        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1396 \end{itemize}
1397 \end{center}
1398 \end{minipage}\\[0.3cm]
1399
1400 \begin{minipage}{6.0cm}
1401 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1402 \end{minipage}
1403 \begin{minipage}{0.4cm}
1404 \hfill
1405 \end{minipage}
1406 \begin{minipage}{6.0cm}
1407 \begin{flushright}
1408 \includegraphics[width=6.0cm]{162-097.ps}
1409 \end{flushright}
1410 \end{minipage}
1411
1412 \begin{pspicture}(0,0)(0,0)
1413 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1414 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1415 \begin{minipage}{8cm}
1416 \begin{center}
1417 \vspace{0.1cm}
1418 {\color{black}
1419 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1420 IBS --- process far from equilibrium\\
1421 }
1422 \end{center}
1423 \end{minipage}
1424 }}}
1425 \end{pspicture}
1426
1427 % md support
1428 \begin{pspicture}(0,0)(0,0)
1429 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1430 \begin{minipage}{14cm}
1431 \hfill
1432 \vspace{14cm}
1433 \end{minipage}
1434 }}
1435 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1436 \begin{minipage}{11cm}
1437 \begin{center}
1438 \vspace{0.2cm}
1439 \scriptsize
1440 Ab initio MD at \degc{900}\\[0.4cm]
1441 \begin{minipage}{5.4cm}
1442 \centering
1443 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1444 $t=\unit[2230]{fs}$
1445 \end{minipage}
1446 \begin{minipage}{5.4cm}
1447 \centering
1448 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1449 $t=\unit[2900]{fs}$
1450 \end{minipage}\\[0.5cm]
1451 {\color{blue}
1452 Contribution of entropy to structural formation\\[0.1cm]
1453 }
1454 \end{center}
1455 \end{minipage}
1456 }}}
1457 \end{pspicture}
1458
1459 \end{slide}
1460
1461 \begin{slide}
1462
1463 \headphd
1464 {\large\bf
1465  Silicon carbide precipitation simulations
1466 }
1467
1468 \small
1469
1470 \vspace{0.2cm}
1471
1472 {\bf Procedure}
1473
1474 {\scriptsize
1475  \begin{pspicture}(0,0)(12,6.5)
1476   % nodes
1477   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1478    \parbox{7cm}{
1479    \begin{itemize}
1480     \item Create c-Si volume
1481     \item Periodc boundary conditions
1482     \item Set requested $T$ and $p=0\text{ bar}$
1483     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1484    \end{itemize}
1485   }}}}
1486   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1487    \parbox{7cm}{
1488    Insertion of C atoms at constant T
1489    \begin{itemize}
1490     \item total simulation volume {\pnode{in1}}
1491     \item volume of minimal SiC precipitate size {\pnode{in2}}
1492     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1493           precipitate
1494    \end{itemize} 
1495   }}}}
1496   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1497    \parbox{7.0cm}{
1498    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1499   }}}}
1500   \ncline[]{->}{init}{insert}
1501   \ncline[]{->}{insert}{cool}
1502   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1503   \rput(7.6,6){\footnotesize $V_1$}
1504   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1505   \rput(8.9,4.85){\tiny $V_2$}
1506   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1507   \rput(9.25,4.45){\footnotesize $V_3$}
1508   \rput(7.9,3.2){\pnode{ins1}}
1509   \rput(8.92,2.8){\pnode{ins2}}
1510   \rput(10.8,2.4){\pnode{ins3}}
1511   \ncline[]{->}{in1}{ins1}
1512   \ncline[]{->}{in2}{ins2}
1513   \ncline[]{->}{in3}{ins3}
1514  \end{pspicture}
1515 }
1516
1517 \vspace{-0.5cm}
1518
1519 {\bf Note}
1520
1521 \footnotesize
1522
1523 \begin{minipage}{5.7cm}
1524 \begin{itemize}
1525  \item Amount of C atoms: 6000\\
1526        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1527  \item Simulation volume: $31^3$ Si unit cells\\
1528        (238328 Si atoms)
1529 \end{itemize}
1530 \end{minipage}
1531 \begin{minipage}{0.3cm}
1532 \hfill
1533 \end{minipage}
1534 \framebox{
1535 \begin{minipage}{6.0cm}
1536 Restricted to classical potential caclulations\\
1537 $\rightarrow$ Low C diffusion / overestimated barrier\\
1538 $\rightarrow$ Consider $V_2$ and $V_3$
1539 %\begin{itemize}
1540 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1541 %\end{itemize}
1542 \end{minipage}
1543 }
1544
1545 \end{slide}
1546
1547 \begin{slide}
1548
1549 \headphd
1550 {\large\bf\boldmath
1551  Silicon carbide precipitation simulations at \degc{450} as in IBS
1552 }
1553
1554 \small
1555
1556 \begin{minipage}{6.3cm}
1557 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1558 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1559 \hfill
1560 \end{minipage} 
1561 \begin{minipage}{6.1cm}
1562 \scriptsize
1563 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1564 \hkl<1 0 0> C-Si dumbbell dominated structure
1565 \begin{itemize}
1566  \item Si-C bumbs around \unit[0.19]{nm}
1567  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1568        concatenated differently oriented \ci{} DBs
1569  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1570 \end{itemize}
1571 \begin{pspicture}(0,0)(6.0,1.0)
1572 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1573 \begin{minipage}{6cm}
1574 \centering
1575 Formation of \ci{} dumbbells\\
1576 C atoms in proper 3C-SiC distance first
1577 \end{minipage}
1578 }}
1579 \end{pspicture}\\[0.1cm]
1580 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1581 \begin{itemize}
1582 \item High amount of strongly bound C-C bonds
1583 \item Increased defect \& damage density\\
1584       $\rightarrow$ Arrangements hard to categorize and trace
1585 \item Only short range order observable
1586 \end{itemize}
1587 \begin{pspicture}(0,0)(6.0,0.8)
1588 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1589 \begin{minipage}{6cm}
1590 \centering
1591 Amorphous SiC-like phase
1592 \end{minipage}
1593 }}
1594 \end{pspicture}\\[0.3cm]
1595 \begin{pspicture}(0,0)(6.0,2.0)
1596 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1597 \begin{minipage}{6cm}
1598 \hfill
1599 \vspace{2.5cm}
1600 \end{minipage}
1601 }}
1602 \end{pspicture}
1603 \end{minipage} 
1604
1605 \end{slide}
1606
1607 \begin{slide}
1608
1609 \headphd
1610 {\large\bf\boldmath
1611  Silicon carbide precipitation simulations at \degc{450} as in IBS
1612 }
1613
1614 \small
1615
1616 \begin{minipage}{6.3cm}
1617 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1618 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1619 \hfill
1620 \end{minipage} 
1621 \begin{minipage}{6.1cm}
1622 \scriptsize
1623 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1624 \hkl<1 0 0> C-Si dumbbell dominated structure
1625 \begin{itemize}
1626  \item Si-C bumbs around \unit[0.19]{nm}
1627  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1628        concatenated differently oriented \ci{} DBs
1629  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1630 \end{itemize}
1631 \begin{pspicture}(0,0)(6.0,1.0)
1632 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1633 \begin{minipage}{6cm}
1634 \centering
1635 Formation of \ci{} dumbbells\\
1636 C atoms in proper 3C-SiC distance first
1637 \end{minipage}
1638 }}
1639 \end{pspicture}\\[0.1cm]
1640 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1641 \begin{itemize}
1642 \item High amount of strongly bound C-C bonds
1643 \item Increased defect \& damage density\\
1644       $\rightarrow$ Arrangements hard to categorize and trace
1645 \item Only short range order observable
1646 \end{itemize}
1647 \begin{pspicture}(0,0)(6.0,0.8)
1648 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1649 \begin{minipage}{6cm}
1650 \centering
1651 Amorphous SiC-like phase
1652 \end{minipage}
1653 }}
1654 \end{pspicture}\\[0.3cm]
1655 \begin{pspicture}(0,0)(6.0,2.0)
1656 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1657 \begin{minipage}{6cm}
1658 \vspace{0.1cm}
1659 \centering
1660 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1661 \begin{minipage}{0.8cm}
1662 {\bf\boldmath $V_1$:}
1663 \end{minipage}
1664 \begin{minipage}{5.1cm}
1665 Formation of \ci{} indeed occurs\\
1666 Agllomeration not observed
1667 \end{minipage}\\[0.3cm]
1668 \begin{minipage}{0.8cm}
1669 {\bf\boldmath $V_{2,3}$:}
1670 \end{minipage}
1671 \begin{minipage}{5.1cm}
1672 Amorphous SiC-like structure\\
1673 (not expected at \degc{450})\\[0.05cm]
1674 No rearrangement/transition into 3C-SiC
1675 \end{minipage}\\[0.1cm]
1676 \end{minipage}
1677 }}
1678 \end{pspicture}
1679 \end{minipage} 
1680
1681 \end{slide}
1682
1683 \begin{slide}
1684
1685 \headphd
1686 {\large\bf
1687  Limitations of MD and short range potentials
1688 }
1689
1690 \small
1691
1692 \vspace{0.2cm}
1693
1694 {\bf Time scale problem of MD}\\[0.2cm]
1695 Precise integration \& thermodynamic sampling\\
1696 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1697               $\omega$: vibrational mode\\
1698 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1699 Several local minima separated by large energy barriers\\
1700 $\Rightarrow$ Transition event corresponds to a multiple
1701               of vibrational periods\\
1702 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1703               infrequent transition events\\[0.2cm]
1704 {\color{blue}Accelerated methods:}
1705 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1706
1707 \vspace{0.2cm}
1708
1709 {\bf Limitations related to the short range potential}\\[0.2cm]
1710 Cut-off function limits interaction to next neighbours\\
1711 $\Rightarrow$ Overestimated diffusion barrier (factor: 2.4--3.4)
1712
1713 \vspace{1.4cm}
1714
1715 {\bf Approach to the (twofold) problem}\\[0.2cm]
1716 Increased temperature simulations without TAD corrections\\
1717 Accelerated methods or higher time scales exclusively not sufficient!
1718
1719 \begin{pspicture}(0,0)(0,0)
1720 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1721 \begin{minipage}{7.5cm}
1722 \centering
1723 \vspace{0.05cm}
1724 Potential enhanced slow phase space propagation
1725 \end{minipage}
1726 }}
1727 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1728 \begin{minipage}{2.7cm}
1729 \tiny
1730 \centering
1731 retain proper\\
1732 thermodynamic sampling
1733 \end{minipage}
1734 }}
1735 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1736 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1737 \begin{minipage}{3.6cm}
1738 \tiny
1739 \centering
1740 \underline{IBS}\\[0.1cm]
1741 3C-SiC also observed for higher T\\[0.1cm]
1742 Higher T inside sample\\[0.1cm]
1743 Structural evolution vs.\\
1744 equilibrium properties
1745 \end{minipage}
1746 }}
1747 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1748 \end{pspicture}
1749
1750 \end{slide}
1751
1752 \begin{slide}
1753
1754 \headphd
1755 {\large\bf\boldmath
1756  Increased temperature simulations --- $V_1$
1757 }
1758
1759 \small
1760
1761 \begin{minipage}{6.2cm}
1762 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1763 \hfill
1764 \end{minipage}
1765 \begin{minipage}{6.2cm}
1766 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1767 \end{minipage}
1768
1769 \begin{minipage}{6.2cm}
1770 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1771 \hfill
1772 \end{minipage}
1773 \begin{minipage}{6.3cm}
1774 \scriptsize
1775  \underline{Si-C bonds:}
1776  \begin{itemize}
1777   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1778   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1779  \end{itemize}
1780  \underline{Si-Si bonds:}
1781  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1782  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1783  \underline{C-C bonds:}
1784  \begin{itemize}
1785   \item C-C next neighbour pairs reduced (mandatory)
1786   \item Peak at 0.3 nm slightly shifted
1787         \begin{itemize}
1788          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1789                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1790                combinations (|)\\
1791                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1792                ($\downarrow$)
1793          \item Range [|-$\downarrow$]:
1794                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1795                with nearby Si$_{\text{I}}$}
1796         \end{itemize}
1797  \end{itemize}
1798 \end{minipage}
1799
1800 \end{slide}
1801
1802 \begin{slide}
1803
1804 \headphd
1805 {\large\bf\boldmath
1806  Increased temperature simulations --- $V_1$
1807 }
1808
1809 \small
1810
1811 \begin{minipage}{6.2cm}
1812 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1813 \hfill
1814 \end{minipage}
1815 \begin{minipage}{6.2cm}
1816 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1817 \end{minipage}
1818
1819 \begin{minipage}{6.2cm}
1820 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1821 \hfill
1822 \end{minipage}
1823 \begin{minipage}{6.3cm}
1824 \scriptsize
1825  \underline{Si-C bonds:}
1826  \begin{itemize}
1827   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1828   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1829  \end{itemize}
1830  \underline{Si-Si bonds:}
1831  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1832  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1833  \underline{C-C bonds:}
1834  \begin{itemize}
1835   \item C-C next neighbour pairs reduced (mandatory)
1836   \item Peak at 0.3 nm slightly shifted
1837         \begin{itemize}
1838          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1839                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1840                combinations (|)\\
1841                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1842                ($\downarrow$)
1843          \item Range [|-$\downarrow$]:
1844                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1845                with nearby Si$_{\text{I}}$}
1846         \end{itemize}
1847  \end{itemize}
1848 \end{minipage}
1849
1850 % conclusions
1851 \begin{pspicture}(0,0)(0,0)
1852 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1853 \begin{minipage}{14cm}
1854 \hfill
1855 \vspace{14cm}
1856 \end{minipage}
1857 }}
1858 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1859 \begin{minipage}{9cm}
1860 \vspace{0.2cm}
1861 \small
1862 \begin{center}
1863 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
1864 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
1865 \end{center}
1866 \begin{itemize}
1867 \item Stretched coherent SiC structures\\
1868 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
1869 \item Role of \si{}
1870       \begin{itemize}
1871        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
1872        \item Building block for surrounding Si host \& further SiC
1873        \item Strain compensation \ldots\\
1874              \ldots Si/SiC interface\\
1875              \ldots within stretched coherent SiC structure
1876       \end{itemize}
1877 \item Explains annealing behavior of high/low T C implantations
1878       \begin{itemize}
1879        \item Low T: highly mobile {\color{red}\ci}
1880        \item High T: stable configurations of {\color{blue}\cs}
1881       \end{itemize}
1882 \end{itemize}
1883 \vspace{0.2cm}
1884 \centering
1885 \psframebox[linecolor=blue,linewidth=0.05cm]{
1886 \begin{minipage}{7cm}
1887 \centering
1888 Precipitation mechanism involving \cs\\
1889 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
1890 \end{minipage}
1891 }
1892 \end{minipage}
1893 \vspace{0.2cm}
1894 }}
1895 \end{pspicture}
1896
1897 \end{slide}
1898
1899 % skip high c conc results
1900 \ifnum1=0
1901
1902 \begin{slide}
1903
1904  {\large\bf
1905   Increased temperature simulations at high C concentration
1906  }
1907
1908 \footnotesize
1909
1910 \begin{minipage}{6.0cm}
1911 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1912 \end{minipage}
1913 \begin{minipage}{6.0cm}
1914 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1915 \end{minipage}
1916
1917 \vspace{0.1cm}
1918
1919 \scriptsize
1920
1921 \framebox{
1922 \begin{minipage}[t]{6.0cm}
1923 0.186 nm: Si-C pairs $\uparrow$\\
1924 (as expected in 3C-SiC)\\[0.2cm]
1925 0.282 nm: Si-C-C\\[0.2cm]
1926 $\approx$0.35 nm: C-Si-Si
1927 \end{minipage}
1928 }
1929 \begin{minipage}{0.2cm}
1930 \hfill
1931 \end{minipage}
1932 \framebox{
1933 \begin{minipage}[t]{6.0cm}
1934 0.15 nm: C-C pairs $\uparrow$\\
1935 (as expected in graphite/diamond)\\[0.2cm]
1936 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
1937 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
1938 \end{minipage}
1939 }
1940
1941 \begin{itemize}
1942 \item Decreasing cut-off artifact
1943 \item {\color{red}Amorphous} SiC-like phase remains
1944 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1945 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
1946 \end{itemize}
1947
1948 \vspace{-0.1cm}
1949
1950 \begin{center}
1951 {\color{blue}
1952 \framebox{
1953 {\color{black}
1954 High C \& small $V$ \& short $t$
1955 $\Rightarrow$
1956 }
1957 Slow restructuring due to strong C-C bonds
1958 {\color{black}
1959 $\Leftarrow$
1960 High C \& low T implants
1961 }
1962 }
1963 }
1964 \end{center}
1965
1966 \end{slide}
1967
1968 % skip high c conc
1969 \fi
1970
1971 % for preparation
1972 %\fi
1973
1974 \begin{slide}
1975
1976 \headphd
1977 {\large\bf
1978  Summary and Conclusions
1979 }
1980
1981 \footnotesize
1982
1983 \vspace{0.1cm}
1984
1985 \framebox{
1986 \begin{minipage}{12.3cm}
1987  \underline{Defects}
1988  \begin{itemize}
1989    \item DFT / EA
1990         \begin{itemize}
1991          \item Point defects excellently / fairly well described
1992                by DFT / EA
1993          \item Identified \ci{} migration path
1994          \item EA drastically overestimates the diffusion barrier
1995         \end{itemize}
1996    \item Combinations of defects
1997          \begin{itemize}
1998           \item Agglomeration of point defects energetically favorable
1999           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2000           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2001                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2002         \end{itemize}
2003  \end{itemize}
2004 \end{minipage}
2005 }
2006
2007 \framebox{
2008 \begin{minipage}[t]{12.3cm}
2009  \underline{Pecipitation simulations}
2010  \begin{itemize}
2011   \item Problem of potential enhanced slow phase space propagation
2012   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2013   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2014   \item High T necessary to simulate IBS conditions (far from equilibrium)
2015   \item \cs{} involved in the precipitation process at elevated temperatures
2016   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2017         (stretched SiC, interface)
2018  \end{itemize}
2019 \end{minipage}
2020 }
2021
2022 \begin{center}
2023 {\color{blue}\bf
2024 \framebox{IBS: 3C-SiC precipitation occurs by successive agglomeration of \cs{}}
2025 }
2026 \end{center}
2027
2028 \end{slide}
2029
2030 \begin{slide}
2031
2032 \headphd
2033 {\large\bf
2034  Acknowledgements
2035 }
2036
2037  \vspace{0.1cm}
2038
2039  \small
2040
2041  Thanks to \ldots
2042
2043  \underline{Augsburg}
2044  \begin{itemize}
2045   \item Prof. B. Stritzker
2046   \item Ralf Utermann
2047  \end{itemize}
2048  
2049  \underline{Helsinki}
2050  \begin{itemize}
2051   \item Prof. K. Nordlund
2052  \end{itemize}
2053  
2054  \underline{Munich}
2055  \begin{itemize}
2056   \item Bayerische Forschungsstiftung
2057  \end{itemize}
2058  
2059  \underline{Paderborn}
2060  \begin{itemize}
2061   \item Prof. J. Lindner
2062   \item Prof. G. Schmidt
2063   \item Dr. E. Rauls
2064  \end{itemize}
2065
2066 \vspace{ 0.2cm}
2067
2068 \begin{center}
2069 \framebox{
2070 \normalsize\bf Thank you for your attention!
2071 }
2072 \end{center}
2073
2074 \end{slide}
2075
2076 \begin{slide}
2077
2078 \headphd
2079  {\large\bf
2080   Polytypes of SiC\\[0.6cm]
2081  }
2082
2083 \vspace{0.6cm}
2084
2085 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
2086 \begin{minipage}{1.9cm}
2087 {\tiny cubic (twist)}
2088 \end{minipage}
2089 \begin{minipage}{2.9cm}
2090 {\tiny hexagonal (no twist)}
2091 \end{minipage}
2092
2093 \begin{picture}(0,0)(-150,0)
2094  \includegraphics[width=7cm]{polytypes.eps}
2095 \end{picture}
2096
2097 \vspace{0.6cm}
2098
2099 \footnotesize
2100
2101 \begin{tabular}{l c c c c c c}
2102 \hline
2103  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
2104 \hline
2105 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
2106 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
2107 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
2108 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
2109 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
2110 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
2111 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
2112 \hline
2113 \end{tabular}
2114
2115 \begin{pspicture}(0,0)(0,0)
2116 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
2117 \end{pspicture}
2118 \begin{pspicture}(0,0)(0,0)
2119 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
2120 \end{pspicture}
2121 \begin{pspicture}(0,0)(0,0)
2122 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
2123 \end{pspicture}
2124
2125 \end{slide}
2126
2127 \begin{slide}
2128
2129 \footnotesize
2130
2131 \headphd
2132 {\large\bf
2133  Si self-interstitial point defects in silicon\\[0.1cm]
2134 }
2135
2136 \begin{center}
2137 \begin{tabular}{l c c c c c}
2138 \hline
2139  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
2140 \hline
2141  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
2142  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
2143 \hline
2144 \end{tabular}\\[0.4cm]
2145 \end{center}
2146
2147 \begin{minipage}{3cm}
2148 \begin{center}
2149 \underline{Vacancy}\\
2150 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
2151 \end{center}
2152 \end{minipage}
2153 \begin{minipage}{3cm}
2154 \begin{center}
2155 \underline{\hkl<1 1 0> DB}\\
2156 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
2157 \end{center}
2158 \end{minipage}
2159 \begin{minipage}{3cm}
2160 \begin{center}
2161 \underline{\hkl<1 0 0> DB}\\
2162 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
2163 \end{center}
2164 \end{minipage}
2165 \begin{minipage}{3cm}
2166 \begin{center}
2167 \underline{Tetrahedral}\\
2168 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
2169 \end{center}
2170 \end{minipage}\\
2171
2172 \underline{Hexagonal} \hspace{2pt}
2173 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
2174 \framebox{
2175 \begin{minipage}{2.7cm}
2176 $E_{\text{f}}^*=4.48\text{ eV}$\\
2177 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
2178 \end{minipage}
2179 \begin{minipage}{0.4cm}
2180 \begin{center}
2181 $\Rightarrow$
2182 \end{center}
2183 \end{minipage}
2184 \begin{minipage}{2.7cm}
2185 $E_{\text{f}}=3.96\text{ eV}$\\
2186 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
2187 \end{minipage}
2188 }
2189 \begin{minipage}{5.5cm}
2190 \begin{center}
2191 {\tiny nearly T $\rightarrow$ T}\\
2192 \end{center}
2193 \includegraphics[width=6.0cm]{nhex_tet.ps}
2194 \end{minipage}
2195
2196 \end{slide}
2197
2198 \begin{slide}
2199
2200 \headphd
2201 {\large\bf\boldmath
2202  C-Si dimer \& bond-centered interstitial configuration
2203 }
2204
2205 \footnotesize
2206
2207 \vspace{0.1cm}
2208
2209 \begin{minipage}[t]{4.1cm}
2210 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
2211 \begin{minipage}{2.0cm}
2212 \begin{center}
2213 \underline{Erhart/Albe}
2214 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
2215 \end{center}
2216 \end{minipage}
2217 \begin{minipage}{2.0cm}
2218 \begin{center}
2219 \underline{\textsc{vasp}}
2220 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
2221 \end{center}
2222 \end{minipage}\\[0.2cm]
2223 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
2224 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
2225 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
2226 $\Rightarrow$ $sp^2$ hybridization
2227 \begin{center}
2228 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
2229 {\tiny Charge density isosurface}
2230 \end{center}
2231 \end{minipage}
2232 \begin{minipage}{0.2cm}
2233 \hfill
2234 \end{minipage}
2235 \begin{minipage}[t]{8.1cm}
2236 \begin{flushright}
2237 {\bf Bond-centered interstitial}\\[0.1cm]
2238 \begin{minipage}{4.4cm}
2239 %\scriptsize
2240 \begin{itemize}
2241  \item Linear Si-C-Si bond
2242  \item Si: one C \& 3 Si neighbours
2243  \item Spin polarized calculations
2244  \item No saddle point!\\
2245        Real local minimum!
2246 \end{itemize}
2247 \end{minipage}
2248 \begin{minipage}{2.7cm}
2249 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
2250 \vspace{0.2cm}
2251 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
2252 \end{minipage}
2253
2254 \framebox{
2255  \tiny
2256  \begin{minipage}[t]{6.5cm}
2257   \begin{minipage}[t]{1.2cm}
2258   {\color{red}Si}\\
2259   {\tiny sp$^3$}\\[0.8cm]
2260   \underline{${\color{black}\uparrow}$}
2261   \underline{${\color{black}\uparrow}$}
2262   \underline{${\color{black}\uparrow}$}
2263   \underline{${\color{red}\uparrow}$}\\
2264   sp$^3$
2265   \end{minipage}
2266   \begin{minipage}[t]{1.4cm}
2267   \begin{center}
2268   {\color{red}M}{\color{blue}O}\\[0.8cm]
2269   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2270   $\sigma_{\text{ab}}$\\[0.5cm]
2271   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
2272   $\sigma_{\text{b}}$
2273   \end{center}
2274   \end{minipage}
2275   \begin{minipage}[t]{1.0cm}
2276   \begin{center}
2277   {\color{blue}C}\\
2278   {\tiny sp}\\[0.2cm]
2279   \underline{${\color{white}\uparrow\uparrow}$}
2280   \underline{${\color{white}\uparrow\uparrow}$}\\
2281   2p\\[0.4cm]
2282   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
2283   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
2284   sp
2285   \end{center}
2286   \end{minipage}
2287   \begin{minipage}[t]{1.4cm}
2288   \begin{center}
2289   {\color{blue}M}{\color{green}O}\\[0.8cm]
2290   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2291   $\sigma_{\text{ab}}$\\[0.5cm]
2292   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
2293   $\sigma_{\text{b}}$
2294   \end{center}
2295   \end{minipage}
2296   \begin{minipage}[t]{1.2cm}
2297   \begin{flushright}
2298   {\color{green}Si}\\
2299   {\tiny sp$^3$}\\[0.8cm]
2300   \underline{${\color{green}\uparrow}$}
2301   \underline{${\color{black}\uparrow}$}
2302   \underline{${\color{black}\uparrow}$}
2303   \underline{${\color{black}\uparrow}$}\\
2304   sp$^3$
2305   \end{flushright}
2306   \end{minipage}
2307  \end{minipage}
2308 }\\[0.4cm]
2309
2310 %\framebox{
2311 \begin{minipage}{3.0cm}
2312 %\scriptsize
2313 \underline{Charge density}\\
2314 {\color{gray}$\bullet$} Spin up\\
2315 {\color{green}$\bullet$} Spin down\\
2316 {\color{blue}$\bullet$} Resulting spin up\\
2317 {\color{yellow}$\bullet$} Si atoms\\
2318 {\color{red}$\bullet$} C atom
2319 \end{minipage}
2320 \begin{minipage}{3.6cm}
2321 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
2322 \end{minipage}
2323 %}
2324
2325 \end{flushright}
2326
2327 \end{minipage}
2328 \begin{pspicture}(0,0)(0,0)
2329 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
2330 \end{pspicture}
2331
2332 \end{slide}
2333
2334 \end{document}
2335