b437eb13d88f39e0df29045ab0be70c28da40631
[lectures/latex.git] / posic / talks / emrs2012.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143
144  \small
145
146  \vspace{16pt}
147
148  {\LARGE\bf
149   %\hrule
150   %\vspace{5pt}
151   First-principles and empirical\\[0.2cm]
152   potential simulation study of intrinsic\\[0.2cm]
153   and carbon-related defects in silicon
154   %\vspace{10pt}
155   %\hrule
156  }
157
158  \vspace{30pt}
159
160  {\bf\small
161   \underline{F. Zirkelbach} $\color{gray}\bullet$ B. Stritzker\\
162  }
163  {\color{gray}
164   Experimentalphysik IV, Universit\"at Augsburg, 86135 Augsburg, Germany
165  }\\[0.3cm]
166  {\bf\small
167   K. Nordlund\\
168  }
169  {\color{gray}
170   Department of Physics, University of Helsinki, 00014 Helsinki, Finland
171  }\\[0.3cm]
172  {\bf\small
173   W. G. Schmidt $\color{gray}\bullet$ E. Rauls $\color{gray}\bullet$
174   J. K. N. Lindner\\
175  }
176  {\color{gray}
177   Department Physik, Universit\"at Paderborn, 33095 Paderborn, Germany
178  }
179
180  \vspace{30pt}
181
182  {
183   E-MRS Spring Meeting, Strasbourg, 17.05.2012
184  }
185
186 \end{slide}
187
188 % no vertical centering
189 \centerslidesfalse
190
191 % skip for preparation
192 \ifnum1=0
193
194 % intro
195
196 \begin{slide}
197
198 \headphd
199 {\large\bf
200   Motivation \& Outline
201 }
202
203 \vspace{0.1cm}
204
205 {\bf
206  Ion beam synthesis (IBS) of epitaxial single crystalline 3C-SiC
207 }
208
209 \vspace{0.1cm}
210
211 \begin{minipage}{7.0cm}
212 \small
213 \begin{itemize}
214  \item \underline{Implantation}\\[0.1cm]
215         Stoichiometric dose | \unit[180]{keV} | \degc{500}\\
216         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
217         {\color{blue}precipitates}
218  \item \underline{Annealing}\\[0.1cm]
219        \unit[10]{h} at \degc{1250}\\
220        $\Rightarrow$ Homogeneous 3C-SiC layer
221 \end{itemize}
222 \begin{center}
223 {\color{blue}
224 \framebox{
225 \begin{minipage}{4.5cm}
226  \color{black}
227  \centering
228  3C-SiC precipitation\\
229  not yet fully understood
230 \end{minipage}
231 }
232 }
233 \end{center}
234 \end{minipage}
235 \begin{minipage}{5.0cm}
236 \includegraphics[width=5.5cm]{ibs_3c-sic.eps}\\[-0.4cm]
237 \begin{center}
238 {\tiny
239  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
240 }
241 \end{center}
242 \end{minipage}\\[0.2cm]
243
244 {\bf
245  Outline
246 }
247
248 \begin{itemize}
249  \item Assumed SiC precipitation mechanisms / Controversy
250  \item Utilized simulation techniques
251  \item C and Si self-interstitial point defects in silicon
252  \item Silicon carbide precipitation simulations
253 \end{itemize}
254
255 \end{slide}
256
257 \begin{slide}
258
259 \headphd
260 {\large\bf
261   Supposed precipitation mechanism of SiC in Si
262 }
263
264  \scriptsize
265
266  \vspace{0.1cm}
267
268  \framebox{
269  \begin{minipage}{3.6cm}
270  \begin{center}
271  Si \& SiC lattice structure\\[0.1cm]
272  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
273  \end{center}
274 {\tiny
275  \begin{minipage}{1.7cm}
276 \underline{Silicon}\\
277 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
278 $a=\unit[5.429]{\\A}$\\
279 $\rho^*_{\text{Si}}=\unit[100]{\%}$
280  \end{minipage}
281  \begin{minipage}{1.7cm}
282 \underline{Silicon carbide}\\
283 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
284 $a=\unit[4.359]{\\A}$\\
285 $\rho^*_{\text{Si}}=\unit[97]{\%}$
286  \end{minipage}
287 }
288  \end{minipage}
289  }
290  \hspace{0.1cm}
291  \begin{minipage}{4.1cm}
292  \begin{center}
293  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
294  \end{center}
295  \end{minipage}
296  \hspace{0.1cm}
297  \begin{minipage}{4.0cm}
298  \begin{center}
299  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
300  \end{center}
301  \end{minipage}
302
303  \vspace{0.1cm}
304
305  \begin{minipage}{4.0cm}
306  \begin{center}
307  C-Si dimers (dumbbells)\\[-0.1cm]
308  on Si lattice sites
309  \end{center}
310  \end{minipage}
311  \hspace{0.1cm}
312  \begin{minipage}{4.1cm}
313  \begin{center}
314  Agglomeration of C-Si dumbbells\\[-0.1cm]
315  $\Rightarrow$ dark contrasts
316  \end{center}
317  \end{minipage}
318  \hspace{0.1cm}
319  \begin{minipage}{4.0cm}
320  \begin{center}
321  Precipitation of 3C-SiC in Si\\[-0.1cm]
322  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
323  \& release of Si self-interstitials
324  \end{center}
325  \end{minipage}
326
327  \vspace{0.1cm}
328
329  \begin{minipage}{4.0cm}
330  \begin{center}
331  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
332  \end{center}
333  \end{minipage}
334  \hspace{0.1cm}
335  \begin{minipage}{4.1cm}
336  \begin{center}
337  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
338  \end{center}
339  \end{minipage}
340  \hspace{0.1cm}
341  \begin{minipage}{4.0cm}
342  \begin{center}
343  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
344  \end{center}
345  \end{minipage}
346
347 \begin{pspicture}(0,0)(0,0)
348 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
349 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
350 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
351 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
352 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
353  $4a_{\text{Si}}=5a_{\text{SiC}}$
354  }}}
355 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
356 \hkl(h k l) planes match
357  }}}
358 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
359 r = \unit[2--4]{nm}
360  }}}
361 \end{pspicture}
362
363 \end{slide}
364
365 \begin{slide}
366
367 \headphd
368 {\large\bf
369  Supposed precipitation mechanism of SiC in Si
370 }
371
372  \scriptsize
373
374  \vspace{0.1cm}
375
376  \framebox{
377  \begin{minipage}{3.6cm}
378  \begin{center}
379  Si \& SiC lattice structure\\[0.1cm]
380  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
381  \end{center}
382 {\tiny
383  \begin{minipage}{1.7cm}
384 \underline{Silicon}\\
385 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
386 $a=\unit[5.429]{\\A}$\\
387 $\rho^*_{\text{Si}}=\unit[100]{\%}$
388  \end{minipage}
389  \begin{minipage}{1.7cm}
390 \underline{Silicon carbide}\\
391 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
392 $a=\unit[4.359]{\\A}$\\
393 $\rho^*_{\text{Si}}=\unit[97]{\%}$
394  \end{minipage}
395 }
396  \end{minipage}
397  }
398  \hspace{0.1cm}
399  \begin{minipage}{4.1cm}
400  \begin{center}
401  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
402  \end{center}
403  \end{minipage}
404  \hspace{0.1cm}
405  \begin{minipage}{4.0cm}
406  \begin{center}
407  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
408  \end{center}
409  \end{minipage}
410
411  \vspace{0.1cm}
412
413  \begin{minipage}{4.0cm}
414  \begin{center}
415  C-Si dimers (dumbbells)\\[-0.1cm]
416  on Si interstitial sites
417  \end{center}
418  \end{minipage}
419  \hspace{0.1cm}
420  \begin{minipage}{4.1cm}
421  \begin{center}
422  Agglomeration of C-Si dumbbells\\[-0.1cm]
423  $\Rightarrow$ dark contrasts
424  \end{center}
425  \end{minipage}
426  \hspace{0.1cm}
427  \begin{minipage}{4.0cm}
428  \begin{center}
429  Precipitation of 3C-SiC in Si\\[-0.1cm]
430  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
431  \& release of Si self-interstitials
432  \end{center}
433  \end{minipage}
434
435  \vspace{0.1cm}
436
437  \begin{minipage}{4.0cm}
438  \begin{center}
439  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
440  \end{center}
441  \end{minipage}
442  \hspace{0.1cm}
443  \begin{minipage}{4.1cm}
444  \begin{center}
445  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
446  \end{center}
447  \end{minipage}
448  \hspace{0.1cm}
449  \begin{minipage}{4.0cm}
450  \begin{center}
451  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
452  \end{center}
453  \end{minipage}
454
455 \begin{pspicture}(0,0)(0,0)
456 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
457 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
458 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
459 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
460 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
461  $4a_{\text{Si}}=5a_{\text{SiC}}$
462  }}}
463 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
464 \hkl(h k l) planes match
465  }}}
466 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
467 r = \unit[2--4]{nm}
468  }}}
469 % controversial view!
470 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
471 \begin{minipage}{14cm}
472 \hfill
473 \vspace{12cm}
474 \end{minipage}
475 }}
476 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
477 \begin{minipage}{10cm}
478 \small
479 \vspace*{0.2cm}
480 \begin{center}
481 {\color{gray}\bf Controversial findings}
482 \end{center}
483 \begin{itemize}
484 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
485  \begin{itemize}
486   \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
487   \item \si{} reacting with further C in cleared volume
488  \end{itemize}
489 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
490  \begin{itemize}
491   \item Room temperature implantation $\rightarrow$ high C diffusion
492   \item Elevated temperature implantation $\rightarrow$ no C redistribution
493  \end{itemize}
494  $\Rightarrow$ mobile {\color{red}\ci} opposed to
495  stable {\color{blue}\cs{}} configurations
496 \item Strained Si$_{1-y}$C$_y$/Si heterostructures
497       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
498  \begin{itemize}
499   \item Initial {\color{blue}coherent} SiC structures (tensile strain)
500   \item Incoherent SiC nanocrystals (strain relaxation)
501  \end{itemize}
502 \end{itemize}
503 \vspace{0.1cm}
504 \begin{center}
505 {\Huge${\lightning}$} \hspace{0.3cm}
506 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
507 {\Huge${\lightning}$}
508 \end{center}
509 \vspace{0.2cm}
510 \end{minipage}
511  }}}
512 \end{pspicture}
513
514 \end{slide}
515
516 \begin{slide}
517
518 \headphd
519 {\large\bf
520  Utilized computational methods
521 }
522
523 \vspace{0.3cm}
524
525 \small
526
527 {\bf Molecular dynamics (MD)}\\[0.1cm]
528 \scriptsize
529 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
530 \hline
531 System of $N$ particles &
532 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
533 Phase space propagation &
534 Velocity Verlet | timestep: \unit[1]{fs} \\
535 Analytical interaction potential &
536 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
537 (Erhart/Albe)
538 $\displaystyle
539 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
540     \pot_{ij} = {\color{red}f_C(r_{ij})}
541     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
542 $\\
543 Observables: time/ensemble averages &
544 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
545 \hline
546 \end{tabular}
547
548 \small
549
550 \vspace{0.3cm}
551
552 {\bf Density functional theory (DFT)}
553
554 \scriptsize
555
556 \begin{minipage}[t]{6cm}
557 \begin{itemize}
558  \item Hohenberg-Kohn theorem:\\
559        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
560  \item Kohn-Sham approach:\\
561        Single-particle effective theory
562 \end{itemize}
563 \hrule
564 \begin{itemize}
565 \item Code: \textsc{vasp}
566 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
567 %$\displaystyle
568 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
569 %$\\
570 %$\displaystyle
571 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
572 %$
573 \item Ultrasoft pseudopotential
574 \item Exchange \& correlation: GGA
575 \item Brillouin zone sampling: $\Gamma$-point
576 \item Supercell: $N=216\pm2$
577 \end{itemize}
578 \end{minipage}
579 \begin{minipage}{6cm}
580 \begin{pspicture}(0,0)(0,0)
581 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
582 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
583 $\displaystyle
584 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
585 $
586 }}
587 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
588 $\displaystyle
589 n(r)=\sum_i^N|\Phi_i(r)|^2
590 $
591 }}
592 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
593 $\displaystyle
594 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
595                  +V_{\text{XC}}[n(r)]
596 $
597 }}
598 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
599 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
600 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
601
602 \end{pspicture}
603 \end{minipage}
604
605 \end{slide}
606
607 \begin{slide}
608
609 \headphd
610  {\large\bf
611   Point defects \& defect migration
612  }
613
614  \small
615
616  \vspace{0.2cm}
617
618 \begin{minipage}[b]{7.5cm}
619 {\bf Defect structure}\\
620   \begin{pspicture}(0,0)(7,4.4)
621   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
622    \parbox{7cm}{
623    \begin{itemize}
624     \item Creation of c-Si simulation volume
625     \item Periodic boundary conditions
626     \item $T=0\text{ K}$, $p=0\text{ bar}$
627    \end{itemize}
628   }}}}
629 \rput(3.5,1.3){\rnode{insert}{\psframebox{
630  \parbox{7cm}{
631   \begin{center}
632   Insertion of interstitial C/Si atoms
633   \end{center}
634   }}}}
635   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
636    \parbox{7cm}{
637    \begin{center}
638    Relaxation / structural energy minimization
639    \end{center}
640   }}}}
641   \ncline[]{->}{init}{insert}
642   \ncline[]{->}{insert}{cool}
643  \end{pspicture}
644 \end{minipage}
645 \begin{minipage}[b]{4.5cm}
646 \begin{center}
647 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
648 \end{center}
649 \begin{minipage}{2.21cm}
650 {\scriptsize
651 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
652 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
653 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
654 }
655 \end{minipage}
656 \begin{minipage}{2.21cm}
657 {\scriptsize
658 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
659 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
660 {\color{black}$\bullet$} Vac. / Sub.
661 }
662 \end{minipage}
663 \end{minipage}
664
665 \vspace{0.3cm}
666
667 \begin{minipage}[t]{6cm}
668 {\bf Defect formation energy}\\
669 \framebox{
670 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.5cm]
671 %Particle reservoir: Si \& SiC\\[0.2cm]
672 {\bf Binding energy}\\
673 \framebox{
674 $
675 E_{\text{b}}=
676 E_{\text{f}}^{\text{comb}}-
677 E_{\text{f}}^{1^{\text{st}}}-
678 E_{\text{f}}^{2^{\text{nd}}}
679 $
680 }\\[0.1cm]
681 \footnotesize
682 $E_{\text{b}}<0$: energetically favorable configuration\\
683 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
684 \end{minipage}
685 \begin{minipage}[t]{6cm}
686 \vspace{1.4cm}
687 {\bf Migration barrier}
688 \footnotesize
689 \begin{itemize}
690  \item Displace diffusing atom
691  \item Constrain relaxation of (diffusing) atoms
692  \item Record configurational energy
693 \end{itemize}
694 \begin{picture}(0,0)(-60,-33)
695 \includegraphics[width=4.5cm]{crt_mod.eps}
696 \end{picture}
697 \end{minipage}
698
699 \end{slide}
700
701 \begin{slide}
702
703 \footnotesize
704
705 \headphd
706 {\large\bf
707  C interstitial point defects in silicon\\
708 }
709
710 \begin{tabular}{l c c c c c c r}
711 \hline
712  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
713  {\color{black} \cs{} \& \si}\\
714 \hline
715  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
716  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
717 \hline
718 \end{tabular}\\[0.1cm]
719
720 \framebox{
721 \begin{minipage}{2.8cm}
722 \underline{Hexagonal} \hspace{2pt}
723 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
724 $E_{\text{f}}^*=9.05\text{ eV}$\\
725 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
726 \end{minipage}
727 \begin{minipage}{0.4cm}
728 \begin{center}
729 $\Rightarrow$
730 \end{center}
731 \end{minipage}
732 \begin{minipage}{2.8cm}
733 \underline{\hkl<1 0 0>}\\
734 $E_{\text{f}}=3.88\text{ eV}$\\
735 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
736 \end{minipage}
737 }
738 \begin{minipage}{1.4cm}
739 \hfill
740 \end{minipage}
741 \begin{minipage}{3.0cm}
742 \begin{flushright}
743 \underline{Tetrahedral}\\
744 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
745 \end{flushright}
746 \end{minipage}
747
748 \framebox{
749 \begin{minipage}{2.8cm}
750 \underline{Bond-centered}\\
751 $E_{\text{f}}^*=5.59\text{ eV}$\\
752 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
753 \end{minipage}
754 \begin{minipage}{0.4cm}
755 \begin{center}
756 $\Rightarrow$
757 \end{center}
758 \end{minipage}
759 \begin{minipage}{2.8cm}
760 \underline{\hkl<1 1 0> dumbbell}\\
761 $E_{\text{f}}=5.18\text{ eV}$\\
762 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
763 \end{minipage}
764 }
765 \begin{minipage}{1.4cm}
766 \hfill
767 \end{minipage}
768 \begin{minipage}{3.0cm}
769 \begin{flushright}
770 \underline{Substitutional}\\
771 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
772 \end{flushright}
773 \end{minipage}
774
775 \end{slide}
776
777 \begin{slide}
778
779 \headphd
780 {\large\bf\boldmath
781  C interstitial migration
782 }
783
784 \scriptsize
785
786 \vspace{0.3cm}
787
788 \begin{minipage}{6.8cm}
789 {\bf\underline{First-principles}} $\quad$ \hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]\\
790 \begin{minipage}{2.0cm}
791 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
792 \end{minipage}
793 \begin{minipage}{0.2cm}
794 $\rightarrow$
795 \end{minipage}
796 \begin{minipage}{2.0cm}
797 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
798 \end{minipage}
799 \begin{minipage}{0.2cm}
800 $\rightarrow$
801 \end{minipage}
802 \begin{minipage}{2.0cm}
803 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
804 \end{minipage}\\[0.1cm]
805 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
806 $\Rightarrow$ {\color{blue}Migration mechanism identified!}\\
807 Note: Change in orientation
808 \end{minipage}
809 \begin{minipage}{5.4cm}
810 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
811 \end{minipage}\\[0.4cm]
812 \begin{minipage}{6.8cm}
813 {\bf\underline{Empirical potential}} $\quad$
814 \hkl[0 0 -1] $\rightarrow$ \hkl[1 1 0] $\rightarrow$ \hkl[0 -1 0]\\
815 \begin{itemize}
816  \item Transition involving \hkl[1 1 0] DB\\
817        (instability of BC configuration)
818  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
819  \item 2.4 -- 3.4 times higher than ab initio result
820  \item After all: Change of the DB orientation
821 \end{itemize}
822 \vspace{0.1cm}
823 \begin{center}
824 {\color{red}Drastically overestimated diffusion barrier}
825 \end{center}
826 \end{minipage}
827 \begin{minipage}{5.4cm}
828 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
829 \end{minipage}
830
831 \end{slide}
832
833 \begin{slide}
834
835 \headphd
836 {\large\bf\boldmath
837  Defect combinations --- ab inito
838 }
839
840 \footnotesize
841
842 \vspace{0.3cm}
843
844 \begin{minipage}{9cm}
845 {\bf
846  Summary of combinations}\\[0.1cm]
847 {\scriptsize
848 \begin{tabular}{l c c c c c c}
849 \hline
850  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
851  \hline
852  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
853  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
854  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
855  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
856  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
857  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
858  \hline
859  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
860  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
861 \hline
862 \end{tabular}
863 }
864 \end{minipage}
865 \begin{minipage}{3cm}
866 \includegraphics[width=3.5cm]{comb_pos.eps}
867 \end{minipage}
868
869 \vspace{0.5cm}
870
871 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
872 \begin{minipage}{6.1cm}
873 \begin{itemize}
874  \item \ci{} agglomeration energetically favorable
875  \item Reduction of strain
876  \item Capture radius exceeding \unit[1]{nm}
877  \item Disappearance of attractive forces\\
878        between two lowest separations.
879 \end{itemize}
880 \begin{center}
881 {\color{blue}\ci{} agglomeration / no C clustering}
882 \end{center}
883 \end{minipage}
884
885 \begin{picture}(0,0)(-180,-40)
886 \begin{minipage}{6.0cm}
887 \scriptsize\centering
888 Interaction along \hkl[1 1 0]\\
889 \includegraphics[width=6.2cm]{db_along_110_cc.ps}
890 \end{minipage}
891 \end{picture}
892
893 \end{slide}
894
895 \begin{slide}
896
897 \headphd
898 {\large\bf
899  Defect combinations of C-Si dimers and vacancies
900 }
901 \footnotesize
902
903 \vspace{0.2cm}
904
905 \begin{minipage}[b]{2.6cm}
906 \begin{flushleft}
907 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
908 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
909 \end{flushleft}
910 \end{minipage}
911 \begin{minipage}[b]{7cm}
912 \hfill
913 \end{minipage}
914 \begin{minipage}[b]{2.6cm}
915 \begin{flushright}
916 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
917 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
918 \end{flushright}
919 \end{minipage}\\[0.2cm]
920
921 \begin{minipage}{6.5cm}
922 \includegraphics[width=6.0cm]{059-539.ps}
923 \end{minipage}
924 \begin{minipage}{5.7cm}
925 \includegraphics[width=6.0cm]{314-539.ps}
926 \end{minipage}
927
928 \begin{pspicture}(0,0)(0,0)
929 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
930
931 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
932 \begin{minipage}{6.5cm}
933 \begin{center}
934 IBS: Impinging C creates V \& far away \si\\[0.3cm]
935 Low migration barrier towards C$_{\text{sub}}$\\
936 \&\\
937 High barrier for reverse process\\[0.3cm]
938 {\color{blue}
939 High probability of stable C$_{\text{sub}}$ configuration
940 }
941 \end{center}
942 \end{minipage}
943 }}}
944 \end{pspicture}
945
946 \end{slide}
947
948 \begin{slide}
949
950 \headphd
951 {\large\bf
952  Combinations of substitutional C and Si self-interstitials
953 }
954
955 \scriptsize
956
957 \vspace{0.3cm}
958
959 \begin{minipage}{6.2cm}
960 \begin{center}
961 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
962 \begin{itemize}
963  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
964  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
965  \item Interaction drops quickly to zero\\
966        $\rightarrow$ low capture radius
967 \end{itemize}
968 \end{center}
969 \end{minipage}
970 \begin{minipage}{0.2cm}
971 \hfill
972 \end{minipage}
973 \begin{minipage}{6.0cm}
974 \begin{center}
975 {\bf Transition from the ground state}
976 \begin{itemize}
977  \item Low transition barrier
978  \item Barrier smaller than \ci{} migration barrier
979  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
980        $\rightarrow$ Separation of \cs{} \& \si{} most probable
981 \end{itemize}
982 \end{center}
983 \end{minipage}\\[0.3cm]
984
985 \begin{minipage}{6.0cm}
986 \includegraphics[width=6.0cm]{c_sub_si110.ps}
987 \end{minipage}
988 \begin{minipage}{0.4cm}
989 \hfill
990 \end{minipage}
991 \begin{minipage}{6.0cm}
992 \begin{flushright}
993 \includegraphics[width=6.0cm]{162-097.ps}
994 \end{flushright}
995 \end{minipage}
996
997 \begin{pspicture}(0,0)(0,0)
998 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
999 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1000 \begin{minipage}{8cm}
1001 \begin{center}
1002 \vspace{0.1cm}
1003 {\color{black}
1004 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1005 IBS --- process far from equilibrium\\
1006 }
1007 \end{center}
1008 \end{minipage}
1009 }}}
1010 \end{pspicture}
1011
1012 \end{slide}
1013
1014 \begin{slide}
1015
1016 \headphd
1017 {\large\bf
1018  Combinations of substitutional C and Si self-interstitials
1019 }
1020
1021 \scriptsize
1022
1023 \vspace{0.3cm}
1024
1025 \begin{minipage}{6.2cm}
1026 \begin{center}
1027 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1028 \begin{itemize}
1029  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1030  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1031  \item Interaction drops quickly to zero\\
1032        $\rightarrow$ low capture radius
1033 \end{itemize}
1034 \end{center}
1035 \end{minipage}
1036 \begin{minipage}{0.2cm}
1037 \hfill
1038 \end{minipage}
1039 \begin{minipage}{6.0cm}
1040 \begin{center}
1041 {\bf Transition from the ground state}
1042 \begin{itemize}
1043  \item Low transition barrier
1044  \item Barrier smaller than \ci{} migration barrier
1045  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1046        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1047 \end{itemize}
1048 \end{center}
1049 \end{minipage}\\[0.3cm]
1050
1051 \begin{minipage}{6.0cm}
1052 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1053 \end{minipage}
1054 \begin{minipage}{0.4cm}
1055 \hfill
1056 \end{minipage}
1057 \begin{minipage}{6.0cm}
1058 \begin{flushright}
1059 \includegraphics[width=6.0cm]{162-097.ps}
1060 \end{flushright}
1061 \end{minipage}
1062
1063 \begin{pspicture}(0,0)(0,0)
1064 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1065 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1066 \begin{minipage}{8cm}
1067 \begin{center}
1068 \vspace{0.1cm}
1069 {\color{black}
1070 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1071 IBS --- process far from equilibrium\\
1072 }
1073 \end{center}
1074 \end{minipage}
1075 }}}
1076 \end{pspicture}
1077
1078 % md support
1079 \begin{pspicture}(0,0)(0,0)
1080 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1081 \begin{minipage}{14cm}
1082 \hfill
1083 \vspace{14cm}
1084 \end{minipage}
1085 }}
1086 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1087 \begin{minipage}{11cm}
1088 \begin{center}
1089 \vspace{0.2cm}
1090 \scriptsize
1091 Ab initio MD at \degc{900}\\[0.4cm]
1092 \begin{minipage}{5.4cm}
1093 \centering
1094 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1095 $t=\unit[2230]{fs}$
1096 \end{minipage}
1097 \begin{minipage}{5.4cm}
1098 \centering
1099 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1100 $t=\unit[2900]{fs}$
1101 \end{minipage}\\[0.5cm]
1102 {\color{blue}
1103 Contribution of entropy to structural formation\\[0.1cm]
1104 }
1105 \end{center}
1106 \end{minipage}
1107 }}}
1108 \end{pspicture}
1109
1110 \end{slide}
1111
1112 \fi
1113
1114 \begin{slide}
1115
1116 \headphd
1117 {\large\bf
1118  Silicon carbide precipitation simulations
1119 }
1120
1121 \small
1122
1123 \vspace{0.2cm}
1124
1125 {\bf Procedure}
1126
1127 {\scriptsize
1128  \begin{pspicture}(0,0)(12,6.5)
1129   % nodes
1130   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1131    \parbox{7cm}{
1132    \begin{itemize}
1133     \item Create c-Si volume
1134     \item Periodc boundary conditions
1135     \item Set requested $T$ and $p=0\text{ bar}$
1136     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1137    \end{itemize}
1138   }}}}
1139   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1140    \parbox{7cm}{
1141    Insertion of C atoms at constant T
1142    \begin{itemize}
1143     \item total simulation volume {\pnode{in1}}
1144     \item volume of minimal SiC precipitate size {\pnode{in2}}
1145     %\item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1146     \item volume containing Si atoms to form a minimal {\pnode{in3}}\\
1147           precipitate
1148    \end{itemize} 
1149   }}}}
1150   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1151    \parbox{7.0cm}{
1152    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1153   }}}}
1154   \ncline[]{->}{init}{insert}
1155   \ncline[]{->}{insert}{cool}
1156   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1157   \rput(7.6,6){\footnotesize $V_1$}
1158   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1159   \rput(8.9,4.85){\tiny $V_2$}
1160   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1161   \rput(9.25,4.45){\footnotesize $V_3$}
1162   \rput(7.9,3.2){\pnode{ins1}}
1163   \rput(8.92,2.8){\pnode{ins2}}
1164   \rput(10.8,2.4){\pnode{ins3}}
1165   \ncline[]{->}{in1}{ins1}
1166   \ncline[]{->}{in2}{ins2}
1167   \ncline[]{->}{in3}{ins3}
1168  \end{pspicture}
1169 }
1170
1171 \vspace{-0.5cm}
1172
1173 {\bf Note}
1174
1175 \footnotesize
1176
1177 \begin{minipage}{5.7cm}
1178 \begin{itemize}
1179  \item Amount of C atoms: 6000\\
1180        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1181  \item Simulation volume: $31^3$ Si unit cells\\
1182        (238328 Si atoms)
1183 \end{itemize}
1184 \end{minipage}
1185 \begin{minipage}{0.3cm}
1186 \hfill
1187 \end{minipage}
1188 \framebox{
1189 \begin{minipage}{6.0cm}
1190 Restricted to classical potential caclulations\\
1191 $\rightarrow$ Low C diffusion / overestimated barrier\\
1192 $\rightarrow$ Consider $V_2$ and $V_3$
1193 %\begin{itemize}
1194 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1195 %\end{itemize}
1196 \end{minipage}
1197 }
1198
1199 \end{slide}
1200
1201 \begin{slide}
1202
1203 \headphd
1204 {\large\bf
1205  Silicon carbide precipitation simulations
1206 }
1207
1208 \small
1209
1210 \begin{minipage}{6.3cm}
1211 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1212 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1213 \hfill
1214 \end{minipage} 
1215 \begin{minipage}{6.1cm}
1216 \scriptsize
1217 \underline{Temperature as used in IBS (\degc{450})}\\[0.2cm]
1218 \ci{} \hkl<1 0 0> dumbbell dominated structure\\
1219 \begin{pspicture}(0,0)(6.0,1.0)
1220 \rput(2.75,0.4){\psframebox[linewidth=0.05cm,linecolor=black]{
1221 \begin{minipage}{5cm}
1222 \vspace{0.1cm}
1223 \centering
1224 {\color{blue}Formation of \ci{} DBs}\\
1225 {\color{red}No agllomeration / precipitation}
1226 \end{minipage}
1227 }}
1228 \end{pspicture}\\[0.1cm]
1229 Limitations:
1230 \begin{itemize}
1231  \item Time scale problem of MD\\
1232        $\Rightarrow$ slow phase space propagation
1233  \item Short range potential\\
1234        $\Rightarrow$ overestimated diffusion barrier
1235 \end{itemize}
1236 \vspace{0.6cm}
1237 \underline{Increased temperatures}\\[0.2cm]
1238 \cs{} dominated structure\\
1239 \begin{pspicture}(0,0)(6.0,1.0)
1240 \rput(2.75,0.4){\psframebox[linewidth=0.05cm,linecolor=black]{
1241 \begin{minipage}{5cm}
1242 \vspace{0.1cm}
1243 \centering
1244 Si-{\color{blue}C$_{\text{sub}}$}-Si along \hkl<1 1 0>\\
1245 {\color{blue}\cs}-Si-{\color{blue}\cs} \& nearby \si
1246 \end{minipage}
1247 }}
1248 \end{pspicture}\\[0.1cm]
1249 Conclusions:
1250 \begin{itemize}
1251  \item Stretched coherent SiC structures\\
1252        $\Rightarrow$ \cs{} involved in precipitation mechanism
1253  \item High T $\leftrightarrow$ non-equilibrium IBS conditions
1254 \end{itemize}
1255 \vspace{0.3cm}
1256
1257 \end{minipage} 
1258
1259 \end{slide}
1260
1261 \begin{slide}
1262
1263 \headphd
1264 {\large\bf
1265  Summary and Conclusions
1266 }
1267
1268 Summary
1269
1270 \begin{itemize}
1271  \item First-principles investigation of defect combinations
1272        and mobilities in Si
1273  \item Empirical potential MD simulations on SiC prcipitation in Si
1274 \end{itemize}
1275
1276
1277 % conclusions
1278 \rput(6.5,-4.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1279 \begin{minipage}{9cm}
1280 \vspace{0.2cm}
1281 \small
1282 \begin{center}
1283 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
1284 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
1285 \end{center}
1286 \begin{itemize}
1287 \item Stretched coherent SiC structures directly observed\\
1288 \psframebox[linecolor=blue,linewidth=0.05cm]{
1289 \begin{minipage}{7cm}
1290 \centering
1291 \cs{} involved in the precipitation mechanism\\
1292 \end{minipage}
1293 }
1294 \item Emission of \si{} serves several needs:
1295       \begin{itemize}
1296        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
1297        \item Building block for surrounding Si host \& further SiC
1298        \item Strain compensation \ldots\\
1299              \ldots Si/SiC interface\\
1300              \ldots within stretched coherent SiC structure
1301       \end{itemize}
1302 \item Explains annealing behavior of high/low T C implantations
1303       \begin{itemize}
1304        \item Low T: highly mobile {\color{red}\ci}
1305        \item High T: stable configurations of {\color{blue}\cs}
1306       \end{itemize}
1307 \psframebox[linecolor=blue,linewidth=0.05cm]{
1308 \begin{minipage}{7cm}
1309 \centering
1310 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
1311 \end{minipage}
1312 }
1313 \end{itemize}
1314 \end{minipage}
1315 \vspace{0.2cm}
1316 }}
1317
1318 \end{slide}
1319
1320 \begin{slide}
1321
1322 \headphd
1323 {\large\bf
1324  Acknowledgements
1325 }
1326
1327  \vspace{0.1cm}
1328
1329  \small
1330
1331  Thanks to \ldots
1332
1333 \begin{minipage}[t]{6cm}
1334  \underline{Augsburg}
1335  \begin{itemize}
1336   \item Prof. B. Stritzker
1337  \end{itemize}
1338  
1339  \underline{Helsinki}
1340  \begin{itemize}
1341   \item Prof. K. Nordlund
1342  \end{itemize}
1343
1344  \underline{Munich}
1345  \begin{itemize}
1346   \item Bayerische Forschungsstiftung
1347  \end{itemize}
1348 \end{minipage}
1349 \begin{minipage}[t]{6cm}
1350  \underline{Paderborn}
1351  \begin{itemize}
1352   \item Prof. J. Lindner
1353   \item Prof. G. Schmidt
1354   \item Dr. E. Rauls
1355  \end{itemize}
1356 \end{minipage}
1357
1358 \vspace{2.5cm}
1359
1360 \begin{center}
1361 \framebox{
1362 \LARGE\bf Thank you for your attention!
1363 }
1364 \end{center}
1365
1366 \end{slide}
1367
1368
1369
1370
1371
1372
1373
1374 \ifnum1=0
1375
1376 \begin{slide}
1377
1378 \headphd
1379  {\large\bf
1380   Polytypes of SiC\\[0.6cm]
1381  }
1382
1383 \vspace{0.6cm}
1384
1385 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
1386 \begin{minipage}{1.9cm}
1387 {\tiny cubic (twist)}
1388 \end{minipage}
1389 \begin{minipage}{2.9cm}
1390 {\tiny hexagonal (no twist)}
1391 \end{minipage}
1392
1393 \begin{picture}(0,0)(-150,0)
1394  \includegraphics[width=7cm]{polytypes.eps}
1395 \end{picture}
1396
1397 \vspace{0.6cm}
1398
1399 \footnotesize
1400
1401 \begin{tabular}{l c c c c c c}
1402 \hline
1403  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
1404 \hline
1405 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
1406 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
1407 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
1408 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
1409 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
1410 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
1411 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
1412 \hline
1413 \end{tabular}
1414
1415 \begin{pspicture}(0,0)(0,0)
1416 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
1417 \end{pspicture}
1418 \begin{pspicture}(0,0)(0,0)
1419 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
1420 \end{pspicture}
1421 \begin{pspicture}(0,0)(0,0)
1422 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
1423 \end{pspicture}
1424
1425 \end{slide}
1426
1427 \begin{slide}
1428
1429 \footnotesize
1430
1431 \headphd
1432 {\large\bf
1433  Si self-interstitial point defects in silicon\\[0.1cm]
1434 }
1435
1436 \begin{center}
1437 \begin{tabular}{l c c c c c}
1438 \hline
1439  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
1440 \hline
1441  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
1442  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
1443 \hline
1444 \end{tabular}\\[0.4cm]
1445 \end{center}
1446
1447 \begin{minipage}{3cm}
1448 \begin{center}
1449 \underline{Vacancy}\\
1450 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
1451 \end{center}
1452 \end{minipage}
1453 \begin{minipage}{3cm}
1454 \begin{center}
1455 \underline{\hkl<1 1 0> DB}\\
1456 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
1457 \end{center}
1458 \end{minipage}
1459 \begin{minipage}{3cm}
1460 \begin{center}
1461 \underline{\hkl<1 0 0> DB}\\
1462 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
1463 \end{center}
1464 \end{minipage}
1465 \begin{minipage}{3cm}
1466 \begin{center}
1467 \underline{Tetrahedral}\\
1468 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
1469 \end{center}
1470 \end{minipage}\\
1471
1472 \underline{Hexagonal} \hspace{2pt}
1473 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
1474 \framebox{
1475 \begin{minipage}{2.7cm}
1476 $E_{\text{f}}^*=4.48\text{ eV}$\\
1477 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
1478 \end{minipage}
1479 \begin{minipage}{0.4cm}
1480 \begin{center}
1481 $\Rightarrow$
1482 \end{center}
1483 \end{minipage}
1484 \begin{minipage}{2.7cm}
1485 $E_{\text{f}}=3.96\text{ eV}$\\
1486 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
1487 \end{minipage}
1488 }
1489 \begin{minipage}{5.5cm}
1490 \begin{center}
1491 {\tiny nearly T $\rightarrow$ T}\\
1492 \end{center}
1493 \includegraphics[width=6.0cm]{nhex_tet.ps}
1494 \end{minipage}
1495
1496 \end{slide}
1497
1498 \begin{slide}
1499
1500 \headphd
1501 {\large\bf\boldmath
1502  C-Si dimer \& bond-centered interstitial configuration
1503 }
1504
1505 \footnotesize
1506
1507 \vspace{0.1cm}
1508
1509 \begin{minipage}[t]{4.1cm}
1510 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1511 \begin{minipage}{2.0cm}
1512 \begin{center}
1513 \underline{Erhart/Albe}
1514 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1515 \end{center}
1516 \end{minipage}
1517 \begin{minipage}{2.0cm}
1518 \begin{center}
1519 \underline{\textsc{vasp}}
1520 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1521 \end{center}
1522 \end{minipage}\\[0.2cm]
1523 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1524 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1525 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1526 $\Rightarrow$ $sp^2$ hybridization
1527 \begin{center}
1528 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1529 {\tiny Charge density isosurface}
1530 \end{center}
1531 \end{minipage}
1532 \begin{minipage}{0.2cm}
1533 \hfill
1534 \end{minipage}
1535 \begin{minipage}[t]{8.1cm}
1536 \begin{flushright}
1537 {\bf Bond-centered interstitial}\\[0.1cm]
1538 \begin{minipage}{4.4cm}
1539 %\scriptsize
1540 \begin{itemize}
1541  \item Linear Si-C-Si bond
1542  \item Si: one C \& 3 Si neighbours
1543  \item Spin polarized calculations
1544  \item No saddle point!\\
1545        Real local minimum!
1546 \end{itemize}
1547 \end{minipage}
1548 \begin{minipage}{2.7cm}
1549 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1550 \vspace{0.2cm}
1551 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1552 \end{minipage}
1553
1554 \framebox{
1555  \tiny
1556  \begin{minipage}[t]{6.5cm}
1557   \begin{minipage}[t]{1.2cm}
1558   {\color{red}Si}\\
1559   {\tiny sp$^3$}\\[0.8cm]
1560   \underline{${\color{black}\uparrow}$}
1561   \underline{${\color{black}\uparrow}$}
1562   \underline{${\color{black}\uparrow}$}
1563   \underline{${\color{red}\uparrow}$}\\
1564   sp$^3$
1565   \end{minipage}
1566   \begin{minipage}[t]{1.4cm}
1567   \begin{center}
1568   {\color{red}M}{\color{blue}O}\\[0.8cm]
1569   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1570   $\sigma_{\text{ab}}$\\[0.5cm]
1571   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1572   $\sigma_{\text{b}}$
1573   \end{center}
1574   \end{minipage}
1575   \begin{minipage}[t]{1.0cm}
1576   \begin{center}
1577   {\color{blue}C}\\
1578   {\tiny sp}\\[0.2cm]
1579   \underline{${\color{white}\uparrow\uparrow}$}
1580   \underline{${\color{white}\uparrow\uparrow}$}\\
1581   2p\\[0.4cm]
1582   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1583   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1584   sp
1585   \end{center}
1586   \end{minipage}
1587   \begin{minipage}[t]{1.4cm}
1588   \begin{center}
1589   {\color{blue}M}{\color{green}O}\\[0.8cm]
1590   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1591   $\sigma_{\text{ab}}$\\[0.5cm]
1592   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1593   $\sigma_{\text{b}}$
1594   \end{center}
1595   \end{minipage}
1596   \begin{minipage}[t]{1.2cm}
1597   \begin{flushright}
1598   {\color{green}Si}\\
1599   {\tiny sp$^3$}\\[0.8cm]
1600   \underline{${\color{green}\uparrow}$}
1601   \underline{${\color{black}\uparrow}$}
1602   \underline{${\color{black}\uparrow}$}
1603   \underline{${\color{black}\uparrow}$}\\
1604   sp$^3$
1605   \end{flushright}
1606   \end{minipage}
1607  \end{minipage}
1608 }\\[0.4cm]
1609
1610 %\framebox{
1611 \begin{minipage}{3.0cm}
1612 %\scriptsize
1613 \underline{Charge density}\\
1614 {\color{gray}$\bullet$} Spin up\\
1615 {\color{green}$\bullet$} Spin down\\
1616 {\color{blue}$\bullet$} Resulting spin up\\
1617 {\color{yellow}$\bullet$} Si atoms\\
1618 {\color{red}$\bullet$} C atom
1619 \end{minipage}
1620 \begin{minipage}{3.6cm}
1621 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1622 \end{minipage}
1623 %}
1624
1625 \end{flushright}
1626
1627 \end{minipage}
1628 \begin{pspicture}(0,0)(0,0)
1629 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1630 \end{pspicture}
1631
1632 \end{slide}
1633
1634 \begin{slide}
1635
1636  {\large\bf
1637   Increased temperature simulations at high C concentration
1638  }
1639
1640 \footnotesize
1641
1642 \begin{minipage}{6.0cm}
1643 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1644 \end{minipage}
1645 \begin{minipage}{6.0cm}
1646 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1647 \end{minipage}
1648
1649 \vspace{0.1cm}
1650
1651 \scriptsize
1652
1653 \framebox{
1654 \begin{minipage}[t]{5.5cm}
1655 0.186 nm: Si-C pairs $\uparrow$\\
1656 (as expected in 3C-SiC)\\[0.2cm]
1657 0.282 nm: Si-C-C\\[0.2cm]
1658 $\approx$0.35 nm: C-Si-Si
1659 \end{minipage}
1660 }
1661 \begin{minipage}{0.1cm}
1662 \hfill
1663 \end{minipage}
1664 \framebox{
1665 \begin{minipage}[t]{5.9cm}
1666 0.15 nm: C-C pairs $\uparrow$\\
1667 (as expected in graphite/diamond)\\[0.2cm]
1668 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
1669 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
1670 \end{minipage}
1671 }
1672
1673 \begin{itemize}
1674 \item Decreasing cut-off artifact
1675 \item {\color{red}Amorphous} SiC-like phase remains
1676 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1677 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
1678 \end{itemize}
1679
1680 \begin{center}
1681 {\color{blue}
1682 \framebox{
1683 {\color{black}
1684 High C \& small $V$ \& short $t$
1685 $\Rightarrow$
1686 }
1687 \begin{minipage}{4cm}
1688 \begin{center}
1689 Slow structural evolution due to strong C-C bonds
1690 \end{center}
1691 \end{minipage}
1692 {\color{black}
1693 $\Leftarrow$
1694 High C \& low T implants
1695 }
1696 }
1697 }
1698 \end{center}
1699
1700 \end{slide}
1701
1702
1703
1704 \begin{slide}
1705
1706  {\large\bf
1707   Valuation of a practicable temperature limit
1708  }
1709
1710  \small
1711
1712 \vspace{0.1cm}
1713
1714 \begin{center}
1715 \framebox{
1716 {\color{blue}
1717 Recrystallization is a hard task!
1718 $\Rightarrow$ Avoid melting!
1719 }
1720 }
1721 \end{center}
1722  
1723 \vspace{0.1cm}
1724
1725 \footnotesize
1726
1727 \begin{minipage}{6.4cm}
1728 \includegraphics[width=6.4cm]{fe_and_t.ps}
1729 \end{minipage}
1730 \begin{minipage}{5.7cm}
1731 \underline{Melting does not occur instantly after}\\
1732 \underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
1733 \begin{itemize}
1734 \item required transition enthalpy
1735 \item hysterisis behaviour
1736 \end{itemize}
1737 \underline{Heating up c-Si by 1 K/ps}
1738 \begin{itemize}
1739 \item transition occurs at $\approx$ 3125 K
1740 \item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
1741       (literature: 50.2 kJ/mole)
1742 \end{itemize}
1743 \end{minipage}
1744
1745 \vspace{0.1cm}
1746
1747 \framebox{
1748 \begin{minipage}{4cm}
1749 Initially chosen temperatures:\\
1750 $1.0 - 1.2 \cdot T_{\text{m}}$
1751 \end{minipage}
1752 }
1753 \begin{minipage}{2cm}
1754 \begin{center}
1755 $\Longrightarrow$
1756 \end{center}
1757 \end{minipage}
1758 \framebox{
1759 \begin{minipage}{5cm}
1760 Introduced C (defects)\\
1761 $\rightarrow$ reduction of transition point\\
1762 $\rightarrow$ melting already at $T_{\text{m}}$
1763 \end{minipage}
1764 }
1765
1766 \vspace{0.4cm}
1767
1768 \begin{center}
1769 \framebox{
1770 {\color{blue}
1771 Maximum temperature used: $0.95\cdot T_{\text{m}}$
1772 }
1773 }
1774 \end{center}
1775
1776 \end{slide}
1777
1778 \begin{slide}
1779
1780  {\large\bf
1781   Long time scale simulations at maximum temperature
1782  }
1783
1784 \small
1785
1786 \vspace{0.1cm}
1787  
1788 \underline{Differences}
1789 \begin{itemize}
1790  \item Temperature set to $0.95 \cdot T_{\text{m}}$
1791  \item Cubic insertion volume $\Rightarrow$ spherical insertion volume
1792  \item Amount of C atoms: 6000 $\rightarrow$ 5500
1793        $\Leftrightarrow r_{\text{prec}}=0.3\text{ nm}$
1794  \item Simulation volume: 21 unit cells of c-Si in each direction
1795 \end{itemize}
1796
1797 \footnotesize
1798
1799 \vspace{0.3cm}
1800
1801 \begin{minipage}[t]{4.3cm}
1802 \begin{center}
1803 \underline{Low C concentration, Si-C}
1804 \includegraphics[width=4.3cm]{c_in_si_95_v1_si-c.ps}\\
1805 Sharper peaks!
1806 \end{center}
1807 \end{minipage}
1808 \begin{minipage}[t]{4.3cm}
1809 \begin{center}
1810 \underline{Low C concentration, C-C}
1811 \includegraphics[width=4.3cm]{c_in_si_95_v1_c-c.ps}\\
1812 Sharper peaks!\\
1813 No C agglomeration!
1814 \end{center}
1815 \end{minipage}
1816 \begin{minipage}[t]{3.4cm}
1817 \begin{center}
1818 \underline{High C concentration}
1819 \includegraphics[width=4.3cm]{c_in_si_95_v2.ps}\\
1820 No significant changes\\
1821 iC-Si-Si $\uparrow$\\
1822 C-Si-C $\downarrow$
1823 \end{center}
1824 \end{minipage}
1825
1826 \begin{center}
1827 \framebox{
1828 Long time scales and high temperatures most probably not sufficient enough!
1829 }
1830 \end{center}
1831
1832 \end{slide}
1833
1834 \begin{slide}
1835
1836  {\large\bf
1837   Investigation of a silicon carbide precipitate in silicon
1838  }
1839
1840  \scriptsize
1841
1842 \vspace{0.2cm}
1843
1844 \framebox{
1845 \scriptsize
1846 \begin{minipage}{5.3cm}
1847 \[
1848 \frac{8}{a_{\text{Si}}^3}(
1849 \underbrace{21^3 a_{\text{Si}}^3}_{=V}
1850 -\frac{4}{3}\pi x^3)+
1851 \underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
1852 =21^3\cdot 8
1853 \]
1854 \[
1855 \Downarrow
1856 \]
1857 \[
1858 \frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
1859 \Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
1860 \]
1861 \[
1862 y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
1863 \]
1864 \end{minipage}
1865 }
1866 \begin{minipage}{0.1cm}
1867 \hfill
1868 \end{minipage}
1869 \begin{minipage}{6.3cm}
1870 \underline{Construction}
1871 \begin{itemize}
1872  \item Simulation volume: 21$^3$ unit cells of c-Si
1873  \item Spherical topotactically aligned precipitate\\
1874        $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
1875  \item Create c-Si but skipped inside sphere\\
1876        of radius $x$
1877  \item Create 3C-SiC inside sphere of radius $x$\\
1878        and lattice constant $y$
1879  \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
1880 \end{itemize}
1881 \end{minipage}
1882
1883 \vspace{0.3cm}
1884
1885 \begin{minipage}{6.0cm}
1886 \includegraphics[width=6cm]{pc_0.ps}
1887 \end{minipage}
1888 \begin{minipage}{6.1cm}
1889 \underline{Results}
1890 \begin{itemize}
1891  \item Slight increase of c-Si lattice constant!
1892  \item C-C peaks\\
1893        (imply same distanced Si-Si peaks)
1894        \begin{itemize}
1895         \item New peak at 0.307 nm: 2$^{\text{nd}}$ NN in 3C-SiC
1896         \item Bumps ({\color{green}$\downarrow$}):
1897               4$^{\text{th}}$ and 6$^{\text{th}}$ NN
1898        \end{itemize}
1899  \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
1900        $\rightarrow$ compressed precipitate
1901  \item Interface tension:\\
1902        20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$\\
1903        (literature: $2 - 8 \times 10^{-4}$ J/cm$^2$)
1904 \end{itemize}
1905 \end{minipage}
1906
1907 \end{slide}
1908
1909 \begin{slide}
1910
1911  {\large\bf
1912   Investigation of a silicon carbide precipitate in silicon
1913  }
1914
1915  \footnotesize
1916
1917 \begin{minipage}{7cm}
1918 \underline{Appended annealing steps}
1919 \begin{itemize}
1920  \item artificially constructed interface\\
1921        $\rightarrow$ allow for rearrangement of interface atoms
1922  \item check SiC stability
1923 \end{itemize}
1924 \underline{Temperature schedule}
1925 \begin{itemize}
1926  \item rapidly heat up structure up to $2050\,^{\circ}\mathrm{C}$\\
1927        (75 K/ps)
1928  \item slow heating up to $1.2\cdot T_{\text{m}}=2940\text{ K}$
1929        by 1 K/ps\\
1930        $\rightarrow$ melting at around 2840 K
1931        (\href{../video/sic_prec_120.avi}{$\rhd$})
1932  \item cooling down structure at 100 \% $T_{\text{m}}$ (1 K/ps)\\
1933        $\rightarrow$ no energetically more favorable struture
1934 \end{itemize}
1935 \end{minipage}
1936 \begin{minipage}{5cm}
1937 \includegraphics[width=5.5cm]{fe_and_t_sic.ps}
1938 \end{minipage}
1939
1940 \begin{minipage}{4cm}
1941 \includegraphics[width=4cm]{sic_prec/melt_01.eps}
1942 \end{minipage}
1943 \begin{minipage}{0.2cm}
1944 $\rightarrow$
1945 \end{minipage}
1946 \begin{minipage}{4cm}
1947 \includegraphics[width=4cm]{sic_prec/melt_02.eps}
1948 \end{minipage}
1949 \begin{minipage}{0.2cm}
1950 $\rightarrow$
1951 \end{minipage}
1952 \begin{minipage}{3.7cm}
1953 \includegraphics[width=4cm]{sic_prec/melt_03.eps}
1954 \end{minipage}
1955
1956 \end{slide}
1957
1958 \begin{slide}
1959
1960  {\large\bf
1961   DFT parameters
1962  }
1963
1964 \scriptsize
1965
1966 \vspace{0.1cm}
1967
1968 Equilibrium lattice constants and cohesive energies
1969
1970 \begin{tabular}{l r c c c c c}
1971 \hline
1972 \hline
1973  & & USPP, LDA & USPP, GGA & PAW, LDA & PAW, GGA & Exp. \\
1974 \hline
1975 Si (dia) & $a$ [\AA] & 5.389 & 5.455 & - & - & 5.429 \\
1976          & $\Delta_a$ [\%] & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - & - & - \\
1977        & $E_{\text{coh}}$ [eV] & -5.277 & -4.591 & - & - & -4.63 \\
1978        & $\Delta_E$ [\%] & \unit[{\color{red}14.0}]{\%} & \unit[{\color{green}0.8}]{\%} & - & - & - \\
1979 \hline
1980 C (dia) & $a$ [\AA] & 3.527 & 3.567 & - & - & 3.567 \\
1981          & $\Delta_a$ [\%] & \unit[{\color{green}1.1}]{\%} & \unit[{\color{green}0.01}]{\%} & - & - & - \\
1982        & $E_{\text{coh}}$ [eV] & -8.812 & -7.703 & - & - & -7.374 \\
1983        & $\Delta_E$ [\%] & \unit[{\color{red}19.5}]{\%} & \unit[{\color{orange}4.5}]{\%} & - & - & - \\
1984 \hline
1985 3C-SiC & $a$ [\AA] & 4.319 & 4.370 & 4.330 & 4.379 & 4.359 \\
1986          & $\Delta_a$ [\%] & \unit[{\color{green}0.9}]{\%} & \unit[{\color{green}0.3}]{\%} & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - \\
1987        & $E_{\text{coh}}$ [eV] & -7.318 & -6.426 &  -7.371 & -6.491 & -6.340 \\
1988        & $\Delta_E$ [\%] & \unit[{\color{red}15.4}]{\%} & \unit[{\color{green}1.4}]{\%} & \unit[{\color{red}16.3}]{\%} & \unit[{\color{orange}2.4}]{\%} & - \\
1989 \hline
1990 \hline
1991 \end{tabular}
1992
1993 \vspace{0.3cm}
1994
1995 \begin{minipage}{7cm}
1996 \begin{center}
1997 \begin{tabular}{l c c c}
1998 \hline
1999 \hline
2000  & Si (dia) & C (dia) & 3C-SiC \\
2001 \hline
2002 $a$ [\AA] & 5.458 & 3.562 & 4.365 \\
2003 $\Delta_a$ [\%] & 0.5 & 0.1 & 0.1 \\
2004 \hline
2005 $E_{\text{coh}}$ [eV] & -4.577 & -7.695 & -6.419 \\
2006 $\Delta_E$ [\%] & 1.1 & 4.4 & 1.2 \\
2007 \hline
2008 \hline
2009 \end{tabular}
2010 \end{center}
2011 \end{minipage}
2012 \begin{minipage}{5cm}
2013 $\leftarrow$ entire parameter set
2014 \end{minipage}
2015
2016 \end{slide}
2017
2018 \begin{slide}
2019
2020  {\large\bf
2021   DFT parameters\\
2022  }
2023
2024 \footnotesize
2025
2026 \begin{minipage}{6cm}
2027 \begin{center}
2028 \includegraphics[width=6cm]{sic_32pc_gamma_cutoff_lc.ps}
2029 \end{center}
2030 \end{minipage}
2031 \begin{minipage}{6cm}
2032 \begin{center}
2033 Lattice constants with respect to the PW cut-off energy
2034 \end{center}
2035 \end{minipage}
2036
2037 \begin{minipage}{6cm}
2038 \begin{center}
2039 \includegraphics[width=6cm]{si_self_int_thesis.ps}
2040 \end{center}
2041 \end{minipage}
2042 \begin{minipage}{6cm}
2043 \begin{center}
2044 Defect formation energy with respect to the size of the supercell\\[0.1cm]
2045 \end{center}
2046
2047 \end{minipage}
2048
2049 \end{slide}
2050
2051 \fi
2052
2053 \end{document}
2054