157894e7ecf05e7c1451472ad5ecee3e23d4260f
[lectures/latex.git] / posic / talks / mpi_app.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 % units
35 \usepackage{units}
36
37 \usepackage{semcolor}
38 \usepackage{semlayer}           % Seminar overlays
39 \usepackage{slidesec}           % Seminar sections and list of slides
40
41 \input{seminar.bug}             % Official bugs corrections
42 \input{seminar.bg2}             % Unofficial bugs corrections
43
44 \articlemag{1}
45
46 \special{landscape}
47
48 % font
49 %\usepackage{cmbright}
50 %\renewcommand{\familydefault}{\sfdefault}
51 %\usepackage{mathptmx}
52
53 \usepackage{upgreek}
54
55 \begin{document}
56
57 \extraslideheight{10in}
58 \slideframe{none}
59
60 \pagestyle{empty}
61
62 % specify width and height
63 \slidewidth 27.7cm 
64 \slideheight 19.1cm 
65
66 % shift it into visual area properly
67 \def\slideleftmargin{3.3cm}
68 \def\slidetopmargin{0.6cm}
69
70 \newcommand{\ham}{\mathcal{H}}
71 \newcommand{\pot}{\mathcal{V}}
72 \newcommand{\foo}{\mathcal{U}}
73 \newcommand{\vir}{\mathcal{W}}
74
75 % itemize level ii
76 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
77
78 % nice phi
79 \renewcommand{\phi}{\varphi}
80
81 % roman letters
82 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
83
84 % colors
85 \newrgbcolor{si-yellow}{.6 .6 0}
86 \newrgbcolor{hb}{0.75 0.77 0.89}
87 \newrgbcolor{lbb}{0.75 0.8 0.88}
88 \newrgbcolor{hlbb}{0.825 0.88 0.968}
89 \newrgbcolor{lachs}{1.0 .93 .81}
90
91 % shortcuts
92 \newcommand{\si}{Si$_{\text{i}}${}}
93 \newcommand{\ci}{C$_{\text{i}}${}}
94 \newcommand{\cs}{C$_{\text{sub}}${}}
95 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
96 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
97 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
98 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
99
100 % topic
101
102 \begin{slide}
103 \begin{center}
104
105  \vspace{16pt}
106
107  {\LARGE\bf
108   Atomistic simulation studies\\[0.2cm]
109   in the C/Si system
110  }
111
112  \vspace{48pt}
113
114  \textsc{Frank Zirkelbach}
115
116  \vspace{48pt}
117
118  Application talk at the Max Planck Institute for Solid State Research
119
120  \vspace{08pt}
121
122  Stuttgart, November 2011
123
124 \end{center}
125 \end{slide}
126
127 % intro
128
129 \begin{slide}
130
131 {\large\bf
132  Introduction --- The C/Si system\\
133 }
134
135 \begin{center}
136 \includegraphics[width=6.3cm]{si-c_phase.eps}\\
137 {\tiny
138 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
139 }
140 \end{center}
141 \begin{pspicture}(0,0)(0,0)
142 \psellipse[linecolor=red,linewidth=0.1cm](6.95,3.95)(0.5,2.8)
143 \end{pspicture}
144
145 \end{slide}
146
147 \end{document}
148 \ifnum1=0
149
150 % motivation / properties / applications of silicon carbide
151
152 \begin{slide}
153
154 \small
155
156 \begin{pspicture}(0,0)(13.5,5)
157
158  \psframe*[linecolor=hb](0,0)(13.5,5)
159
160  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
161  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
162
163  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
164
165  \rput[lt](0.5,4){wide band gap}
166  \rput[lt](0.5,3.5){high electric breakdown field}
167  \rput[lt](0.5,3){good electron mobility}
168  \rput[lt](0.5,2.5){high electron saturation drift velocity}
169  \rput[lt](0.5,2){high thermal conductivity}
170
171  \rput[lt](0.5,1.5){hard and mechanically stable}
172  \rput[lt](0.5,1){chemically inert}
173
174  \rput[lt](0.5,0.5){radiation hardness}
175
176  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
177
178  \rput[rt](13,3.85){high-temperature, high power}
179  \rput[rt](13,3.5){and high-frequency}
180  \rput[rt](13,3.15){electronic and optoelectronic devices}
181
182  \rput[rt](13,2.35){material suitable for extreme conditions}
183  \rput[rt](13,2){microelectromechanical systems}
184  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
185
186  \rput[rt](13,0.85){first wall reactor material, detectors}
187  \rput[rt](13,0.5){and electronic devices for space}
188
189 \end{pspicture}
190
191 \begin{picture}(0,0)(-3,68)
192 \includegraphics[width=2.6cm]{wide_band_gap.eps}
193 \end{picture}
194 \begin{picture}(0,0)(-285,-162)
195 \includegraphics[width=3.38cm]{sic_led.eps}
196 \end{picture}
197 \begin{picture}(0,0)(-195,-162)
198 \includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
199 \end{picture}
200 \begin{picture}(0,0)(-313,65)
201 \includegraphics[width=2.2cm]{infineon_schottky.eps}
202 \end{picture}
203 \begin{picture}(0,0)(-220,65)
204 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
205 \end{picture}
206 \begin{picture}(0,0)(0,-160)
207 \includegraphics[width=3.0cm]{sic_proton.eps}
208 \end{picture}
209 \begin{picture}(0,0)(-60,65)
210 \includegraphics[width=3.4cm]{sic_switch.eps}
211 \end{picture}
212
213 \end{slide}
214
215
216 % contents
217
218 \begin{slide}
219
220 {\large\bf
221  Outline
222 }
223
224  \begin{itemize}
225   \item Implantation of C in Si --- Overview of experimental observations
226   \item Utilized simulation techniques and modeled problems
227         \begin{itemize}
228          \item {\color{blue}Diploma thesis}\\
229                \underline{Monte Carlo} simulations
230                modeling the selforganization process
231                leading to periodic arrays of nanometric amorphous SiC
232                precipitates
233          \item {\color{blue}Doctoral studies}\\
234                Classical potential \underline{molecular dynamics} simulations
235                \ldots\\
236                \underline{Density functional theory} calculations
237                \ldots\\[0.2cm]
238                \ldots on defects and SiC precipitation in Si
239         \end{itemize}
240   \item Summary / Conclusion / Outlook
241  \end{itemize}
242
243 \end{slide}
244
245
246
247 \end{document}
248
249 \ifnum1=0
250
251
252 % start of contents
253
254 \begin{slide}
255
256  {\large\bf
257   Polytypes of SiC
258  }
259
260  \vspace{4cm}
261
262  \small
263
264 \begin{tabular}{l c c c c c c}
265 \hline
266  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
267 \hline
268 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
269 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
270 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
271 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
272 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
273 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
274 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
275 \hline
276 \end{tabular}
277
278 {\tiny
279  Values for $T=300$ K
280 }
281
282 \begin{picture}(0,0)(-160,-155)
283  \includegraphics[width=7cm]{polytypes.eps}
284 \end{picture}
285 \begin{picture}(0,0)(-10,-185)
286  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
287 \end{picture}
288 \begin{picture}(0,0)(-10,-175)
289  {\tiny cubic (twist)}
290 \end{picture}
291 \begin{picture}(0,0)(-60,-175)
292  {\tiny hexagonal (no twist)}
293 \end{picture}
294 \begin{pspicture}(0,0)(0,0)
295 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
296 \end{pspicture}
297 \begin{pspicture}(0,0)(0,0)
298 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
299 \end{pspicture}
300 \begin{pspicture}(0,0)(0,0)
301 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
302 \end{pspicture}
303
304 \end{slide}
305
306 \begin{slide}
307
308  {\large\bf
309   Fabrication of silicon carbide
310  }
311
312  \small
313  
314  \vspace{4pt}
315
316  SiC - \emph{Born from the stars, perfected on earth.}
317  
318  \vspace{4pt}
319
320  Conventional thin film SiC growth:
321  \begin{itemize}
322   \item \underline{Sublimation growth using the modified Lely method}
323         \begin{itemize}
324          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
325          \item Surrounded by polycrystalline SiC in a graphite crucible\\
326                at $T=2100-2400 \, ^{\circ} \text{C}$
327          \item Deposition of supersaturated vapor on cooler seed crystal
328         \end{itemize}
329   \item \underline{Homoepitaxial growth using CVD}
330         \begin{itemize}
331          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
332          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
333          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
334         \end{itemize}
335   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
336         \begin{itemize}
337          \item Two steps: carbonization and growth
338          \item $T=650-1050 \, ^{\circ} \text{C}$
339          \item SiC/Si lattice mismatch $\approx$ 20 \%
340          \item Quality and size not yet sufficient
341         \end{itemize}
342  \end{itemize}
343
344  \begin{picture}(0,0)(-280,-65)
345   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
346  \end{picture}
347  \begin{picture}(0,0)(-280,-55)
348   \begin{minipage}{5cm}
349   {\tiny
350    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
351    on 6H-SiC substrate
352   }
353   \end{minipage}
354  \end{picture}
355  \begin{picture}(0,0)(-265,-150)
356   \includegraphics[width=2.4cm]{m_lely.eps}
357  \end{picture}
358  \begin{picture}(0,0)(-333,-175)
359   \begin{minipage}{5cm}
360   {\tiny
361    1. Lid\\[-7pt]
362    2. Heating\\[-7pt]
363    3. Source\\[-7pt]
364    4. Crucible\\[-7pt]
365    5. Insulation\\[-7pt]
366    6. Seed crystal
367   }
368   \end{minipage}
369  \end{picture}
370  \begin{picture}(0,0)(-230,-35)
371  \framebox{
372  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
373  }
374  \end{picture}
375  \begin{picture}(0,0)(-230,-10)
376  \framebox{
377  \begin{minipage}{3cm}
378  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
379                                less advanced}
380  \end{minipage}
381  }
382  \end{picture}
383
384 \end{slide}
385
386 \begin{slide}
387
388  {\large\bf
389   Fabrication of silicon carbide
390  }
391
392  \small
393
394  Alternative approach:
395  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
396  \begin{itemize}
397   \item \underline{Implantation step 1}\\
398         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
399         $\Rightarrow$ box-like distribution of equally sized
400                        and epitactically oriented SiC precipitates
401                        
402   \item \underline{Implantation step 2}\\
403         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
404         $\Rightarrow$ destruction of SiC nanocrystals
405                       in growing amorphous interface layers
406   \item \underline{Annealing}\\
407         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
408         $\Rightarrow$ homogeneous, stoichiometric SiC layer
409                       with sharp interfaces
410  \end{itemize}
411
412  \begin{minipage}{6.3cm}
413  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
414  {\tiny
415   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
416  }
417  \end{minipage}
418 \framebox{
419  \begin{minipage}{6.3cm}
420  \begin{center}
421  {\color{blue}
422   Precipitation mechanism not yet fully understood!
423  }
424  \renewcommand\labelitemi{$\Rightarrow$}
425  \small
426  \underline{Understanding the SiC precipitation}
427  \begin{itemize}
428   \item significant technological progress in SiC thin film formation
429   \item perspectives for processes relying upon prevention of SiC precipitation
430  \end{itemize}
431  \end{center}
432  \end{minipage}
433 }
434  
435 \end{slide}
436
437
438 \begin{slide}
439
440  {\large\bf
441   Supposed precipitation mechanism of SiC in Si
442  }
443
444  \scriptsize
445
446  \vspace{0.1cm}
447
448  \begin{minipage}{3.8cm}
449  Si \& SiC lattice structure\\[0.2cm]
450  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
451  \hrule
452  \end{minipage}
453  \hspace{0.6cm}
454  \begin{minipage}{3.8cm}
455  \begin{center}
456  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
457  \end{center}
458  \end{minipage}
459  \hspace{0.6cm}
460  \begin{minipage}{3.8cm}
461  \begin{center}
462  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
463  \end{center}
464  \end{minipage}
465
466  \begin{minipage}{4cm}
467  \begin{center}
468  C-Si dimers (dumbbells)\\[-0.1cm]
469  on Si interstitial sites
470  \end{center}
471  \end{minipage}
472  \hspace{0.2cm}
473  \begin{minipage}{4.2cm}
474  \begin{center}
475  Agglomeration of C-Si dumbbells\\[-0.1cm]
476  $\Rightarrow$ dark contrasts
477  \end{center}
478  \end{minipage}
479  \hspace{0.2cm}
480  \begin{minipage}{4cm}
481  \begin{center}
482  Precipitation of 3C-SiC in Si\\[-0.1cm]
483  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
484  \& release of Si self-interstitials
485  \end{center}
486  \end{minipage}
487
488  \begin{minipage}{3.8cm}
489  \begin{center}
490  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
491  \end{center}
492  \end{minipage}
493  \hspace{0.6cm}
494  \begin{minipage}{3.8cm}
495  \begin{center}
496  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
497  \end{center}
498  \end{minipage}
499  \hspace{0.6cm}
500  \begin{minipage}{3.8cm}
501  \begin{center}
502  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
503  \end{center}
504  \end{minipage}
505
506 \begin{pspicture}(0,0)(0,0)
507 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
508 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
509 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
510 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
511 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
512  $4a_{\text{Si}}=5a_{\text{SiC}}$
513  }}}
514 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
515 \hkl(h k l) planes match
516  }}}
517 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
518 r = 2 - 4 nm
519  }}}
520 \end{pspicture}
521
522 \end{slide}
523
524 \begin{slide}
525
526  {\large\bf
527   Supposed precipitation mechanism of SiC in Si
528  }
529
530  \scriptsize
531
532  \vspace{0.1cm}
533
534  \begin{minipage}{3.8cm}
535  Si \& SiC lattice structure\\[0.2cm]
536  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
537  \hrule
538  \end{minipage}
539  \hspace{0.6cm}
540  \begin{minipage}{3.8cm}
541  \begin{center}
542  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
543  \end{center}
544  \end{minipage}
545  \hspace{0.6cm}
546  \begin{minipage}{3.8cm}
547  \begin{center}
548  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
549  \end{center}
550  \end{minipage}
551
552  \begin{minipage}{4cm}
553  \begin{center}
554  C-Si dimers (dumbbells)\\[-0.1cm]
555  on Si interstitial sites
556  \end{center}
557  \end{minipage}
558  \hspace{0.2cm}
559  \begin{minipage}{4.2cm}
560  \begin{center}
561  Agglomeration of C-Si dumbbells\\[-0.1cm]
562  $\Rightarrow$ dark contrasts
563  \end{center}
564  \end{minipage}
565  \hspace{0.2cm}
566  \begin{minipage}{4cm}
567  \begin{center}
568  Precipitation of 3C-SiC in Si\\[-0.1cm]
569  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
570  \& release of Si self-interstitials
571  \end{center}
572  \end{minipage}
573
574  \begin{minipage}{3.8cm}
575  \begin{center}
576  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
577  \end{center}
578  \end{minipage}
579  \hspace{0.6cm}
580  \begin{minipage}{3.8cm}
581  \begin{center}
582  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
583  \end{center}
584  \end{minipage}
585  \hspace{0.6cm}
586  \begin{minipage}{3.8cm}
587  \begin{center}
588  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
589  \end{center}
590  \end{minipage}
591
592 \begin{pspicture}(0,0)(0,0)
593 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
594 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
595 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
596 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
597 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
598  $4a_{\text{Si}}=5a_{\text{SiC}}$
599  }}}
600 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
601 \hkl(h k l) planes match
602  }}}
603 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
604 r = 2 - 4 nm
605  }}}
606 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
607 \begin{minipage}{10cm}
608 \small
609 {\color{red}\bf Controversial views}
610 \begin{itemize}
611 \item Implantations at high T (Nejim et al.)
612  \begin{itemize}
613   \item Topotactic transformation based on \cs
614   \item \si{} as supply reacting with further C in cleared volume
615  \end{itemize}
616 \item Annealing behavior (Serre et al.)
617  \begin{itemize}
618   \item Room temperature implants $\rightarrow$ highly mobile C
619   \item Elevated T implants $\rightarrow$ no/low C redistribution/migration\\
620         (indicate stable \cs{} configurations)
621  \end{itemize}
622 \item Strained silicon \& Si/SiC heterostructures
623  \begin{itemize}
624   \item Coherent SiC precipitates (tensile strain)
625   \item Incoherent SiC (strain relaxation)
626  \end{itemize}
627 \end{itemize}
628 \end{minipage}
629  }}}
630 \end{pspicture}
631
632 \end{slide}
633
634 \begin{slide}
635
636  {\large\bf
637   Molecular dynamics (MD) simulations
638  }
639
640  \vspace{12pt}
641
642  \small
643
644  {\bf MD basics:}
645  \begin{itemize}
646   \item Microscopic description of N particle system
647   \item Analytical interaction potential
648   \item Numerical integration using Newtons equation of motion\\
649         as a propagation rule in 6N-dimensional phase space
650   \item Observables obtained by time and/or ensemble averages
651  \end{itemize}
652  {\bf Details of the simulation:}
653  \begin{itemize}
654   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
655   \item Ensemble: NpT (isothermal-isobaric)
656         \begin{itemize}
657          \item Berendsen thermostat:
658                $\tau_{\text{T}}=100\text{ fs}$
659          \item Berendsen barostat:\\
660                $\tau_{\text{P}}=100\text{ fs}$,
661                $\beta^{-1}=100\text{ GPa}$
662         \end{itemize}
663   \item Erhart/Albe potential: Tersoff-like bond order potential
664   \vspace*{12pt}
665         \[
666         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
667         \pot_{ij} = {\color{red}f_C(r_{ij})}
668         \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
669         \]
670  \end{itemize}
671
672  \begin{picture}(0,0)(-230,-30)
673   \includegraphics[width=5cm]{tersoff_angle.eps} 
674  \end{picture}
675  
676 \end{slide}
677
678 \begin{slide}
679
680  {\large\bf
681   Density functional theory (DFT) calculations
682  }
683
684  \small
685
686  Basic ingredients necessary for DFT
687
688  \begin{itemize}
689   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
690         \begin{itemize}
691          \item ... uniquely determines the ground state potential
692                / wavefunctions
693          \item ... minimizes the systems total energy
694         \end{itemize}
695   \item \underline{Born-Oppenheimer}
696         - $N$ moving electrons in an external potential of static nuclei
697 \[
698 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
699               +\sum_i^N V_{\text{ext}}(r_i)
700               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
701 \]
702   \item \underline{Effective potential}
703         - averaged electrostatic potential \& exchange and correlation
704 \[
705 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
706                  +V_{\text{XC}}[n(r)]
707 \]
708   \item \underline{Kohn-Sham system}
709         - Schr\"odinger equation of N non-interacting particles
710 \[
711 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
712 =\epsilon_i\Phi_i(r)
713 \quad
714 \Rightarrow
715 \quad
716 n(r)=\sum_i^N|\Phi_i(r)|^2
717 \]
718   \item \underline{Self-consistent solution}\\
719 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
720 which in turn depends on $n(r)$
721   \item \underline{Variational principle}
722         - minimize total energy with respect to $n(r)$
723  \end{itemize}
724
725 \end{slide}
726
727 \begin{slide}
728
729  {\large\bf
730   Density functional theory (DFT) calculations
731  }
732
733  \small
734
735  \vspace*{0.2cm}
736
737  Details of applied DFT calculations in this work
738
739  \begin{itemize}
740   \item \underline{Exchange correlation functional}
741         - approximations for the inhomogeneous electron gas
742         \begin{itemize}
743          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
744          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
745         \end{itemize}
746   \item \underline{Plane wave basis set}
747         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
748 \[
749 \rightarrow
750 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
751 \qquad ({\color{blue}300\text{ eV}})
752 \]
753   \item \underline{Brillouin zone sampling} -
754         {\color{blue}$\Gamma$-point only} calculations
755   \item \underline{Pseudo potential} 
756         - consider only the valence electrons
757   \item \underline{Code} - VASP 4.6
758  \end{itemize}
759
760  \vspace*{0.2cm}
761
762  MD and structural optimization
763
764  \begin{itemize}
765   \item MD integration: Gear predictor corrector algorithm
766   \item Pressure control: Parrinello-Rahman pressure control
767   \item Structural optimization: Conjugate gradient method
768  \end{itemize}
769
770 \begin{pspicture}(0,0)(0,0)
771 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
772 \end{pspicture}
773
774 \end{slide}
775
776 \begin{slide}
777
778  {\large\bf
779   C and Si self-interstitial point defects in silicon
780  }
781
782  \small
783
784  \vspace*{0.3cm}
785
786 \begin{minipage}{8cm}
787 Procedure:\\[0.3cm]
788   \begin{pspicture}(0,0)(7,5)
789   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
790    \parbox{7cm}{
791    \begin{itemize}
792     \item Creation of c-Si simulation volume
793     \item Periodic boundary conditions
794     \item $T=0\text{ K}$, $p=0\text{ bar}$
795    \end{itemize}
796   }}}}
797 \rput(3.5,2.1){\rnode{insert}{\psframebox{
798  \parbox{7cm}{
799   \begin{center}
800   Insertion of interstitial C/Si atoms
801   \end{center}
802   }}}}
803   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
804    \parbox{7cm}{
805    \begin{center}
806    Relaxation / structural energy minimization
807    \end{center}
808   }}}}
809   \ncline[]{->}{init}{insert}
810   \ncline[]{->}{insert}{cool}
811  \end{pspicture}
812 \end{minipage}
813 \begin{minipage}{5cm}
814   \includegraphics[width=5cm]{unit_cell_e.eps}\\
815 \end{minipage}
816
817 \begin{minipage}{9cm}
818  \begin{tabular}{l c c}
819  \hline
820  & size [unit cells] & \# atoms\\
821 \hline
822 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
823 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
824 \hline
825  \end{tabular}
826 \end{minipage}
827 \begin{minipage}{4cm}
828 {\color{red}$\bullet$} Tetrahedral\\
829 {\color{green}$\bullet$} Hexagonal\\
830 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
831 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
832 {\color{cyan}$\bullet$} Bond-centered\\
833 {\color{black}$\bullet$} Vacancy / Substitutional
834 \end{minipage}
835
836 \end{slide}
837
838 \begin{slide}
839
840  \footnotesize
841
842 \begin{minipage}{9.5cm}
843
844  {\large\bf
845   Si self-interstitial point defects in silicon\\
846  }
847
848 \begin{tabular}{l c c c c c}
849 \hline
850  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
851 \hline
852  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
853  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
854 \hline
855 \end{tabular}\\[0.2cm]
856
857 \begin{minipage}{4.7cm}
858 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
859 \end{minipage}
860 \begin{minipage}{4.7cm}
861 \begin{center}
862 {\tiny nearly T $\rightarrow$ T}\\
863 \end{center}
864 \includegraphics[width=4.7cm]{nhex_tet.ps}
865 \end{minipage}\\
866
867 \underline{Hexagonal} \hspace{2pt}
868 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
869 \framebox{
870 \begin{minipage}{2.7cm}
871 $E_{\text{f}}^*=4.48\text{ eV}$\\
872 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
873 \end{minipage}
874 \begin{minipage}{0.4cm}
875 \begin{center}
876 $\Rightarrow$
877 \end{center}
878 \end{minipage}
879 \begin{minipage}{2.7cm}
880 $E_{\text{f}}=3.96\text{ eV}$\\
881 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
882 \end{minipage}
883 }
884 \begin{minipage}{2.9cm}
885 \begin{flushright}
886 \underline{Vacancy}\\
887 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
888 \end{flushright}
889 \end{minipage}
890
891 \end{minipage}
892 \begin{minipage}{3.5cm}
893
894 \begin{flushright}
895 \underline{\hkl<1 1 0> dumbbell}\\
896 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
897 \underline{Tetrahedral}\\
898 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
899 \underline{\hkl<1 0 0> dumbbell}\\
900 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
901 \end{flushright}
902
903 \end{minipage}
904
905 \end{slide}
906
907 \begin{slide}
908
909 \footnotesize
910
911  {\large\bf
912   C interstitial point defects in silicon\\[-0.1cm]
913  }
914
915 \begin{tabular}{l c c c c c c r}
916 \hline
917  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
918 \hline
919  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
920  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
921 \hline
922 \end{tabular}\\[0.1cm]
923
924 \framebox{
925 \begin{minipage}{2.7cm}
926 \underline{Hexagonal} \hspace{2pt}
927 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
928 $E_{\text{f}}^*=9.05\text{ eV}$\\
929 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
930 \end{minipage}
931 \begin{minipage}{0.4cm}
932 \begin{center}
933 $\Rightarrow$
934 \end{center}
935 \end{minipage}
936 \begin{minipage}{2.7cm}
937 \underline{\hkl<1 0 0>}\\
938 $E_{\text{f}}=3.88\text{ eV}$\\
939 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
940 \end{minipage}
941 }
942 \begin{minipage}{2cm}
943 \hfill
944 \end{minipage}
945 \begin{minipage}{3cm}
946 \begin{flushright}
947 \underline{Tetrahedral}\\
948 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
949 \end{flushright}
950 \end{minipage}
951
952 \framebox{
953 \begin{minipage}{2.7cm}
954 \underline{Bond-centered}\\
955 $E_{\text{f}}^*=5.59\text{ eV}$\\
956 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
957 \end{minipage}
958 \begin{minipage}{0.4cm}
959 \begin{center}
960 $\Rightarrow$
961 \end{center}
962 \end{minipage}
963 \begin{minipage}{2.7cm}
964 \underline{\hkl<1 1 0> dumbbell}\\
965 $E_{\text{f}}=5.18\text{ eV}$\\
966 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
967 \end{minipage}
968 }
969 \begin{minipage}{2cm}
970 \hfill
971 \end{minipage}
972 \begin{minipage}{3cm}
973 \begin{flushright}
974 \underline{Substitutional}\\
975 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
976 \end{flushright}
977 \end{minipage}
978
979 \end{slide}
980
981 \begin{slide}
982
983 \footnotesize
984
985  {\large\bf\boldmath
986   C \hkl<1 0 0> dumbbell interstitial configuration\\
987  }
988
989 {\tiny
990 \begin{tabular}{l c c c c c c c c}
991 \hline
992  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
993 \hline
994 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
995 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
996 \hline
997 \end{tabular}\\[0.2cm]
998 \begin{tabular}{l c c c c }
999 \hline
1000  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
1001 \hline
1002 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
1003 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
1004 \hline
1005 \end{tabular}\\[0.2cm]
1006 \begin{tabular}{l c c c}
1007 \hline
1008  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
1009 \hline
1010 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
1011 VASP & 0.109 & -0.065 & 0.174 \\
1012 \hline
1013 \end{tabular}\\[0.6cm]
1014 }
1015
1016 \begin{minipage}{3.0cm}
1017 \begin{center}
1018 \underline{Erhart/Albe}
1019 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
1020 \end{center}
1021 \end{minipage}
1022 \begin{minipage}{3.0cm}
1023 \begin{center}
1024 \underline{VASP}
1025 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
1026 \end{center}
1027 \end{minipage}\\
1028
1029 \begin{picture}(0,0)(-185,10)
1030 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
1031 \end{picture}
1032 \begin{picture}(0,0)(-280,-150)
1033 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
1034 \end{picture}
1035
1036 \begin{pspicture}(0,0)(0,0)
1037 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
1038 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
1039 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
1040 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
1041 \end{pspicture}
1042
1043 \end{slide}
1044
1045 \begin{slide}
1046
1047 \small
1048
1049 \begin{minipage}{8.5cm}
1050
1051  {\large\bf
1052   Bond-centered interstitial configuration\\[-0.1cm]
1053  }
1054
1055 \begin{minipage}{3.0cm}
1056 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1057 \end{minipage}
1058 \begin{minipage}{5.2cm}
1059 \begin{itemize}
1060  \item Linear Si-C-Si bond
1061  \item Si: one C \& 3 Si neighbours
1062  \item Spin polarized calculations
1063  \item No saddle point!\\
1064        Real local minimum!
1065 \end{itemize}
1066 \end{minipage}
1067
1068 \framebox{
1069  \tiny
1070  \begin{minipage}[t]{6.5cm}
1071   \begin{minipage}[t]{1.2cm}
1072   {\color{red}Si}\\
1073   {\tiny sp$^3$}\\[0.8cm]
1074   \underline{${\color{black}\uparrow}$}
1075   \underline{${\color{black}\uparrow}$}
1076   \underline{${\color{black}\uparrow}$}
1077   \underline{${\color{red}\uparrow}$}\\
1078   sp$^3$
1079   \end{minipage}
1080   \begin{minipage}[t]{1.4cm}
1081   \begin{center}
1082   {\color{red}M}{\color{blue}O}\\[0.8cm]
1083   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1084   $\sigma_{\text{ab}}$\\[0.5cm]
1085   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1086   $\sigma_{\text{b}}$
1087   \end{center}
1088   \end{minipage}
1089   \begin{minipage}[t]{1.0cm}
1090   \begin{center}
1091   {\color{blue}C}\\
1092   {\tiny sp}\\[0.2cm]
1093   \underline{${\color{white}\uparrow\uparrow}$}
1094   \underline{${\color{white}\uparrow\uparrow}$}\\
1095   2p\\[0.4cm]
1096   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1097   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1098   sp
1099   \end{center}
1100   \end{minipage}
1101   \begin{minipage}[t]{1.4cm}
1102   \begin{center}
1103   {\color{blue}M}{\color{green}O}\\[0.8cm]
1104   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1105   $\sigma_{\text{ab}}$\\[0.5cm]
1106   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1107   $\sigma_{\text{b}}$
1108   \end{center}
1109   \end{minipage}
1110   \begin{minipage}[t]{1.2cm}
1111   \begin{flushright}
1112   {\color{green}Si}\\
1113   {\tiny sp$^3$}\\[0.8cm]
1114   \underline{${\color{green}\uparrow}$}
1115   \underline{${\color{black}\uparrow}$}
1116   \underline{${\color{black}\uparrow}$}
1117   \underline{${\color{black}\uparrow}$}\\
1118   sp$^3$
1119   \end{flushright}
1120   \end{minipage}
1121  \end{minipage}
1122 }\\[0.1cm]
1123
1124 \framebox{
1125 \begin{minipage}{4.5cm}
1126 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1127 \end{minipage}
1128 \begin{minipage}{3.5cm}
1129 {\color{gray}$\bullet$} Spin up\\
1130 {\color{green}$\bullet$} Spin down\\
1131 {\color{blue}$\bullet$} Resulting spin up\\
1132 {\color{yellow}$\bullet$} Si atoms\\
1133 {\color{red}$\bullet$} C atom
1134 \end{minipage}
1135 }
1136
1137 \end{minipage}
1138 \begin{minipage}{4.2cm}
1139 \begin{flushright}
1140 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1141 {\color{green}$\Box$} {\tiny unoccupied}\\
1142 {\color{red}$\bullet$} {\tiny occupied}
1143 \end{flushright}
1144 \end{minipage}
1145
1146 \end{slide}
1147
1148 \begin{slide}
1149
1150  {\large\bf\boldmath
1151   Migration of the C \hkl<1 0 0> dumbbell interstitial
1152  }
1153
1154 \scriptsize
1155
1156  {\small Investigated pathways}
1157
1158 \begin{minipage}{8.5cm}
1159 \begin{minipage}{8.3cm}
1160 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1161 \begin{minipage}{2.4cm}
1162 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1163 \end{minipage}
1164 \begin{minipage}{0.4cm}
1165 $\rightarrow$
1166 \end{minipage}
1167 \begin{minipage}{2.4cm}
1168 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1169 \end{minipage}
1170 \begin{minipage}{0.4cm}
1171 $\rightarrow$
1172 \end{minipage}
1173 \begin{minipage}{2.4cm}
1174 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1175 \end{minipage}
1176 \end{minipage}\\
1177 \begin{minipage}{8.3cm}
1178 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1179 \begin{minipage}{2.4cm}
1180 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1181 \end{minipage}
1182 \begin{minipage}{0.4cm}
1183 $\rightarrow$
1184 \end{minipage}
1185 \begin{minipage}{2.4cm}
1186 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1187 \end{minipage}
1188 \begin{minipage}{0.4cm}
1189 $\rightarrow$
1190 \end{minipage}
1191 \begin{minipage}{2.4cm}
1192 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1193 \end{minipage}
1194 \end{minipage}\\
1195 \begin{minipage}{8.3cm}
1196 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1197 \begin{minipage}{2.4cm}
1198 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1199 \end{minipage}
1200 \begin{minipage}{0.4cm}
1201 $\rightarrow$
1202 \end{minipage}
1203 \begin{minipage}{2.4cm}
1204 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1205 \end{minipage}
1206 \begin{minipage}{0.4cm}
1207 $\rightarrow$
1208 \end{minipage}
1209 \begin{minipage}{2.4cm}
1210 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1211 \end{minipage}
1212 \end{minipage}
1213 \end{minipage}
1214 \framebox{
1215 \begin{minipage}{4.2cm}
1216  {\small Constrained relaxation\\
1217          technique (CRT) method}\\
1218 \includegraphics[width=4cm]{crt_orig.eps}
1219 \begin{itemize}
1220  \item Constrain diffusing atom
1221  \item Static constraints 
1222 \end{itemize}
1223 \vspace*{0.3cm}
1224  {\small Modifications}\\
1225 \includegraphics[width=4cm]{crt_mod.eps}
1226 \begin{itemize}
1227  \item Constrain all atoms
1228  \item Update individual\\
1229        constraints
1230 \end{itemize}
1231 \end{minipage}
1232 }
1233
1234 \end{slide}
1235
1236 \begin{slide}
1237
1238  {\large\bf\boldmath
1239   Migration of the C \hkl<1 0 0> dumbbell interstitial
1240  }
1241
1242 \scriptsize
1243
1244 \framebox{
1245 \begin{minipage}{5.9cm}
1246 \begin{flushleft}
1247 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1248 \end{flushleft}
1249 \begin{center}
1250 \begin{picture}(0,0)(60,0)
1251 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1252 \end{picture}
1253 \begin{picture}(0,0)(-5,0)
1254 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1255 \end{picture}
1256 \begin{picture}(0,0)(-55,0)
1257 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1258 \end{picture}
1259 \begin{picture}(0,0)(12.5,10)
1260 \includegraphics[width=1cm]{110_arrow.eps}
1261 \end{picture}
1262 \begin{picture}(0,0)(90,0)
1263 \includegraphics[height=0.9cm]{001_arrow.eps}
1264 \end{picture}
1265 \end{center}
1266 \vspace*{0.35cm}
1267 \end{minipage}
1268 }
1269 \begin{minipage}{0.3cm}
1270 \hfill
1271 \end{minipage}
1272 \framebox{
1273 \begin{minipage}{5.9cm}
1274 \begin{flushright}
1275 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1276 \end{flushright}
1277 \begin{center}
1278 \begin{picture}(0,0)(60,0)
1279 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1280 \end{picture}
1281 \begin{picture}(0,0)(5,0)
1282 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1283 \end{picture}
1284 \begin{picture}(0,0)(-55,0)
1285 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1286 \end{picture}
1287 \begin{picture}(0,0)(12.5,10)
1288 \includegraphics[width=1cm]{100_arrow.eps}
1289 \end{picture}
1290 \begin{picture}(0,0)(90,0)
1291 \includegraphics[height=0.9cm]{001_arrow.eps}
1292 \end{picture}
1293 \end{center}
1294 \vspace*{0.3cm}
1295 \end{minipage}\\
1296 }
1297
1298 \vspace*{0.05cm}
1299
1300 \framebox{
1301 \begin{minipage}{5.9cm}
1302 \begin{flushleft}
1303 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1304 \end{flushleft}
1305 \begin{center}
1306 \begin{picture}(0,0)(60,0)
1307 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1308 \end{picture}
1309 \begin{picture}(0,0)(10,0)
1310 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1311 \end{picture}
1312 \begin{picture}(0,0)(-60,0)
1313 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1314 \end{picture}
1315 \begin{picture}(0,0)(12.5,10)
1316 \includegraphics[width=1cm]{100_arrow.eps}
1317 \end{picture}
1318 \begin{picture}(0,0)(90,0)
1319 \includegraphics[height=0.9cm]{001_arrow.eps}
1320 \end{picture}
1321 \end{center}
1322 \vspace*{0.3cm}
1323 \end{minipage}
1324 }
1325 \begin{minipage}{0.3cm}
1326 \hfill
1327 \end{minipage}
1328 \begin{minipage}{6.5cm}
1329 VASP results
1330 \begin{itemize}
1331  \item Energetically most favorable path
1332        \begin{itemize}
1333         \item Path 2
1334         \item Activation energy: $\approx$ 0.9 eV 
1335         \item Experimental values: 0.73 ... 0.87 eV
1336        \end{itemize}
1337        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1338  \item Reorientation (path 3)
1339        \begin{itemize}
1340         \item More likely composed of two consecutive steps of type 2
1341         \item Experimental values: 0.77 ... 0.88 eV
1342        \end{itemize}
1343        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1344 \end{itemize}
1345 \end{minipage}
1346
1347 \end{slide}
1348
1349 \begin{slide}
1350
1351  {\large\bf\boldmath
1352   Migration of the C \hkl<1 0 0> dumbbell interstitial
1353  }
1354
1355 \scriptsize
1356
1357  \vspace{0.1cm}
1358
1359 \begin{minipage}{6.5cm}
1360
1361 \framebox{
1362 \begin{minipage}[t]{5.9cm}
1363 \begin{flushleft}
1364 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1365 \end{flushleft}
1366 \begin{center}
1367 \begin{pspicture}(0,0)(0,0)
1368 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1369 \end{pspicture}
1370 \begin{picture}(0,0)(60,-50)
1371 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1372 \end{picture}
1373 \begin{picture}(0,0)(5,-50)
1374 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1375 \end{picture}
1376 \begin{picture}(0,0)(-55,-50)
1377 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1378 \end{picture}
1379 \begin{picture}(0,0)(12.5,-40)
1380 \includegraphics[width=1cm]{110_arrow.eps}
1381 \end{picture}
1382 \begin{picture}(0,0)(90,-45)
1383 \includegraphics[height=0.9cm]{001_arrow.eps}
1384 \end{picture}\\
1385 \begin{pspicture}(0,0)(0,0)
1386 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1387 \end{pspicture}
1388 \begin{picture}(0,0)(60,-15)
1389 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1390 \end{picture}
1391 \begin{picture}(0,0)(35,-15)
1392 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1393 \end{picture}
1394 \begin{picture}(0,0)(-5,-15)
1395 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1396 \end{picture}
1397 \begin{picture}(0,0)(-55,-15)
1398 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1399 \end{picture}
1400 \begin{picture}(0,0)(12.5,-5)
1401 \includegraphics[width=1cm]{100_arrow.eps}
1402 \end{picture}
1403 \begin{picture}(0,0)(90,-15)
1404 \includegraphics[height=0.9cm]{010_arrow.eps}
1405 \end{picture}
1406 \end{center}
1407 \end{minipage}
1408 }\\[0.1cm]
1409
1410 \begin{minipage}{5.9cm}
1411 Erhart/Albe results
1412 \begin{itemize}
1413  \item Lowest activation energy: $\approx$ 2.2 eV
1414  \item 2.4 times higher than VASP
1415  \item Different pathway
1416 \end{itemize}
1417 \end{minipage}
1418
1419 \end{minipage}
1420 \begin{minipage}{6.5cm}
1421
1422 \framebox{
1423 \begin{minipage}{5.9cm}
1424 %\begin{flushright}
1425 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1426 %\end{flushright}
1427 %\begin{center}
1428 %\begin{pspicture}(0,0)(0,0)
1429 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1430 %\end{pspicture}
1431 %\begin{picture}(0,0)(60,-5)
1432 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1433 %\end{picture}
1434 %\begin{picture}(0,0)(0,-5)
1435 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1436 %\end{picture}
1437 %\begin{picture}(0,0)(-55,-5)
1438 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1439 %\end{picture}
1440 %\begin{picture}(0,0)(12.5,5)
1441 %\includegraphics[width=1cm]{100_arrow.eps}
1442 %\end{picture}
1443 %\begin{picture}(0,0)(90,0)
1444 %\includegraphics[height=0.9cm]{001_arrow.eps}
1445 %\end{picture}
1446 %\end{center}
1447 %\vspace{0.2cm}
1448 %\end{minipage}
1449 %}\\[0.2cm]
1450 %
1451 %\framebox{
1452 %\begin{minipage}{5.9cm}
1453 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1454 \end{minipage}
1455 }\\[0.1cm]
1456
1457 \begin{minipage}{5.9cm}
1458 Transition involving \ci{} \hkl<1 1 0>
1459 \begin{itemize}
1460  \item Bond-centered configuration unstable\\
1461        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1462  \item Transition minima of path 2 \& 3\\
1463        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1464  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1465  \item 2.4 - 3.4 times higher than VASP
1466  \item Rotation of dumbbell orientation
1467 \end{itemize}
1468 \vspace{0.1cm}
1469 \begin{center}
1470 {\color{blue}Overestimated diffusion barrier}
1471 \end{center}
1472 \end{minipage}
1473
1474 \end{minipage}
1475
1476 \end{slide}
1477
1478 \begin{slide}
1479
1480  {\large\bf\boldmath
1481   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1482  }
1483
1484 \small
1485
1486 \vspace*{0.1cm}
1487
1488 Binding energy: 
1489 $
1490 E_{\text{b}}=
1491 E_{\text{f}}^{\text{defect combination}}-
1492 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1493 E_{\text{f}}^{\text{2nd defect}}
1494 $
1495
1496 \vspace*{0.1cm}
1497
1498 {\scriptsize
1499 \begin{tabular}{l c c c c c c}
1500 \hline
1501  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1502  \hline
1503  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1504  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1505  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1506  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1507  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1508  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1509  \hline
1510  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1511  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1512 \hline
1513 \end{tabular}
1514 }
1515
1516 \vspace*{0.3cm}
1517
1518 \footnotesize
1519
1520 \begin{minipage}[t]{3.8cm}
1521 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1522 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1523 \end{minipage}
1524 \begin{minipage}[t]{3.5cm}
1525 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1526 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1527 \end{minipage}
1528 \begin{minipage}[t]{5.5cm}
1529 \begin{itemize}
1530  \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
1531        $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1532  \item Stress compensation / increase
1533  \item Unfavored: antiparallel orientations
1534  \item Indication of energetically favored\\
1535        agglomeration
1536  \item Most favorable: C clustering
1537  \item However: High barrier ($>4\,\text{eV}$)
1538  \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
1539        (Entropy)
1540 \end{itemize}
1541 \end{minipage}
1542
1543 \begin{picture}(0,0)(-295,-130)
1544 \includegraphics[width=3.5cm]{comb_pos.eps}
1545 \end{picture}
1546
1547 \end{slide}
1548
1549 \begin{slide}
1550
1551  {\large\bf\boldmath
1552   Combinations of C-Si \hkl<1 0 0>-type interstitials
1553  }
1554
1555 \small
1556
1557 \vspace*{0.1cm}
1558
1559 Energetically most favorable combinations along \hkl<1 1 0>
1560
1561 \vspace*{0.1cm}
1562
1563 {\scriptsize
1564 \begin{tabular}{l c c c c c c}
1565 \hline
1566  & 1 & 2 & 3 & 4 & 5 & 6\\
1567 \hline
1568 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1569 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1570 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1571 \hline
1572 \end{tabular}
1573 }
1574
1575 \vspace*{0.3cm}
1576
1577 \begin{minipage}{7.0cm}
1578 \includegraphics[width=7cm]{db_along_110_cc.ps}
1579 \end{minipage}
1580 \begin{minipage}{6.0cm}
1581 \begin{itemize}
1582  \item Interaction proportional to reciprocal cube of C-C distance
1583  \item Saturation in the immediate vicinity
1584  \renewcommand\labelitemi{$\Rightarrow$}
1585  \item Agglomeration of \ci{} expected
1586  \item Absence of C clustering
1587 \end{itemize}
1588 \begin{center}
1589 {\color{blue}
1590  Consisten with initial precipitation model
1591 }
1592 \end{center}
1593 \end{minipage}
1594
1595 \vspace{0.2cm}
1596
1597 \end{slide}
1598
1599 \begin{slide}
1600
1601  {\large\bf\boldmath
1602   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1603  }
1604
1605  \scriptsize
1606
1607 %\begin{center}
1608 %\begin{minipage}{3.2cm}
1609 %\includegraphics[width=3cm]{sub_110_combo.eps}
1610 %\end{minipage}
1611 %\begin{minipage}{7.8cm}
1612 %\begin{tabular}{l c c c c c c}
1613 %\hline
1614 %C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1615 %                   \hkl<1 0 1> & \hkl<-1 0 1> \\
1616 %\hline
1617 %1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1618 %2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1619 %3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1620 %4 & \RM{4} & B & D & E & E & D \\
1621 %5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1622 %\hline
1623 %\end{tabular}
1624 %\end{minipage}
1625 %\end{center}
1626
1627 %\begin{center}
1628 %\begin{tabular}{l c c c c c c c c c c}
1629 %\hline
1630 %Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1631 %\hline
1632 %$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1633 %$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1634 %$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1635 %\hline
1636 %\end{tabular}
1637 %\end{center}
1638
1639 \begin{minipage}{6.0cm}
1640 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1641 \end{minipage}
1642 \begin{minipage}{7cm}
1643 \scriptsize
1644 \begin{itemize}
1645  \item IBS: C may displace Si\\
1646        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1647  \item Assumption:\\
1648        \hkl<1 1 0>-type $\rightarrow$ favored combination
1649  \renewcommand\labelitemi{$\Rightarrow$}
1650  \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
1651  \item Less favorable than C-Si \hkl<1 0 0> dumbbell
1652  \item Interaction drops quickly to zero\\
1653        $\rightarrow$ low capture radius
1654 \end{itemize}
1655 \begin{center}
1656  {\color{blue}
1657  IBS process far from equilibrium\\
1658  \cs{} \& \si{} instead of thermodynamic ground state
1659  }
1660 \end{center}
1661 \end{minipage}
1662
1663 \begin{minipage}{6.5cm}
1664 \includegraphics[width=6.0cm]{162-097.ps}
1665 \begin{itemize}
1666  \item Low migration barrier
1667 \end{itemize}
1668 \end{minipage}
1669 \begin{minipage}{6.5cm}
1670 \begin{center}
1671 Ab initio MD at \degc{900}\\
1672 \includegraphics[width=3.3cm]{md_vasp_01.eps}
1673 $t=\unit[2230]{fs}$\\
1674 \includegraphics[width=3.3cm]{md_vasp_02.eps}
1675 $t=\unit[2900]{fs}$
1676 \end{center}
1677 {\color{blue}
1678 Contribution of entropy to structural formation
1679 }
1680 \end{minipage}
1681
1682 \end{slide}
1683
1684 \begin{slide}
1685
1686  {\large\bf\boldmath
1687   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1688  }
1689
1690  \footnotesize
1691
1692 \vspace{0.1cm}
1693
1694 \begin{minipage}[t]{3cm}
1695 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1696 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1697 \end{minipage}
1698 \begin{minipage}[t]{7cm}
1699 \vspace{0.2cm}
1700 \begin{center}
1701  Low activation energies\\
1702  High activation energies for reverse processes\\
1703  $\Downarrow$\\
1704  {\color{blue}C$_{\text{sub}}$ very stable}\\
1705 \vspace*{0.1cm}
1706  \hrule
1707 \vspace*{0.1cm}
1708  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1709  $\Downarrow$\\
1710  {\color{blue}Formation of SiC by successive substitution by C}
1711
1712 \end{center}
1713 \end{minipage}
1714 \begin{minipage}[t]{3cm}
1715 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1716 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1717 \end{minipage}
1718
1719
1720 \framebox{
1721 \begin{minipage}{5.9cm}
1722 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1723 \begin{center}
1724 \begin{picture}(0,0)(70,0)
1725 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1726 \end{picture}
1727 \begin{picture}(0,0)(30,0)
1728 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1729 \end{picture}
1730 \begin{picture}(0,0)(-10,0)
1731 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1732 \end{picture}
1733 \begin{picture}(0,0)(-48,0)
1734 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1735 \end{picture}
1736 \begin{picture}(0,0)(12.5,5)
1737 \includegraphics[width=1cm]{100_arrow.eps}
1738 \end{picture}
1739 \begin{picture}(0,0)(97,-10)
1740 \includegraphics[height=0.9cm]{001_arrow.eps}
1741 \end{picture}
1742 \end{center}
1743 \vspace{0.1cm}
1744 \end{minipage}
1745 }
1746 \begin{minipage}{0.3cm}
1747 \hfill
1748 \end{minipage}
1749 \framebox{
1750 \begin{minipage}{5.9cm}
1751 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1752 \begin{center}
1753 \begin{picture}(0,0)(60,0)
1754 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1755 \end{picture}
1756 \begin{picture}(0,0)(25,0)
1757 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1758 \end{picture}
1759 \begin{picture}(0,0)(-20,0)
1760 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1761 \end{picture}
1762 \begin{picture}(0,0)(-55,0)
1763 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1764 \end{picture}
1765 \begin{picture}(0,0)(12.5,5)
1766 \includegraphics[width=1cm]{100_arrow.eps}
1767 \end{picture}
1768 \begin{picture}(0,0)(95,0)
1769 \includegraphics[height=0.9cm]{001_arrow.eps}
1770 \end{picture}
1771 \end{center}
1772 \vspace{0.1cm}
1773 \end{minipage}
1774 }
1775
1776 \end{slide}
1777
1778 \begin{slide}
1779
1780  {\large\bf
1781   Conclusion of defect / migration / combined defect simulations
1782  }
1783
1784  \footnotesize
1785
1786 \vspace*{0.1cm}
1787
1788 Defect structures
1789 \begin{itemize}
1790  \item Accurately described by quantum-mechanical simulations
1791  \item Less accurate description by classical potential simulations
1792  \item Underestimated formation energy of \cs{} by classical approach
1793  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
1794 \end{itemize}
1795
1796 Migration
1797 \begin{itemize}
1798  \item C migration pathway in Si identified
1799  \item Consistent with reorientation and diffusion experiments
1800 \end{itemize} 
1801 \begin{itemize}
1802  \item Different path and ...
1803  \item overestimated barrier by classical potential calculations
1804 \end{itemize} 
1805
1806 Concerning the precipitation mechanism
1807 \begin{itemize}
1808  \item Agglomeration of C-Si dumbbells energetically favorable
1809        (stress compensation)
1810  \item C-Si indeed favored compared to
1811        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1812  \item Possible low interaction capture radius of
1813        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1814  \item Low barrier for
1815        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
1816  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1817        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1818 \end{itemize} 
1819 \begin{center}
1820 {\color{blue}Results suggest increased participation of \cs}
1821 \end{center}
1822
1823 \end{slide}
1824
1825 \begin{slide}
1826
1827  {\large\bf
1828   Silicon carbide precipitation simulations
1829  }
1830
1831  \small
1832
1833 {\scriptsize
1834  \begin{pspicture}(0,0)(12,6.5)
1835   % nodes
1836   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1837    \parbox{7cm}{
1838    \begin{itemize}
1839     \item Create c-Si volume
1840     \item Periodc boundary conditions
1841     \item Set requested $T$ and $p=0\text{ bar}$
1842     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1843    \end{itemize}
1844   }}}}
1845   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1846    \parbox{7cm}{
1847    Insertion of C atoms at constant T
1848    \begin{itemize}
1849     \item total simulation volume {\pnode{in1}}
1850     \item volume of minimal SiC precipitate {\pnode{in2}}
1851     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1852           precipitate
1853    \end{itemize} 
1854   }}}}
1855   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1856    \parbox{7.0cm}{
1857    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1858   }}}}
1859   \ncline[]{->}{init}{insert}
1860   \ncline[]{->}{insert}{cool}
1861   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1862   \rput(7.8,6){\footnotesize $V_1$}
1863   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1864   \rput(9.2,4.85){\tiny $V_2$}
1865   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1866   \rput(9.55,4.45){\footnotesize $V_3$}
1867   \rput(7.9,3.2){\pnode{ins1}}
1868   \rput(9.22,2.8){\pnode{ins2}}
1869   \rput(11.0,2.4){\pnode{ins3}}
1870   \ncline[]{->}{in1}{ins1}
1871   \ncline[]{->}{in2}{ins2}
1872   \ncline[]{->}{in3}{ins3}
1873  \end{pspicture}
1874 }
1875
1876 \begin{itemize}
1877  \item Restricted to classical potential simulations
1878  \item $V_2$ and $V_3$ considered due to low diffusion
1879  \item Amount of C atoms: 6000
1880        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1881  \item Simulation volume: $31\times 31\times 31$ unit cells
1882        (238328 Si atoms)
1883 \end{itemize}
1884
1885 \end{slide}
1886
1887 \begin{slide}
1888
1889  {\large\bf\boldmath
1890   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1891  }
1892
1893  \small
1894
1895 \begin{minipage}{6.5cm}
1896 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1897 \end{minipage} 
1898 \begin{minipage}{6.5cm}
1899 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1900 \end{minipage} 
1901
1902 \begin{minipage}{6.5cm}
1903 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1904 \end{minipage} 
1905 \begin{minipage}{6.5cm}
1906 \scriptsize
1907 \underline{Low C concentration ($V_1$)}\\
1908 \hkl<1 0 0> C-Si dumbbell dominated structure
1909 \begin{itemize}
1910  \item Si-C bumbs around 0.19 nm
1911  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1912        concatenated dumbbells of various orientation
1913  \item Si-Si NN distance stretched to 0.3 nm
1914 \end{itemize}
1915 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1916 \underline{High C concentration ($V_2$, $V_3$)}\\
1917 High amount of strongly bound C-C bonds\\
1918 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1919 Only short range order observable\\
1920 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1921 \end{minipage} 
1922
1923 \end{slide}
1924
1925 \begin{slide}
1926
1927  {\large\bf\boldmath
1928   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1929  }
1930
1931  \small
1932
1933 \begin{minipage}{6.5cm}
1934 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1935 \end{minipage} 
1936 \begin{minipage}{6.5cm}
1937 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1938 \end{minipage} 
1939
1940 \begin{minipage}{6.5cm}
1941 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1942 \end{minipage} 
1943 \begin{minipage}{6.5cm}
1944 \scriptsize
1945 \underline{Low C concentration ($V_1$)}\\
1946 \hkl<1 0 0> C-Si dumbbell dominated structure
1947 \begin{itemize}
1948  \item Si-C bumbs around 0.19 nm
1949  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1950        concatenated dumbbells of various orientation
1951  \item Si-Si NN distance stretched to 0.3 nm
1952 \end{itemize}
1953 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1954 \underline{High C concentration ($V_2$, $V_3$)}\\
1955 High amount of strongly bound C-C bonds\\
1956 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1957 Only short range order observable\\
1958 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1959 \end{minipage} 
1960
1961 \begin{pspicture}(0,0)(0,0)
1962 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
1963 \begin{minipage}{10cm}
1964 \small
1965 {\color{red}\bf 3C-SiC formation fails to appear}
1966 \begin{itemize}
1967 \item Low C concentration simulations
1968  \begin{itemize}
1969   \item Formation of \ci{} indeed occurs
1970   \item Agllomeration not observed
1971  \end{itemize}
1972 \item High C concentration simulations
1973  \begin{itemize}
1974   \item Amorphous SiC-like structure\\
1975         (not expected at prevailing temperatures)
1976   \item Rearrangement and transition into 3C-SiC structure missing
1977  \end{itemize}
1978 \end{itemize}
1979 \end{minipage}
1980  }}}
1981 \end{pspicture}
1982
1983 \end{slide}
1984
1985 \begin{slide}
1986
1987  {\large\bf
1988   Limitations of molecular dynamics and short range potentials
1989  }
1990
1991 \footnotesize
1992
1993 \vspace{0.2cm}
1994
1995 \underline{Time scale problem of MD}\\[0.2cm]
1996 Minimize integration error\\
1997 $\Rightarrow$ discretization considerably smaller than
1998               reciprocal of fastest vibrational mode\\[0.1cm]
1999 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
2000 $\Rightarrow$ suitable choice of time step:
2001               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
2002 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
2003 Several local minima in energy surface separated by large energy barriers\\
2004 $\Rightarrow$ transition event corresponds to a multiple
2005               of vibrational periods\\
2006 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
2007               infrequent transition events\\[0.1cm]
2008 {\color{blue}Accelerated methods:}
2009 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
2010
2011 \vspace{0.3cm}
2012
2013 \underline{Limitations related to the short range potential}\\[0.2cm]
2014 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
2015 and 2$^{\text{nd}}$ next neighbours\\
2016 $\Rightarrow$ overestimated unphysical high forces of next neighbours
2017
2018 \vspace{0.3cm}
2019
2020 \framebox{
2021 \color{red}
2022 Potential enhanced problem of slow phase space propagation
2023 }
2024
2025 \vspace{0.3cm}
2026
2027 \underline{Approach to the (twofold) problem}\\[0.2cm]
2028 Increased temperature simulations without TAD corrections\\
2029 (accelerated methods or higher time scales exclusively not sufficient)
2030
2031 \begin{picture}(0,0)(-260,-30)
2032 \framebox{
2033 \begin{minipage}{4.2cm}
2034 \tiny
2035 \begin{center}
2036 \vspace{0.03cm}
2037 \underline{IBS}
2038 \end{center}
2039 \begin{itemize}
2040 \item 3C-SiC also observed for higher T
2041 \item higher T inside sample
2042 \item structural evolution vs.\\
2043       equilibrium properties
2044 \end{itemize}
2045 \end{minipage}
2046 }
2047 \end{picture}
2048
2049 \begin{picture}(0,0)(-305,-155)
2050 \framebox{
2051 \begin{minipage}{2.5cm}
2052 \tiny
2053 \begin{center}
2054 retain proper\\
2055 thermodynmic sampling
2056 \end{center}
2057 \end{minipage}
2058 }
2059 \end{picture}
2060
2061 \end{slide}
2062
2063 \begin{slide}
2064
2065  {\large\bf
2066   Increased temperature simulations at low C concentration
2067  }
2068
2069 \small
2070
2071 \begin{minipage}{6.5cm}
2072 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2073 \end{minipage}
2074 \begin{minipage}{6.5cm}
2075 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2076 \end{minipage}
2077
2078 \begin{minipage}{6.5cm}
2079 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2080 \end{minipage}
2081 \begin{minipage}{6.5cm}
2082 \scriptsize
2083  \underline{Si-C bonds:}
2084  \begin{itemize}
2085   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2086   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2087  \end{itemize}
2088  \underline{Si-Si bonds:}
2089  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2090  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2091  \underline{C-C bonds:}
2092  \begin{itemize}
2093   \item C-C next neighbour pairs reduced (mandatory)
2094   \item Peak at 0.3 nm slightly shifted
2095         \begin{itemize}
2096          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2097                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2098                combinations (|)\\
2099                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2100                ($\downarrow$)
2101          \item Range [|-$\downarrow$]:
2102                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2103                with nearby Si$_{\text{I}}$}
2104         \end{itemize}
2105  \end{itemize}
2106 \end{minipage}
2107
2108 \begin{picture}(0,0)(-330,-74)
2109 \color{blue}
2110 \framebox{
2111 \begin{minipage}{1.6cm}
2112 \tiny
2113 \begin{center}
2114 stretched SiC\\[-0.1cm]
2115 in c-Si
2116 \end{center}
2117 \end{minipage}
2118 }
2119 \end{picture}
2120
2121 \end{slide}
2122
2123 \begin{slide}
2124
2125  {\large\bf
2126   Increased temperature simulations at low C concentration
2127  }
2128
2129 \small
2130
2131 \begin{minipage}{6.5cm}
2132 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2133 \end{minipage}
2134 \begin{minipage}{6.5cm}
2135 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2136 \end{minipage}
2137
2138 \begin{minipage}{6.5cm}
2139 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2140 \end{minipage}
2141 \begin{minipage}{6.5cm}
2142 \scriptsize
2143  \underline{Si-C bonds:}
2144  \begin{itemize}
2145   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2146   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2147  \end{itemize}
2148  \underline{Si-Si bonds:}
2149  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2150  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2151  \underline{C-C bonds:}
2152  \begin{itemize}
2153   \item C-C next neighbour pairs reduced (mandatory)
2154   \item Peak at 0.3 nm slightly shifted
2155         \begin{itemize}
2156          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2157                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2158                combinations (|)\\
2159                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2160                ($\downarrow$)
2161          \item Range [|-$\downarrow$]:
2162                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2163                with nearby Si$_{\text{I}}$}
2164         \end{itemize}
2165  \end{itemize}
2166 \end{minipage}
2167
2168 %\begin{picture}(0,0)(-330,-74)
2169 %\color{blue}
2170 %\framebox{
2171 %\begin{minipage}{1.6cm}
2172 %\tiny
2173 %\begin{center}
2174 %stretched SiC\\[-0.1cm]
2175 %in c-Si
2176 %\end{center}
2177 %\end{minipage}
2178 %}
2179 %\end{picture}
2180
2181 \begin{pspicture}(0,0)(0,0)
2182 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2183 \begin{minipage}{10cm}
2184 \small
2185 {\color{blue}\bf Stretched SiC in c-Si}
2186 \begin{itemize}
2187 \item Consistent to precipitation model involving \cs{}
2188 \item Explains annealing behavior of high/low T C implants
2189       \begin{itemize}
2190        \item Low T: highly mobiel \ci{}
2191        \item High T: stable configurations of \cs{}
2192       \end{itemize}
2193 \end{itemize}
2194 $\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2195 $\Rightarrow$ Precipitation mechanism involving \cs{}
2196 \end{minipage}
2197  }}}
2198 \end{pspicture}
2199
2200 \end{slide}
2201
2202 \begin{slide}
2203
2204  {\large\bf
2205   Increased temperature simulations at high C concentration
2206  }
2207
2208 \footnotesize
2209
2210 \begin{minipage}{6.5cm}
2211 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2212 \end{minipage}
2213 \begin{minipage}{6.5cm}
2214 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2215 \end{minipage}
2216
2217 \vspace{0.1cm}
2218
2219 \scriptsize
2220
2221 \framebox{
2222 \begin{minipage}[t]{6.0cm}
2223 0.186 nm: Si-C pairs $\uparrow$\\
2224 (as expected in 3C-SiC)\\[0.2cm]
2225 0.282 nm: Si-C-C\\[0.2cm]
2226 $\approx$0.35 nm: C-Si-Si
2227 \end{minipage}
2228 }
2229 \begin{minipage}{0.2cm}
2230 \hfill
2231 \end{minipage}
2232 \framebox{
2233 \begin{minipage}[t]{6.0cm}
2234 0.15 nm: C-C pairs $\uparrow$\\
2235 (as expected in graphite/diamond)\\[0.2cm]
2236 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2237 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2238 \end{minipage}
2239 }
2240
2241 \begin{itemize}
2242 \item Decreasing cut-off artifact
2243 \item {\color{red}Amorphous} SiC-like phase remains
2244 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2245 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2246 \end{itemize}
2247
2248 \vspace{-0.1cm}
2249
2250 \begin{center}
2251 {\color{blue}
2252 \framebox{
2253 {\color{black}
2254 High C \& small $V$ \& short $t$
2255 $\Rightarrow$
2256 }
2257 Slow restructuring due to strong C-C bonds
2258 {\color{black}
2259 $\Leftarrow$
2260 High C \& low T implants
2261 }
2262 }
2263 }
2264 \end{center}
2265
2266 \end{slide}
2267
2268 \begin{slide}
2269
2270  {\large\bf
2271   Summary and Conclusions
2272  }
2273
2274  \scriptsize
2275
2276 %\vspace{0.1cm}
2277
2278 \framebox{
2279 \begin{minipage}[t]{12.9cm}
2280  \underline{Pecipitation simulations}
2281  \begin{itemize}
2282   \item High C concentration $\rightarrow$ amorphous SiC like phase
2283   \item Problem of potential enhanced slow phase space propagation
2284   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2285   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2286   \item High T necessary to simulate IBS conditions (far from equilibrium)
2287   \item Precipitation by successive agglomeration of \cs (epitaxy)
2288   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2289         (stretched SiC, interface)
2290  \end{itemize}
2291 \end{minipage}
2292 }
2293
2294 %\vspace{0.1cm}
2295
2296 \framebox{
2297 \begin{minipage}{12.9cm}
2298  \underline{Defects}
2299  \begin{itemize}
2300    \item DFT / EA
2301         \begin{itemize}
2302          \item Point defects excellently / fairly well described
2303                by DFT / EA
2304          \item C$_{\text{sub}}$ drastically underestimated by EA
2305          \item EA predicts correct ground state:
2306                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2307          \item Identified migration path explaining
2308                diffusion and reorientation experiments by DFT
2309          \item EA fails to describe \ci{} migration:
2310                Wrong path \& overestimated barrier
2311         \end{itemize}
2312    \item Combinations of defects
2313          \begin{itemize}
2314           \item Agglomeration of point defects energetically favorable
2315                 by compensation of stress
2316           \item Formation of C-C unlikely
2317           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2318           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2319                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2320         \end{itemize}
2321  \end{itemize}
2322 \end{minipage}
2323 }
2324
2325 \begin{center}
2326 {\color{blue}
2327 \framebox{Precipitation by successive agglomeration of \cs{}}
2328 }
2329 \end{center}
2330
2331 \end{slide}
2332
2333 \begin{slide}
2334
2335  {\large\bf
2336   Acknowledgements
2337  }
2338
2339  \vspace{0.1cm}
2340
2341  \small
2342
2343  Thanks to \ldots
2344
2345  \underline{Augsburg}
2346  \begin{itemize}
2347   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2348   \item Ralf Utermann (EDV)
2349  \end{itemize}
2350  
2351  \underline{Helsinki}
2352  \begin{itemize}
2353   \item Prof. K. Nordlund (MD)
2354  \end{itemize}
2355  
2356  \underline{Munich}
2357  \begin{itemize}
2358   \item Bayerische Forschungsstiftung (financial support)
2359  \end{itemize}
2360  
2361  \underline{Paderborn}
2362  \begin{itemize}
2363   \item Prof. J. Lindner (SiC)
2364   \item Prof. G. Schmidt (DFT + financial support)
2365   \item Dr. E. Rauls (DFT + SiC)
2366   \item Dr. S. Sanna (VASP)
2367  \end{itemize}
2368
2369 \vspace{0.2cm}
2370
2371 \begin{center}
2372 \framebox{
2373 \bf Thank you for your attention!
2374 }
2375 \end{center}
2376
2377 \end{slide}
2378
2379 \end{document}
2380
2381 \fi