1acb3756b1357093d2f95e2e833a0727abd374dc
[lectures/latex.git] / posic / talks / seminar_2011.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 % units
35 \usepackage{units}
36
37 \usepackage{semcolor}
38 \usepackage{semlayer}           % Seminar overlays
39 \usepackage{slidesec}           % Seminar sections and list of slides
40
41 \input{seminar.bug}             % Official bugs corrections
42 \input{seminar.bg2}             % Unofficial bugs corrections
43
44 \articlemag{1}
45
46 \special{landscape}
47
48 % font
49 %\usepackage{cmbright}
50 %\renewcommand{\familydefault}{\sfdefault}
51 %\usepackage{mathptmx}
52
53 \usepackage{upgreek}
54
55 \begin{document}
56
57 \extraslideheight{10in}
58 \slideframe{none}
59
60 \pagestyle{empty}
61
62 % specify width and height
63 \slidewidth 27.7cm 
64 \slideheight 19.1cm 
65
66 % shift it into visual area properly
67 \def\slideleftmargin{3.3cm}
68 \def\slidetopmargin{0.6cm}
69
70 \newcommand{\ham}{\mathcal{H}}
71 \newcommand{\pot}{\mathcal{V}}
72 \newcommand{\foo}{\mathcal{U}}
73 \newcommand{\vir}{\mathcal{W}}
74
75 % itemize level ii
76 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
77
78 % nice phi
79 \renewcommand{\phi}{\varphi}
80
81 % roman letters
82 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
83
84 % colors
85 \newrgbcolor{si-yellow}{.6 .6 0}
86 \newrgbcolor{hb}{0.75 0.77 0.89}
87 \newrgbcolor{lbb}{0.75 0.8 0.88}
88 \newrgbcolor{hlbb}{0.825 0.88 0.968}
89 \newrgbcolor{lachs}{1.0 .93 .81}
90
91 % shortcuts
92 \newcommand{\si}{Si$_{\text{i}}${}}
93 \newcommand{\ci}{C$_{\text{i}}${}}
94 \newcommand{\cs}{C$_{\text{sub}}${}}
95 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
96 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
97 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
98 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
99
100 % topic
101
102 \begin{slide}
103 \begin{center}
104
105  \vspace{16pt}
106
107  {\LARGE\bf
108   Atomistic simulation study on the silicon carbide precipitation
109   in silicon
110  }
111
112  \vspace{48pt}
113
114  \textsc{F. Zirkelbach}
115
116  \vspace{48pt}
117
118 Yet another seminar talk
119
120  \vspace{08pt}
121
122  Augsburg, 26. Mai 2011
123
124 \end{center}
125 \end{slide}
126
127 % motivation / properties / applications of silicon carbide
128 \begin{slide}
129
130 \small
131
132 \begin{pspicture}(0,0)(13.5,5)
133
134
135
136  \psframe*[linecolor=hb](0,0)(13.5,5)
137
138  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
139  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
140
141  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
142
143  \rput[lt](0.5,4){wide band gap}
144  \rput[lt](0.5,3.5){high electric breakdown field}
145  \rput[lt](0.5,3){good electron mobility}
146  \rput[lt](0.5,2.5){high electron saturation drift velocity}
147  \rput[lt](0.5,2){high thermal conductivity}
148
149  \rput[lt](0.5,1.5){hard and mechanically stable}
150  \rput[lt](0.5,1){chemically inert}
151
152  \rput[lt](0.5,0.5){radiation hardness}
153
154  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
155
156  \rput[rt](13,3.85){high-temperature, high power}
157  \rput[rt](13,3.5){and high-frequency}
158  \rput[rt](13,3.15){electronic and optoelectronic devices}
159
160  \rput[rt](13,2.35){material suitable for extreme conditions}
161  \rput[rt](13,2){microelectromechanical systems}
162  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
163
164  \rput[rt](13,0.85){first wall reactor material, detectors}
165  \rput[rt](13,0.5){and electronic devices for space}
166
167 \end{pspicture}
168
169 \begin{picture}(0,0)(-3,68)
170 \includegraphics[width=2.6cm]{wide_band_gap.eps}
171 \end{picture}
172 \begin{picture}(0,0)(-285,-162)
173 \includegraphics[width=3.38cm]{sic_led.eps}
174 \end{picture}
175 \begin{picture}(0,0)(-195,-162)
176 \includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
177 \end{picture}
178 \begin{picture}(0,0)(-313,65)
179 \includegraphics[width=2.2cm]{infineon_schottky.eps}
180 \end{picture}
181 \begin{picture}(0,0)(-220,65)
182 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
183 \end{picture}
184 \begin{picture}(0,0)(0,-160)
185 \includegraphics[width=3.0cm]{sic_proton.eps}
186 \end{picture}
187 \begin{picture}(0,0)(-60,65)
188 \includegraphics[width=3.4cm]{sic_switch.eps}
189 \end{picture}
190
191 \end{slide}
192
193 % start of contents
194
195 \begin{slide}
196
197  {\large\bf
198   Polytypes of SiC
199  }
200
201  \vspace{4cm}
202
203  \small
204
205 \begin{tabular}{l c c c c c c}
206 \hline
207  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
208 \hline
209 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
210 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
211 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
212 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
213 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
214 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
215 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
216 \hline
217 \end{tabular}
218
219 {\tiny
220  Values for $T=300$ K
221 }
222
223 \begin{picture}(0,0)(-160,-155)
224  \includegraphics[width=7cm]{polytypes.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-10,-185)
227  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
228 \end{picture}
229 \begin{picture}(0,0)(-10,-175)
230  {\tiny cubic (twist)}
231 \end{picture}
232 \begin{picture}(0,0)(-60,-175)
233  {\tiny hexagonal (no twist)}
234 \end{picture}
235 \begin{pspicture}(0,0)(0,0)
236 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
237 \end{pspicture}
238 \begin{pspicture}(0,0)(0,0)
239 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
240 \end{pspicture}
241 \begin{pspicture}(0,0)(0,0)
242 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
243 \end{pspicture}
244
245 \end{slide}
246
247 \begin{slide}
248
249  {\large\bf
250   Fabrication of silicon carbide
251  }
252
253  \small
254  
255  \vspace{4pt}
256
257  SiC - \emph{Born from the stars, perfected on earth.}
258  
259  \vspace{4pt}
260
261  Conventional thin film SiC growth:
262  \begin{itemize}
263   \item \underline{Sublimation growth using the modified Lely method}
264         \begin{itemize}
265          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
266          \item Surrounded by polycrystalline SiC in a graphite crucible\\
267                at $T=2100-2400 \, ^{\circ} \text{C}$
268          \item Deposition of supersaturated vapor on cooler seed crystal
269         \end{itemize}
270   \item \underline{Homoepitaxial growth using CVD}
271         \begin{itemize}
272          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
273          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
274          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
275         \end{itemize}
276   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
277         \begin{itemize}
278          \item Two steps: carbonization and growth
279          \item $T=650-1050 \, ^{\circ} \text{C}$
280          \item SiC/Si lattice mismatch $\approx$ 20 \%
281          \item Quality and size not yet sufficient
282         \end{itemize}
283  \end{itemize}
284
285  \begin{picture}(0,0)(-280,-65)
286   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
287  \end{picture}
288  \begin{picture}(0,0)(-280,-55)
289   \begin{minipage}{5cm}
290   {\tiny
291    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
292    on 6H-SiC substrate
293   }
294   \end{minipage}
295  \end{picture}
296  \begin{picture}(0,0)(-265,-150)
297   \includegraphics[width=2.4cm]{m_lely.eps}
298  \end{picture}
299  \begin{picture}(0,0)(-333,-175)
300   \begin{minipage}{5cm}
301   {\tiny
302    1. Lid\\[-7pt]
303    2. Heating\\[-7pt]
304    3. Source\\[-7pt]
305    4. Crucible\\[-7pt]
306    5. Insulation\\[-7pt]
307    6. Seed crystal
308   }
309   \end{minipage}
310  \end{picture}
311  \begin{picture}(0,0)(-230,-35)
312  \framebox{
313  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
314  }
315  \end{picture}
316  \begin{picture}(0,0)(-230,-10)
317  \framebox{
318  \begin{minipage}{3cm}
319  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
320                                less advanced}
321  \end{minipage}
322  }
323  \end{picture}
324
325 \end{slide}
326
327 \begin{slide}
328
329  {\large\bf
330   Fabrication of silicon carbide
331  }
332
333  \small
334
335  Alternative approach:
336  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
337  \begin{itemize}
338   \item \underline{Implantation step 1}\\
339         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
340         $\Rightarrow$ box-like distribution of equally sized
341                        and epitactically oriented SiC precipitates
342                        
343   \item \underline{Implantation step 2}\\
344         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
345         $\Rightarrow$ destruction of SiC nanocrystals
346                       in growing amorphous interface layers
347   \item \underline{Annealing}\\
348         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
349         $\Rightarrow$ homogeneous, stoichiometric SiC layer
350                       with sharp interfaces
351  \end{itemize}
352
353  \begin{minipage}{6.3cm}
354  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
355  {\tiny
356   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
357  }
358  \end{minipage}
359 \framebox{
360  \begin{minipage}{6.3cm}
361  \begin{center}
362  {\color{blue}
363   Precipitation mechanism not yet fully understood!
364  }
365  \renewcommand\labelitemi{$\Rightarrow$}
366  \small
367  \underline{Understanding the SiC precipitation}
368  \begin{itemize}
369   \item significant technological progress in SiC thin film formation
370   \item perspectives for processes relying upon prevention of SiC precipitation
371  \end{itemize}
372  \end{center}
373  \end{minipage}
374 }
375  
376 \end{slide}
377
378 % contents
379
380 \begin{slide}
381
382 {\large\bf
383  Outline
384 }
385
386  \begin{itemize}
387   \item Supposed precipitation mechanism of SiC in Si
388   \item Utilized simulation techniques
389         \begin{itemize}
390          \item Molecular dynamics (MD) simulations
391          \item Density functional theory (DFT) calculations
392         \end{itemize}
393   \item C and Si self-interstitial point defects in silicon
394   \item Silicon carbide precipitation simulations
395   \item Summary / Conclusion / Outlook
396  \end{itemize}
397
398 \end{slide}
399
400 \begin{slide}
401
402  {\large\bf
403   Supposed precipitation mechanism of SiC in Si
404  }
405
406  \scriptsize
407
408  \vspace{0.1cm}
409
410  \begin{minipage}{3.8cm}
411  Si \& SiC lattice structure\\[0.2cm]
412  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
413  \hrule
414  \end{minipage}
415  \hspace{0.6cm}
416  \begin{minipage}{3.8cm}
417  \begin{center}
418  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
419  \end{center}
420  \end{minipage}
421  \hspace{0.6cm}
422  \begin{minipage}{3.8cm}
423  \begin{center}
424  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
425  \end{center}
426  \end{minipage}
427
428  \begin{minipage}{4cm}
429  \begin{center}
430  C-Si dimers (dumbbells)\\[-0.1cm]
431  on Si interstitial sites
432  \end{center}
433  \end{minipage}
434  \hspace{0.2cm}
435  \begin{minipage}{4.2cm}
436  \begin{center}
437  Agglomeration of C-Si dumbbells\\[-0.1cm]
438  $\Rightarrow$ dark contrasts
439  \end{center}
440  \end{minipage}
441  \hspace{0.2cm}
442  \begin{minipage}{4cm}
443  \begin{center}
444  Precipitation of 3C-SiC in Si\\[-0.1cm]
445  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
446  \& release of Si self-interstitials
447  \end{center}
448  \end{minipage}
449
450  \begin{minipage}{3.8cm}
451  \begin{center}
452  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
453  \end{center}
454  \end{minipage}
455  \hspace{0.6cm}
456  \begin{minipage}{3.8cm}
457  \begin{center}
458  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
459  \end{center}
460  \end{minipage}
461  \hspace{0.6cm}
462  \begin{minipage}{3.8cm}
463  \begin{center}
464  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
465  \end{center}
466  \end{minipage}
467
468 \begin{pspicture}(0,0)(0,0)
469 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
470 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
471 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
472 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
473 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
474  $4a_{\text{Si}}=5a_{\text{SiC}}$
475  }}}
476 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
477 \hkl(h k l) planes match
478  }}}
479 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
480 r = 2 - 4 nm
481  }}}
482 \end{pspicture}
483
484 \end{slide}
485
486 \begin{slide}
487
488  {\large\bf
489   Supposed precipitation mechanism of SiC in Si
490  }
491
492  \scriptsize
493
494  \vspace{0.1cm}
495
496  \begin{minipage}{3.8cm}
497  Si \& SiC lattice structure\\[0.2cm]
498  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
499  \hrule
500  \end{minipage}
501  \hspace{0.6cm}
502  \begin{minipage}{3.8cm}
503  \begin{center}
504  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
505  \end{center}
506  \end{minipage}
507  \hspace{0.6cm}
508  \begin{minipage}{3.8cm}
509  \begin{center}
510  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
511  \end{center}
512  \end{minipage}
513
514  \begin{minipage}{4cm}
515  \begin{center}
516  C-Si dimers (dumbbells)\\[-0.1cm]
517  on Si interstitial sites
518  \end{center}
519  \end{minipage}
520  \hspace{0.2cm}
521  \begin{minipage}{4.2cm}
522  \begin{center}
523  Agglomeration of C-Si dumbbells\\[-0.1cm]
524  $\Rightarrow$ dark contrasts
525  \end{center}
526  \end{minipage}
527  \hspace{0.2cm}
528  \begin{minipage}{4cm}
529  \begin{center}
530  Precipitation of 3C-SiC in Si\\[-0.1cm]
531  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
532  \& release of Si self-interstitials
533  \end{center}
534  \end{minipage}
535
536  \begin{minipage}{3.8cm}
537  \begin{center}
538  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
539  \end{center}
540  \end{minipage}
541  \hspace{0.6cm}
542  \begin{minipage}{3.8cm}
543  \begin{center}
544  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
545  \end{center}
546  \end{minipage}
547  \hspace{0.6cm}
548  \begin{minipage}{3.8cm}
549  \begin{center}
550  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
551  \end{center}
552  \end{minipage}
553
554 \begin{pspicture}(0,0)(0,0)
555 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
556 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
557 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
558 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
559 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
560  $4a_{\text{Si}}=5a_{\text{SiC}}$
561  }}}
562 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
563 \hkl(h k l) planes match
564  }}}
565 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
566 r = 2 - 4 nm
567  }}}
568 \rput(4.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=red]{
569 \begin{minipage}{6cm}
570 \vspace*{0.1cm}
571 IBS studies revealing controversial views\\
572 \begin{itemize}
573 \item Nejim et al.
574  \begin{itemize}
575   \item Topotactic transformation based on \cs
576   \item \si as supply reacting with further C in cleared volume
577  \end{itemize}
578 \item Serre, Reeson, Lindner ...
579  \begin{itemize}
580   \item RT implants: highly mobile C
581   \item elevated T implants: no/low C redistribution/migration
582  \end{itemize}
583 \end{itemize}
584 \end{minipage}
585  }}}
586 \end{pspicture}
587
588 \end{slide}
589
590 \begin{slide}
591
592  {\large\bf
593   Molecular dynamics (MD) simulations
594  }
595
596  \vspace{12pt}
597
598  \small
599
600  {\bf MD basics:}
601  \begin{itemize}
602   \item Microscopic description of N particle system
603   \item Analytical interaction potential
604   \item Numerical integration using Newtons equation of motion\\
605         as a propagation rule in 6N-dimensional phase space
606   \item Observables obtained by time and/or ensemble averages
607  \end{itemize}
608  {\bf Details of the simulation:}
609  \begin{itemize}
610   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
611   \item Ensemble: NpT (isothermal-isobaric)
612         \begin{itemize}
613          \item Berendsen thermostat:
614                $\tau_{\text{T}}=100\text{ fs}$
615          \item Berendsen barostat:\\
616                $\tau_{\text{P}}=100\text{ fs}$,
617                $\beta^{-1}=100\text{ GPa}$
618         \end{itemize}
619   \item Erhart/Albe potential: Tersoff-like bond order potential
620   \vspace*{12pt}
621         \[
622         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
623         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
624         \]
625  \end{itemize}
626
627  \begin{picture}(0,0)(-230,-30)
628   \includegraphics[width=5cm]{tersoff_angle.eps} 
629  \end{picture}
630  
631 \end{slide}
632
633 \begin{slide}
634
635  {\large\bf
636   Density functional theory (DFT) calculations
637  }
638
639  \small
640
641  Basic ingredients necessary for DFT
642
643  \begin{itemize}
644   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
645         \begin{itemize}
646          \item ... uniquely determines the ground state potential
647                / wavefunctions
648          \item ... minimizes the systems total energy
649         \end{itemize}
650   \item \underline{Born-Oppenheimer}
651         - $N$ moving electrons in an external potential of static nuclei
652 \[
653 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
654               +\sum_i^N V_{\text{ext}}(r_i)
655               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
656 \]
657   \item \underline{Effective potential}
658         - averaged electrostatic potential \& exchange and correlation
659 \[
660 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
661                  +V_{\text{XC}}[n(r)]
662 \]
663   \item \underline{Kohn-Sham system}
664         - Schr\"odinger equation of N non-interacting particles
665 \[
666 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
667 =\epsilon_i\Phi_i(r)
668 \quad
669 \Rightarrow
670 \quad
671 n(r)=\sum_i^N|\Phi_i(r)|^2
672 \]
673   \item \underline{Self-consistent solution}\\
674 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
675 which in turn depends on $n(r)$
676   \item \underline{Variational principle}
677         - minimize total energy with respect to $n(r)$
678  \end{itemize}
679
680 \end{slide}
681
682 \begin{slide}
683
684  {\large\bf
685   Density functional theory (DFT) calculations
686  }
687
688  \small
689
690  \vspace*{0.2cm}
691
692  Details of applied DFT calculations in this work
693
694  \begin{itemize}
695   \item \underline{Exchange correlation functional}
696         - approximations for the inhomogeneous electron gas
697         \begin{itemize}
698          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
699          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
700         \end{itemize}
701   \item \underline{Plane wave basis set}
702         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
703 \[
704 \rightarrow
705 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
706 \qquad ({\color{blue}300\text{ eV}})
707 \]
708   \item \underline{Brillouin zone sampling} -
709         {\color{blue}$\Gamma$-point only} calculations
710   \item \underline{Pseudo potential} 
711         - consider only the valence electrons
712   \item \underline{Code} - VASP 4.6
713  \end{itemize}
714
715  \vspace*{0.2cm}
716
717  MD and structural optimization
718
719  \begin{itemize}
720   \item MD integration: Gear predictor corrector algorithm
721   \item Pressure control: Parrinello-Rahman pressure control
722   \item Structural optimization: Conjugate gradient method
723  \end{itemize}
724
725 \begin{pspicture}(0,0)(0,0)
726 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
727 \end{pspicture}
728
729 \end{slide}
730
731 \begin{slide}
732
733  {\large\bf
734   C and Si self-interstitial point defects in silicon
735  }
736
737  \small
738
739  \vspace*{0.3cm}
740
741 \begin{minipage}{8cm}
742 Procedure:\\[0.3cm]
743   \begin{pspicture}(0,0)(7,5)
744   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
745    \parbox{7cm}{
746    \begin{itemize}
747     \item Creation of c-Si simulation volume
748     \item Periodic boundary conditions
749     \item $T=0\text{ K}$, $p=0\text{ bar}$
750    \end{itemize}
751   }}}}
752 \rput(3.5,2.1){\rnode{insert}{\psframebox{
753  \parbox{7cm}{
754   \begin{center}
755   Insertion of interstitial C/Si atoms
756   \end{center}
757   }}}}
758   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
759    \parbox{7cm}{
760    \begin{center}
761    Relaxation / structural energy minimization
762    \end{center}
763   }}}}
764   \ncline[]{->}{init}{insert}
765   \ncline[]{->}{insert}{cool}
766  \end{pspicture}
767 \end{minipage}
768 \begin{minipage}{5cm}
769   \includegraphics[width=5cm]{unit_cell_e.eps}\\
770 \end{minipage}
771
772 \begin{minipage}{9cm}
773  \begin{tabular}{l c c}
774  \hline
775  & size [unit cells] & \# atoms\\
776 \hline
777 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
778 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
779 \hline
780  \end{tabular}
781 \end{minipage}
782 \begin{minipage}{4cm}
783 {\color{red}$\bullet$} Tetrahedral\\
784 {\color{green}$\bullet$} Hexagonal\\
785 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
786 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
787 {\color{cyan}$\bullet$} Bond-centered\\
788 {\color{black}$\bullet$} Vacancy / Substitutional
789 \end{minipage}
790
791 \end{slide}
792
793 \begin{slide}
794
795  \footnotesize
796
797 \begin{minipage}{9.5cm}
798
799  {\large\bf
800   Si self-interstitial point defects in silicon\\
801  }
802
803 \begin{tabular}{l c c c c c}
804 \hline
805  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
806 \hline
807  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
808  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
809 \hline
810 \end{tabular}\\[0.2cm]
811
812 \begin{minipage}{4.7cm}
813 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
814 \end{minipage}
815 \begin{minipage}{4.7cm}
816 \begin{center}
817 {\tiny nearly T $\rightarrow$ T}\\
818 \end{center}
819 \includegraphics[width=4.7cm]{nhex_tet.ps}
820 \end{minipage}\\
821
822 \underline{Hexagonal} \hspace{2pt}
823 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
824 \framebox{
825 \begin{minipage}{2.7cm}
826 $E_{\text{f}}^*=4.48\text{ eV}$\\
827 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
828 \end{minipage}
829 \begin{minipage}{0.4cm}
830 \begin{center}
831 $\Rightarrow$
832 \end{center}
833 \end{minipage}
834 \begin{minipage}{2.7cm}
835 $E_{\text{f}}=3.96\text{ eV}$\\
836 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
837 \end{minipage}
838 }
839 \begin{minipage}{2.9cm}
840 \begin{flushright}
841 \underline{Vacancy}\\
842 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
843 \end{flushright}
844 \end{minipage}
845
846 \end{minipage}
847 \begin{minipage}{3.5cm}
848
849 \begin{flushright}
850 \underline{\hkl<1 1 0> dumbbell}\\
851 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
852 \underline{Tetrahedral}\\
853 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
854 \underline{\hkl<1 0 0> dumbbell}\\
855 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
856 \end{flushright}
857
858 \end{minipage}
859
860 \end{slide}
861
862 \begin{slide}
863
864 \footnotesize
865
866  {\large\bf
867   C interstitial point defects in silicon\\[-0.1cm]
868  }
869
870 \begin{tabular}{l c c c c c c r}
871 \hline
872  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
873 \hline
874  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
875  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
876 \hline
877 \end{tabular}\\[0.1cm]
878
879 \framebox{
880 \begin{minipage}{2.7cm}
881 \underline{Hexagonal} \hspace{2pt}
882 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
883 $E_{\text{f}}^*=9.05\text{ eV}$\\
884 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
885 \end{minipage}
886 \begin{minipage}{0.4cm}
887 \begin{center}
888 $\Rightarrow$
889 \end{center}
890 \end{minipage}
891 \begin{minipage}{2.7cm}
892 \underline{\hkl<1 0 0>}\\
893 $E_{\text{f}}=3.88\text{ eV}$\\
894 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
895 \end{minipage}
896 }
897 \begin{minipage}{2cm}
898 \hfill
899 \end{minipage}
900 \begin{minipage}{3cm}
901 \begin{flushright}
902 \underline{Tetrahedral}\\
903 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
904 \end{flushright}
905 \end{minipage}
906
907 \framebox{
908 \begin{minipage}{2.7cm}
909 \underline{Bond-centered}\\
910 $E_{\text{f}}^*=5.59\text{ eV}$\\
911 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
912 \end{minipage}
913 \begin{minipage}{0.4cm}
914 \begin{center}
915 $\Rightarrow$
916 \end{center}
917 \end{minipage}
918 \begin{minipage}{2.7cm}
919 \underline{\hkl<1 1 0> dumbbell}\\
920 $E_{\text{f}}=5.18\text{ eV}$\\
921 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
922 \end{minipage}
923 }
924 \begin{minipage}{2cm}
925 \hfill
926 \end{minipage}
927 \begin{minipage}{3cm}
928 \begin{flushright}
929 \underline{Substitutional}\\
930 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
931 \end{flushright}
932 \end{minipage}
933
934 \end{slide}
935
936 \begin{slide}
937
938 \footnotesize
939
940  {\large\bf\boldmath
941   C \hkl<1 0 0> dumbbell interstitial configuration\\
942  }
943
944 {\tiny
945 \begin{tabular}{l c c c c c c c c}
946 \hline
947  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
948 \hline
949 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
950 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
951 \hline
952 \end{tabular}\\[0.2cm]
953 \begin{tabular}{l c c c c }
954 \hline
955  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
956 \hline
957 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
958 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
959 \hline
960 \end{tabular}\\[0.2cm]
961 \begin{tabular}{l c c c}
962 \hline
963  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
964 \hline
965 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
966 VASP & 0.109 & -0.065 & 0.174 \\
967 \hline
968 \end{tabular}\\[0.6cm]
969 }
970
971 \begin{minipage}{3.0cm}
972 \begin{center}
973 \underline{Erhart/Albe}
974 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
975 \end{center}
976 \end{minipage}
977 \begin{minipage}{3.0cm}
978 \begin{center}
979 \underline{VASP}
980 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
981 \end{center}
982 \end{minipage}\\
983
984 \begin{picture}(0,0)(-185,10)
985 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
986 \end{picture}
987 \begin{picture}(0,0)(-280,-150)
988 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
989 \end{picture}
990
991 \begin{pspicture}(0,0)(0,0)
992 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
993 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
994 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
995 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
996 \end{pspicture}
997
998 \end{slide}
999
1000 \begin{slide}
1001
1002 \small
1003
1004 \begin{minipage}{8.5cm}
1005
1006  {\large\bf
1007   Bond-centered interstitial configuration\\[-0.1cm]
1008  }
1009
1010 \begin{minipage}{3.0cm}
1011 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1012 \end{minipage}
1013 \begin{minipage}{5.2cm}
1014 \begin{itemize}
1015  \item Linear Si-C-Si bond
1016  \item Si: one C \& 3 Si neighbours
1017  \item Spin polarized calculations
1018  \item No saddle point!\\
1019        Real local minimum!
1020 \end{itemize}
1021 \end{minipage}
1022
1023 \framebox{
1024  \tiny
1025  \begin{minipage}[t]{6.5cm}
1026   \begin{minipage}[t]{1.2cm}
1027   {\color{red}Si}\\
1028   {\tiny sp$^3$}\\[0.8cm]
1029   \underline{${\color{black}\uparrow}$}
1030   \underline{${\color{black}\uparrow}$}
1031   \underline{${\color{black}\uparrow}$}
1032   \underline{${\color{red}\uparrow}$}\\
1033   sp$^3$
1034   \end{minipage}
1035   \begin{minipage}[t]{1.4cm}
1036   \begin{center}
1037   {\color{red}M}{\color{blue}O}\\[0.8cm]
1038   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1039   $\sigma_{\text{ab}}$\\[0.5cm]
1040   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1041   $\sigma_{\text{b}}$
1042   \end{center}
1043   \end{minipage}
1044   \begin{minipage}[t]{1.0cm}
1045   \begin{center}
1046   {\color{blue}C}\\
1047   {\tiny sp}\\[0.2cm]
1048   \underline{${\color{white}\uparrow\uparrow}$}
1049   \underline{${\color{white}\uparrow\uparrow}$}\\
1050   2p\\[0.4cm]
1051   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1052   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1053   sp
1054   \end{center}
1055   \end{minipage}
1056   \begin{minipage}[t]{1.4cm}
1057   \begin{center}
1058   {\color{blue}M}{\color{green}O}\\[0.8cm]
1059   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1060   $\sigma_{\text{ab}}$\\[0.5cm]
1061   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1062   $\sigma_{\text{b}}$
1063   \end{center}
1064   \end{minipage}
1065   \begin{minipage}[t]{1.2cm}
1066   \begin{flushright}
1067   {\color{green}Si}\\
1068   {\tiny sp$^3$}\\[0.8cm]
1069   \underline{${\color{green}\uparrow}$}
1070   \underline{${\color{black}\uparrow}$}
1071   \underline{${\color{black}\uparrow}$}
1072   \underline{${\color{black}\uparrow}$}\\
1073   sp$^3$
1074   \end{flushright}
1075   \end{minipage}
1076  \end{minipage}
1077 }\\[0.1cm]
1078
1079 \framebox{
1080 \begin{minipage}{4.5cm}
1081 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1082 \end{minipage}
1083 \begin{minipage}{3.5cm}
1084 {\color{gray}$\bullet$} Spin up\\
1085 {\color{green}$\bullet$} Spin down\\
1086 {\color{blue}$\bullet$} Resulting spin up\\
1087 {\color{yellow}$\bullet$} Si atoms\\
1088 {\color{red}$\bullet$} C atom
1089 \end{minipage}
1090 }
1091
1092 \end{minipage}
1093 \begin{minipage}{4.2cm}
1094 \begin{flushright}
1095 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1096 {\color{green}$\Box$} {\tiny unoccupied}\\
1097 {\color{red}$\bullet$} {\tiny occupied}
1098 \end{flushright}
1099 \end{minipage}
1100
1101 \end{slide}
1102
1103 \begin{slide}
1104
1105  {\large\bf\boldmath
1106   Migration of the C \hkl<1 0 0> dumbbell interstitial
1107  }
1108
1109 \scriptsize
1110
1111  {\small Investigated pathways}
1112
1113 \begin{minipage}{8.5cm}
1114 \begin{minipage}{8.3cm}
1115 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1116 \begin{minipage}{2.4cm}
1117 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1118 \end{minipage}
1119 \begin{minipage}{0.4cm}
1120 $\rightarrow$
1121 \end{minipage}
1122 \begin{minipage}{2.4cm}
1123 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1124 \end{minipage}
1125 \begin{minipage}{0.4cm}
1126 $\rightarrow$
1127 \end{minipage}
1128 \begin{minipage}{2.4cm}
1129 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1130 \end{minipage}
1131 \end{minipage}\\
1132 \begin{minipage}{8.3cm}
1133 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1134 \begin{minipage}{2.4cm}
1135 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1136 \end{minipage}
1137 \begin{minipage}{0.4cm}
1138 $\rightarrow$
1139 \end{minipage}
1140 \begin{minipage}{2.4cm}
1141 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1142 \end{minipage}
1143 \begin{minipage}{0.4cm}
1144 $\rightarrow$
1145 \end{minipage}
1146 \begin{minipage}{2.4cm}
1147 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1148 \end{minipage}
1149 \end{minipage}\\
1150 \begin{minipage}{8.3cm}
1151 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1152 \begin{minipage}{2.4cm}
1153 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1154 \end{minipage}
1155 \begin{minipage}{0.4cm}
1156 $\rightarrow$
1157 \end{minipage}
1158 \begin{minipage}{2.4cm}
1159 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1160 \end{minipage}
1161 \begin{minipage}{0.4cm}
1162 $\rightarrow$
1163 \end{minipage}
1164 \begin{minipage}{2.4cm}
1165 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1166 \end{minipage}
1167 \end{minipage}
1168 \end{minipage}
1169 \framebox{
1170 \begin{minipage}{4.2cm}
1171  {\small Constrained relaxation\\
1172          technique (CRT) method}\\
1173 \includegraphics[width=4cm]{crt_orig.eps}
1174 \begin{itemize}
1175  \item Constrain diffusing atom
1176  \item Static constraints 
1177 \end{itemize}
1178 \vspace*{0.3cm}
1179  {\small Modifications}\\
1180 \includegraphics[width=4cm]{crt_mod.eps}
1181 \begin{itemize}
1182  \item Constrain all atoms
1183  \item Update individual\\
1184        constraints
1185 \end{itemize}
1186 \end{minipage}
1187 }
1188
1189 \end{slide}
1190
1191 \begin{slide}
1192
1193  {\large\bf\boldmath
1194   Migration of the C \hkl<1 0 0> dumbbell interstitial
1195  }
1196
1197 \scriptsize
1198
1199 \framebox{
1200 \begin{minipage}{5.9cm}
1201 \begin{flushleft}
1202 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1203 \end{flushleft}
1204 \begin{center}
1205 \begin{picture}(0,0)(60,0)
1206 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1207 \end{picture}
1208 \begin{picture}(0,0)(-5,0)
1209 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1210 \end{picture}
1211 \begin{picture}(0,0)(-55,0)
1212 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1213 \end{picture}
1214 \begin{picture}(0,0)(12.5,10)
1215 \includegraphics[width=1cm]{110_arrow.eps}
1216 \end{picture}
1217 \begin{picture}(0,0)(90,0)
1218 \includegraphics[height=0.9cm]{001_arrow.eps}
1219 \end{picture}
1220 \end{center}
1221 \vspace*{0.35cm}
1222 \end{minipage}
1223 }
1224 \begin{minipage}{0.3cm}
1225 \hfill
1226 \end{minipage}
1227 \framebox{
1228 \begin{minipage}{5.9cm}
1229 \begin{flushright}
1230 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1231 \end{flushright}
1232 \begin{center}
1233 \begin{picture}(0,0)(60,0)
1234 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1235 \end{picture}
1236 \begin{picture}(0,0)(5,0)
1237 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1238 \end{picture}
1239 \begin{picture}(0,0)(-55,0)
1240 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1241 \end{picture}
1242 \begin{picture}(0,0)(12.5,10)
1243 \includegraphics[width=1cm]{100_arrow.eps}
1244 \end{picture}
1245 \begin{picture}(0,0)(90,0)
1246 \includegraphics[height=0.9cm]{001_arrow.eps}
1247 \end{picture}
1248 \end{center}
1249 \vspace*{0.3cm}
1250 \end{minipage}\\
1251 }
1252
1253 \vspace*{0.05cm}
1254
1255 \framebox{
1256 \begin{minipage}{5.9cm}
1257 \begin{flushleft}
1258 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1259 \end{flushleft}
1260 \begin{center}
1261 \begin{picture}(0,0)(60,0)
1262 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1263 \end{picture}
1264 \begin{picture}(0,0)(10,0)
1265 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1266 \end{picture}
1267 \begin{picture}(0,0)(-60,0)
1268 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1269 \end{picture}
1270 \begin{picture}(0,0)(12.5,10)
1271 \includegraphics[width=1cm]{100_arrow.eps}
1272 \end{picture}
1273 \begin{picture}(0,0)(90,0)
1274 \includegraphics[height=0.9cm]{001_arrow.eps}
1275 \end{picture}
1276 \end{center}
1277 \vspace*{0.3cm}
1278 \end{minipage}
1279 }
1280 \begin{minipage}{0.3cm}
1281 \hfill
1282 \end{minipage}
1283 \begin{minipage}{6.5cm}
1284 VASP results
1285 \begin{itemize}
1286  \item Energetically most favorable path
1287        \begin{itemize}
1288         \item Path 2
1289         \item Activation energy: $\approx$ 0.9 eV 
1290         \item Experimental values: 0.73 ... 0.87 eV
1291        \end{itemize}
1292        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1293  \item Reorientation (path 3)
1294        \begin{itemize}
1295         \item More likely composed of two consecutive steps of type 2
1296         \item Experimental values: 0.77 ... 0.88 eV
1297        \end{itemize}
1298        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1299 \end{itemize}
1300 \end{minipage}
1301
1302 \end{slide}
1303
1304 \begin{slide}
1305
1306  {\large\bf\boldmath
1307   Migration of the C \hkl<1 0 0> dumbbell interstitial
1308  }
1309
1310 \scriptsize
1311
1312  \vspace{0.1cm}
1313
1314 \begin{minipage}{6.5cm}
1315
1316 \framebox{
1317 \begin{minipage}[t]{5.9cm}
1318 \begin{flushleft}
1319 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1320 \end{flushleft}
1321 \begin{center}
1322 \begin{pspicture}(0,0)(0,0)
1323 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1324 \end{pspicture}
1325 \begin{picture}(0,0)(60,-50)
1326 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1327 \end{picture}
1328 \begin{picture}(0,0)(5,-50)
1329 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1330 \end{picture}
1331 \begin{picture}(0,0)(-55,-50)
1332 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1333 \end{picture}
1334 \begin{picture}(0,0)(12.5,-40)
1335 \includegraphics[width=1cm]{110_arrow.eps}
1336 \end{picture}
1337 \begin{picture}(0,0)(90,-45)
1338 \includegraphics[height=0.9cm]{001_arrow.eps}
1339 \end{picture}\\
1340 \begin{pspicture}(0,0)(0,0)
1341 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1342 \end{pspicture}
1343 \begin{picture}(0,0)(60,-15)
1344 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1345 \end{picture}
1346 \begin{picture}(0,0)(35,-15)
1347 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1348 \end{picture}
1349 \begin{picture}(0,0)(-5,-15)
1350 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1351 \end{picture}
1352 \begin{picture}(0,0)(-55,-15)
1353 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1354 \end{picture}
1355 \begin{picture}(0,0)(12.5,-5)
1356 \includegraphics[width=1cm]{100_arrow.eps}
1357 \end{picture}
1358 \begin{picture}(0,0)(90,-15)
1359 \includegraphics[height=0.9cm]{010_arrow.eps}
1360 \end{picture}
1361 \end{center}
1362 \end{minipage}
1363 }\\[0.1cm]
1364
1365 \begin{minipage}{5.9cm}
1366 Erhart/Albe results
1367 \begin{itemize}
1368  \item Lowest activation energy: $\approx$ 2.2 eV
1369  \item 2.4 times higher than VASP
1370  \item Different pathway
1371 \end{itemize}
1372 \end{minipage}
1373
1374 \end{minipage}
1375 \begin{minipage}{6.5cm}
1376
1377 \framebox{
1378 \begin{minipage}{5.9cm}
1379 %\begin{flushright}
1380 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1381 %\end{flushright}
1382 %\begin{center}
1383 %\begin{pspicture}(0,0)(0,0)
1384 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1385 %\end{pspicture}
1386 %\begin{picture}(0,0)(60,-5)
1387 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1388 %\end{picture}
1389 %\begin{picture}(0,0)(0,-5)
1390 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1391 %\end{picture}
1392 %\begin{picture}(0,0)(-55,-5)
1393 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1394 %\end{picture}
1395 %\begin{picture}(0,0)(12.5,5)
1396 %\includegraphics[width=1cm]{100_arrow.eps}
1397 %\end{picture}
1398 %\begin{picture}(0,0)(90,0)
1399 %\includegraphics[height=0.9cm]{001_arrow.eps}
1400 %\end{picture}
1401 %\end{center}
1402 %\vspace{0.2cm}
1403 %\end{minipage}
1404 %}\\[0.2cm]
1405 %
1406 %\framebox{
1407 %\begin{minipage}{5.9cm}
1408 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1409 \end{minipage}
1410 }\\[0.1cm]
1411
1412 \begin{minipage}{5.9cm}
1413 Transition involving \ci{} \hkl<1 1 0>
1414 \begin{itemize}
1415  \item Bond-centered configuration unstable\\
1416        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1417  \item Transition minima of path 2 \& 3\\
1418        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1419  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1420  \item 2.4 - 3.4 times higher than VASP
1421  \item Rotation of dumbbell orientation
1422 \end{itemize}
1423 \end{minipage}
1424
1425 \end{minipage}
1426
1427 \end{slide}
1428
1429 \begin{slide}
1430
1431  {\large\bf\boldmath
1432   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1433  }
1434
1435 \small
1436
1437 \vspace*{0.1cm}
1438
1439 Binding energy: 
1440 $
1441 E_{\text{b}}=
1442 E_{\text{f}}^{\text{defect combination}}-
1443 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1444 E_{\text{f}}^{\text{2nd defect}}
1445 $
1446
1447 \vspace*{0.1cm}
1448
1449 {\scriptsize
1450 \begin{tabular}{l c c c c c c}
1451 \hline
1452  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1453  \hline
1454  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1455  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1456  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1457  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1458  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1459  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1460  \hline
1461  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1462  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1463 \hline
1464 \end{tabular}
1465 }
1466
1467 \vspace*{0.3cm}
1468
1469 \footnotesize
1470
1471 \begin{minipage}[t]{3.8cm}
1472 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1473 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1474 \end{minipage}
1475 \begin{minipage}[t]{3.5cm}
1476 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1477 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1478 \end{minipage}
1479 \begin{minipage}[t]{5.5cm}
1480 \begin{itemize}
1481  \item Restricted to VASP simulations
1482  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1483  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1484  \item Stress compensation / increase
1485  \item Most favorable: C clustering
1486  \item Unfavored: antiparallel orientations
1487  \item Indication of energetically favored\\
1488        agglomeration
1489 \end{itemize}
1490 \end{minipage}
1491
1492 \begin{picture}(0,0)(-295,-130)
1493 \includegraphics[width=3.5cm]{comb_pos.eps}
1494 \end{picture}
1495
1496 \end{slide}
1497
1498 \begin{slide}
1499
1500  {\large\bf\boldmath
1501   Combinations of C-Si \hkl<1 0 0>-type interstitials
1502  }
1503
1504 \small
1505
1506 \vspace*{0.1cm}
1507
1508 Energetically most favorable combinations along \hkl<1 1 0>
1509
1510 \vspace*{0.1cm}
1511
1512 {\scriptsize
1513 \begin{tabular}{l c c c c c c}
1514 \hline
1515  & 1 & 2 & 3 & 4 & 5 & 6\\
1516 \hline
1517 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1518 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1519 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1520 \hline
1521 \end{tabular}
1522 }
1523
1524 \vspace*{0.3cm}
1525
1526 \begin{minipage}{7.0cm}
1527 \includegraphics[width=7cm]{db_along_110_cc.ps}
1528 \end{minipage}
1529 \begin{minipage}{6.0cm}
1530 \begin{center}
1531 {\color{blue}
1532  Interaction proportional to reciprocal cube of C-C distance
1533 }\\[0.2cm]
1534  Saturation in the immediate vicinity
1535 \end{center}
1536 \end{minipage}
1537
1538 \vspace{0.2cm}
1539
1540 \end{slide}
1541
1542 \begin{slide}
1543
1544  {\large\bf\boldmath
1545   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1546  }
1547
1548  \scriptsize
1549
1550 \begin{center}
1551 \begin{minipage}{3.2cm}
1552 \includegraphics[width=3cm]{sub_110_combo.eps}
1553 \end{minipage}
1554 \begin{minipage}{7.8cm}
1555 \begin{tabular}{l c c c c c c}
1556 \hline
1557 C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1558                    \hkl<1 0 1> & \hkl<-1 0 1> \\
1559 \hline
1560 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1561 2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1562 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1563 4 & \RM{4} & B & D & E & E & D \\
1564 5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1565 \hline
1566 \end{tabular}
1567 \end{minipage}
1568 \end{center}
1569
1570 \begin{center}
1571 \begin{tabular}{l c c c c c c c c c c}
1572 \hline
1573 Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1574 \hline
1575 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1576 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1577 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1578 \hline
1579 \end{tabular}
1580 \end{center}
1581
1582 \begin{minipage}{6.0cm}
1583 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1584 \end{minipage}
1585 \begin{minipage}{7cm}
1586 \small
1587 \begin{itemize}
1588  \item IBS: C may displace Si\\
1589        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1590  \item Assumption:\\
1591        \hkl<1 1 0>-type $\rightarrow$ favored combination
1592  \renewcommand\labelitemi{$\Rightarrow$}
1593  \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
1594        ($E_{\text{f}}=3.88\text{ eV}$)
1595  \item Interaction drops quickly to zero\\
1596        (low interaction capture radius)
1597 \end{itemize}
1598 \end{minipage}
1599
1600 \end{slide}
1601
1602 \begin{slide}
1603
1604  {\large\bf\boldmath
1605   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1606  }
1607
1608  \footnotesize
1609
1610 \vspace{0.1cm}
1611
1612 \begin{minipage}[t]{3cm}
1613 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1614 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1615 \end{minipage}
1616 \begin{minipage}[t]{7cm}
1617 \vspace{0.2cm}
1618 \begin{center}
1619  Low activation energies\\
1620  High activation energies for reverse processes\\
1621  $\Downarrow$\\
1622  {\color{blue}C$_{\text{sub}}$ very stable}\\
1623 \vspace*{0.1cm}
1624  \hrule
1625 \vspace*{0.1cm}
1626  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1627  $\Downarrow$\\
1628  {\color{blue}Formation of SiC by successive substitution by C}
1629
1630 \end{center}
1631 \end{minipage}
1632 \begin{minipage}[t]{3cm}
1633 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1634 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1635 \end{minipage}
1636
1637
1638 \framebox{
1639 \begin{minipage}{5.9cm}
1640 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1641 \begin{center}
1642 \begin{picture}(0,0)(70,0)
1643 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1644 \end{picture}
1645 \begin{picture}(0,0)(30,0)
1646 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1647 \end{picture}
1648 \begin{picture}(0,0)(-10,0)
1649 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1650 \end{picture}
1651 \begin{picture}(0,0)(-48,0)
1652 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1653 \end{picture}
1654 \begin{picture}(0,0)(12.5,5)
1655 \includegraphics[width=1cm]{100_arrow.eps}
1656 \end{picture}
1657 \begin{picture}(0,0)(97,-10)
1658 \includegraphics[height=0.9cm]{001_arrow.eps}
1659 \end{picture}
1660 \end{center}
1661 \vspace{0.1cm}
1662 \end{minipage}
1663 }
1664 \begin{minipage}{0.3cm}
1665 \hfill
1666 \end{minipage}
1667 \framebox{
1668 \begin{minipage}{5.9cm}
1669 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1670 \begin{center}
1671 \begin{picture}(0,0)(60,0)
1672 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1673 \end{picture}
1674 \begin{picture}(0,0)(25,0)
1675 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1676 \end{picture}
1677 \begin{picture}(0,0)(-20,0)
1678 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1679 \end{picture}
1680 \begin{picture}(0,0)(-55,0)
1681 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1682 \end{picture}
1683 \begin{picture}(0,0)(12.5,5)
1684 \includegraphics[width=1cm]{100_arrow.eps}
1685 \end{picture}
1686 \begin{picture}(0,0)(95,0)
1687 \includegraphics[height=0.9cm]{001_arrow.eps}
1688 \end{picture}
1689 \end{center}
1690 \vspace{0.1cm}
1691 \end{minipage}
1692 }
1693
1694 \end{slide}
1695
1696 \begin{slide}
1697
1698  {\large\bf
1699   Conclusion of defect / migration / combined defect simulations
1700  }
1701
1702  \footnotesize
1703
1704 \vspace*{0.1cm}
1705
1706 Defect structures
1707 \begin{itemize}
1708  \item Accurately described by quantum-mechanical simulations
1709  \item Less accurate description by classical potential simulations
1710  \item Underestimated formation energy of \cs{} by classical approach
1711  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
1712 \end{itemize}
1713
1714 Migration
1715 \begin{itemize}
1716  \item C migration pathway in Si identified
1717  \item Consistent with reorientation and diffusion experiments
1718 \end{itemize} 
1719 \begin{itemize}
1720  \item Different path and ...
1721  \item overestimated barrier by classical potential calculations
1722 \end{itemize} 
1723
1724 Concerning the precipitation mechanism
1725 \begin{itemize}
1726  \item Agglomeration of C-Si dumbbells energetically favorable
1727        (stress compensation)
1728  \item C-Si indeed favored compared to
1729        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1730  \item Possible low interaction capture radius of
1731        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1732  \item Low barrier for
1733        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
1734  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1735        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1736 \end{itemize} 
1737 \begin{center}
1738 {\color{blue}Results suggest increased participation of \cs}
1739 \end{center}
1740
1741 \end{slide}
1742
1743 \begin{slide}
1744
1745  {\large\bf
1746   Silicon carbide precipitation simulations
1747  }
1748
1749  \small
1750
1751 {\scriptsize
1752  \begin{pspicture}(0,0)(12,6.5)
1753   % nodes
1754   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1755    \parbox{7cm}{
1756    \begin{itemize}
1757     \item Create c-Si volume
1758     \item Periodc boundary conditions
1759     \item Set requested $T$ and $p=0\text{ bar}$
1760     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1761    \end{itemize}
1762   }}}}
1763   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1764    \parbox{7cm}{
1765    Insertion of C atoms at constant T
1766    \begin{itemize}
1767     \item total simulation volume {\pnode{in1}}
1768     \item volume of minimal SiC precipitate {\pnode{in2}}
1769     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1770           precipitate
1771    \end{itemize} 
1772   }}}}
1773   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1774    \parbox{7.0cm}{
1775    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1776   }}}}
1777   \ncline[]{->}{init}{insert}
1778   \ncline[]{->}{insert}{cool}
1779   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1780   \rput(7.8,6){\footnotesize $V_1$}
1781   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1782   \rput(9.2,4.85){\tiny $V_2$}
1783   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1784   \rput(9.55,4.45){\footnotesize $V_3$}
1785   \rput(7.9,3.2){\pnode{ins1}}
1786   \rput(9.22,2.8){\pnode{ins2}}
1787   \rput(11.0,2.4){\pnode{ins3}}
1788   \ncline[]{->}{in1}{ins1}
1789   \ncline[]{->}{in2}{ins2}
1790   \ncline[]{->}{in3}{ins3}
1791  \end{pspicture}
1792 }
1793
1794 \begin{itemize}
1795  \item Restricted to classical potential simulations
1796  \item $V_2$ and $V_3$ considered due to low diffusion
1797  \item Amount of C atoms: 6000
1798        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1799  \item Simulation volume: $31\times 31\times 31$ unit cells
1800        (238328 Si atoms)
1801 \end{itemize}
1802
1803 \end{slide}
1804
1805 \begin{slide}
1806
1807  {\large\bf\boldmath
1808   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1809  }
1810
1811  \small
1812
1813 \begin{minipage}{6.5cm}
1814 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1815 \end{minipage} 
1816 \begin{minipage}{6.5cm}
1817 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1818 \end{minipage} 
1819
1820 \begin{minipage}{6.5cm}
1821 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1822 \end{minipage} 
1823 \begin{minipage}{6.5cm}
1824 \scriptsize
1825 \underline{Low C concentration ($V_1$)}\\
1826 \hkl<1 0 0> C-Si dumbbell dominated structure
1827 \begin{itemize}
1828  \item Si-C bumbs around 0.19 nm
1829  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1830        concatenated dumbbells of various orientation
1831  \item Si-Si NN distance stretched to 0.3 nm
1832 \end{itemize}
1833 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1834 \underline{High C concentration ($V_2$, $V_3$)}\\
1835 High amount of strongly bound C-C bonds\\
1836 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1837 Only short range order observable\\
1838 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1839 \end{minipage} 
1840
1841 \end{slide}
1842
1843 \begin{slide}
1844
1845  {\large\bf
1846   Limitations of molecular dynamics and short range potentials
1847  }
1848
1849 \footnotesize
1850
1851 \vspace{0.2cm}
1852
1853 \underline{Time scale problem of MD}\\[0.2cm]
1854 Minimize integration error\\
1855 $\Rightarrow$ discretization considerably smaller than
1856               reciprocal of fastest vibrational mode\\[0.1cm]
1857 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
1858 $\Rightarrow$ suitable choice of time step:
1859               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
1860 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
1861 Several local minima in energy surface separated by large energy barriers\\
1862 $\Rightarrow$ transition event corresponds to a multiple
1863               of vibrational periods\\
1864 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
1865               infrequent transition events\\[0.1cm]
1866 {\color{blue}Accelerated methods:}
1867 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1868
1869 \vspace{0.3cm}
1870
1871 \underline{Limitations related to the short range potential}\\[0.2cm]
1872 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
1873 and 2$^{\text{nd}}$ next neighbours\\
1874 $\Rightarrow$ overestimated unphysical high forces of next neighbours
1875
1876 \vspace{0.3cm}
1877
1878 \framebox{
1879 \color{red}
1880 Potential enhanced problem of slow phase space propagation
1881 }
1882
1883 \vspace{0.3cm}
1884
1885 \underline{Approach to the (twofold) problem}\\[0.2cm]
1886 Increased temperature simulations without TAD corrections\\
1887 (accelerated methods or higher time scales exclusively not sufficient)
1888
1889 \begin{picture}(0,0)(-260,-30)
1890 \framebox{
1891 \begin{minipage}{4.2cm}
1892 \tiny
1893 \begin{center}
1894 \vspace{0.03cm}
1895 \underline{IBS}
1896 \end{center}
1897 \begin{itemize}
1898 \item 3C-SiC also observed for higher T
1899 \item higher T inside sample
1900 \item structural evolution vs.\\
1901       equilibrium properties
1902 \end{itemize}
1903 \end{minipage}
1904 }
1905 \end{picture}
1906
1907 \begin{picture}(0,0)(-305,-155)
1908 \framebox{
1909 \begin{minipage}{2.5cm}
1910 \tiny
1911 \begin{center}
1912 retain proper\\
1913 thermodynmic sampling
1914 \end{center}
1915 \end{minipage}
1916 }
1917 \end{picture}
1918
1919 \end{slide}
1920
1921 \begin{slide}
1922
1923  {\large\bf
1924   Increased temperature simulations at low C concentration
1925  }
1926
1927 \small
1928
1929 \begin{minipage}{6.5cm}
1930 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
1931 \end{minipage}
1932 \begin{minipage}{6.5cm}
1933 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
1934 \end{minipage}
1935
1936 \begin{minipage}{6.5cm}
1937 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
1938 \end{minipage}
1939 \begin{minipage}{6.5cm}
1940 \scriptsize
1941  \underline{Si-C bonds:}
1942  \begin{itemize}
1943   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1944   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1945  \end{itemize}
1946  \underline{Si-Si bonds:}
1947  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1948  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1949  \underline{C-C bonds:}
1950  \begin{itemize}
1951   \item C-C next neighbour pairs reduced (mandatory)
1952   \item Peak at 0.3 nm slightly shifted
1953         \begin{itemize}
1954          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1955                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1956                combinations (|)\\
1957                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1958                ($\downarrow$)
1959          \item Range [|-$\downarrow$]:
1960                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1961                with nearby Si$_{\text{I}}$}
1962         \end{itemize}
1963  \end{itemize}
1964 \end{minipage}
1965
1966 \begin{picture}(0,0)(-330,-74)
1967 \color{blue}
1968 \framebox{
1969 \begin{minipage}{1.6cm}
1970 \tiny
1971 \begin{center}
1972 stretched SiC\\[-0.1cm]
1973 in c-Si
1974 \end{center}
1975 \end{minipage}
1976 }
1977 \end{picture}
1978
1979 \end{slide}
1980
1981 \begin{slide}
1982
1983  {\large\bf
1984   Increased temperature simulations at high C concentration
1985  }
1986
1987 \footnotesize
1988
1989 \begin{minipage}{6.5cm}
1990 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1991 \end{minipage}
1992 \begin{minipage}{6.5cm}
1993 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1994 \end{minipage}
1995
1996 \begin{center}
1997 Decreasing cut-off artifact\\
1998 High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1999 $\Rightarrow$ hard to categorize
2000 \end{center}
2001
2002 \vspace{0.1cm}
2003
2004 \framebox{
2005 \begin{minipage}[t]{6.0cm}
2006 0.186 nm: Si-C pairs $\uparrow$\\
2007 (as expected in 3C-SiC)\\[0.2cm]
2008 0.282 nm: Si-C-C\\[0.2cm]
2009 $\approx$0.35 nm: C-Si-Si
2010 \end{minipage}
2011 }
2012 \begin{minipage}{0.2cm}
2013 \hfill
2014 \end{minipage}
2015 \framebox{
2016 \begin{minipage}[t]{6.0cm}
2017 0.15 nm: C-C pairs $\uparrow$\\
2018 (as expected in graphite/diamond)\\[0.2cm]
2019 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2020 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2021 \end{minipage}
2022 }
2023
2024 \vspace{0.1cm}
2025
2026 \begin{center}
2027 {\color{red}Amorphous} SiC-like phase remains\\
2028 Slightly sharper peaks
2029 $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
2030 due to temperature\\[0.1cm]
2031 \framebox{
2032 \bf
2033 Actual SiC precipitation not accessible by MD
2034 }
2035 \end{center}
2036
2037 \end{slide}
2038
2039 \begin{slide}
2040
2041  {\large\bf
2042   Summary and Conclusions
2043  }
2044
2045  \scriptsize
2046
2047 \vspace{0.1cm}
2048
2049 \framebox{
2050 \begin{minipage}{12.9cm}
2051  \underline{Defects}
2052  \begin{itemize}
2053    \item DFT / EA
2054         \begin{itemize}
2055          \item Point defects excellently / fairly well described
2056                by DFT / EA
2057          \item C$_{\text{sub}}$ drastically underestimated by EA
2058          \item EA predicts correct ground state:
2059                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2060          \item Identified migration path explaining
2061                diffusion and reorientation experiments by DFT
2062          \item EA fails to describe \ci{} migration:
2063                Wrong path \& overestimated barrier
2064         \end{itemize}
2065    \item Combinations of defects
2066          \begin{itemize}
2067           \item Agglomeration of point defects energetically favorable
2068                 by compensation of stress
2069           \item Formation of C-C unlikely
2070           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2071           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2072                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2073         \end{itemize}
2074  \end{itemize}
2075 \end{minipage}
2076 }
2077
2078 \vspace{0.2cm}
2079
2080 \framebox{
2081 \begin{minipage}[t]{12.9cm}
2082  \underline{Pecipitation simulations}
2083  \begin{itemize}
2084   \item High C concentration $\rightarrow$ amorphous SiC like phase
2085   \item Problem of potential enhanced slow phase space propagation
2086   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2087   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2088   \item High T necessary to simulate IBS conditions (far from equilibrium)
2089   \item Precipitation by successive agglomeration of \cs (epitaxy)
2090   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2091         (stretched SiC, interface)
2092  \end{itemize}
2093 \end{minipage}
2094 }
2095
2096 \end{slide}
2097
2098 \begin{slide}
2099
2100  {\large\bf
2101   Acknowledgements
2102  }
2103
2104  \vspace{0.1cm}
2105
2106  \small
2107
2108  Thanks to \ldots
2109
2110  \underline{Augsburg}
2111  \begin{itemize}
2112   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2113   \item Ralf Utermann (EDV)
2114  \end{itemize}
2115  
2116  \underline{Helsinki}
2117  \begin{itemize}
2118   \item Prof. K. Nordlund (MD)
2119  \end{itemize}
2120  
2121  \underline{Munich}
2122  \begin{itemize}
2123   \item Bayerische Forschungsstiftung (financial support)
2124  \end{itemize}
2125  
2126  \underline{Paderborn}
2127  \begin{itemize}
2128   \item Prof. J. Lindner (SiC)
2129   \item Prof. G. Schmidt (DFT + financial support)
2130   \item Dr. E. Rauls (DFT + SiC)
2131   \item Dr. S. Sanna (VASP)
2132  \end{itemize}
2133
2134 \vspace{0.2cm}
2135
2136 \begin{center}
2137 \framebox{
2138 \bf Thank you for your attention!
2139 }
2140 \end{center}
2141
2142 \end{slide}
2143
2144 \end{document}