ca6b07fcdbffefce282bf3746806e8f5aa015ef1
[lectures/latex.git] / posic / talks / seminar_2011.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 % units
35 \usepackage{units}
36
37 \usepackage{semcolor}
38 \usepackage{semlayer}           % Seminar overlays
39 \usepackage{slidesec}           % Seminar sections and list of slides
40
41 \input{seminar.bug}             % Official bugs corrections
42 \input{seminar.bg2}             % Unofficial bugs corrections
43
44 \articlemag{1}
45
46 \special{landscape}
47
48 % font
49 %\usepackage{cmbright}
50 %\renewcommand{\familydefault}{\sfdefault}
51 %\usepackage{mathptmx}
52
53 \usepackage{upgreek}
54
55 \begin{document}
56
57 \extraslideheight{10in}
58 \slideframe{none}
59
60 \pagestyle{empty}
61
62 % specify width and height
63 \slidewidth 27.7cm 
64 \slideheight 19.1cm 
65
66 % shift it into visual area properly
67 \def\slideleftmargin{3.3cm}
68 \def\slidetopmargin{0.6cm}
69
70 \newcommand{\ham}{\mathcal{H}}
71 \newcommand{\pot}{\mathcal{V}}
72 \newcommand{\foo}{\mathcal{U}}
73 \newcommand{\vir}{\mathcal{W}}
74
75 % itemize level ii
76 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
77
78 % nice phi
79 \renewcommand{\phi}{\varphi}
80
81 % roman letters
82 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
83
84 % colors
85 \newrgbcolor{si-yellow}{.6 .6 0}
86 \newrgbcolor{hb}{0.75 0.77 0.89}
87 \newrgbcolor{lbb}{0.75 0.8 0.88}
88 \newrgbcolor{hlbb}{0.825 0.88 0.968}
89 \newrgbcolor{lachs}{1.0 .93 .81}
90
91 % shortcuts
92 \newcommand{\si}{Si$_{\text{i}}${}}
93 \newcommand{\ci}{C$_{\text{i}}${}}
94 \newcommand{\cs}{C$_{\text{sub}}${}}
95 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
96 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
97 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
98 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
99
100 % topic
101
102 \begin{slide}
103 \begin{center}
104
105  \vspace{16pt}
106
107  {\LARGE\bf
108   Atomistic simulation study on the silicon carbide precipitation
109   in silicon
110  }
111
112  \vspace{48pt}
113
114  \textsc{F. Zirkelbach}
115
116  \vspace{48pt}
117
118 Yet another seminar talk
119
120  \vspace{08pt}
121
122  Augsburg, 26. Mai 2011
123
124 \end{center}
125 \end{slide}
126
127 % motivation / properties / applications of silicon carbide
128 \begin{slide}
129
130 \small
131
132 \begin{pspicture}(0,0)(13.5,5)
133
134
135
136  \psframe*[linecolor=hb](0,0)(13.5,5)
137
138  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
139  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
140
141  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
142
143  \rput[lt](0.5,4){wide band gap}
144  \rput[lt](0.5,3.5){high electric breakdown field}
145  \rput[lt](0.5,3){good electron mobility}
146  \rput[lt](0.5,2.5){high electron saturation drift velocity}
147  \rput[lt](0.5,2){high thermal conductivity}
148
149  \rput[lt](0.5,1.5){hard and mechanically stable}
150  \rput[lt](0.5,1){chemically inert}
151
152  \rput[lt](0.5,0.5){radiation hardness}
153
154  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
155
156  \rput[rt](13,3.85){high-temperature, high power}
157  \rput[rt](13,3.5){and high-frequency}
158  \rput[rt](13,3.15){electronic and optoelectronic devices}
159
160  \rput[rt](13,2.35){material suitable for extreme conditions}
161  \rput[rt](13,2){microelectromechanical systems}
162  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
163
164  \rput[rt](13,0.85){first wall reactor material, detectors}
165  \rput[rt](13,0.5){and electronic devices for space}
166
167 \end{pspicture}
168
169 \begin{picture}(0,0)(-3,68)
170 \includegraphics[width=2.6cm]{wide_band_gap.eps}
171 \end{picture}
172 \begin{picture}(0,0)(-285,-162)
173 \includegraphics[width=3.38cm]{sic_led.eps}
174 \end{picture}
175 \begin{picture}(0,0)(-195,-162)
176 \includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
177 \end{picture}
178 \begin{picture}(0,0)(-313,65)
179 \includegraphics[width=2.2cm]{infineon_schottky.eps}
180 \end{picture}
181 \begin{picture}(0,0)(-220,65)
182 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
183 \end{picture}
184 \begin{picture}(0,0)(0,-160)
185 \includegraphics[width=3.0cm]{sic_proton.eps}
186 \end{picture}
187 \begin{picture}(0,0)(-60,65)
188 \includegraphics[width=3.4cm]{sic_switch.eps}
189 \end{picture}
190
191 \end{slide}
192
193 % start of contents
194
195 \begin{slide}
196
197  {\large\bf
198   Polytypes of SiC
199  }
200
201  \vspace{4cm}
202
203  \small
204
205 \begin{tabular}{l c c c c c c}
206 \hline
207  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
208 \hline
209 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
210 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
211 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
212 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
213 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
214 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
215 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
216 \hline
217 \end{tabular}
218
219 {\tiny
220  Values for $T=300$ K
221 }
222
223 \begin{picture}(0,0)(-160,-155)
224  \includegraphics[width=7cm]{polytypes.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-10,-185)
227  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
228 \end{picture}
229 \begin{picture}(0,0)(-10,-175)
230  {\tiny cubic (twist)}
231 \end{picture}
232 \begin{picture}(0,0)(-60,-175)
233  {\tiny hexagonal (no twist)}
234 \end{picture}
235 \begin{pspicture}(0,0)(0,0)
236 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
237 \end{pspicture}
238 \begin{pspicture}(0,0)(0,0)
239 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
240 \end{pspicture}
241 \begin{pspicture}(0,0)(0,0)
242 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
243 \end{pspicture}
244
245 \end{slide}
246
247 \begin{slide}
248
249  {\large\bf
250   Fabrication of silicon carbide
251  }
252
253  \small
254  
255  \vspace{4pt}
256
257  SiC - \emph{Born from the stars, perfected on earth.}
258  
259  \vspace{4pt}
260
261  Conventional thin film SiC growth:
262  \begin{itemize}
263   \item \underline{Sublimation growth using the modified Lely method}
264         \begin{itemize}
265          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
266          \item Surrounded by polycrystalline SiC in a graphite crucible\\
267                at $T=2100-2400 \, ^{\circ} \text{C}$
268          \item Deposition of supersaturated vapor on cooler seed crystal
269         \end{itemize}
270   \item \underline{Homoepitaxial growth using CVD}
271         \begin{itemize}
272          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
273          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
274          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
275         \end{itemize}
276   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
277         \begin{itemize}
278          \item Two steps: carbonization and growth
279          \item $T=650-1050 \, ^{\circ} \text{C}$
280          \item SiC/Si lattice mismatch $\approx$ 20 \%
281          \item Quality and size not yet sufficient
282         \end{itemize}
283  \end{itemize}
284
285  \begin{picture}(0,0)(-280,-65)
286   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
287  \end{picture}
288  \begin{picture}(0,0)(-280,-55)
289   \begin{minipage}{5cm}
290   {\tiny
291    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
292    on 6H-SiC substrate
293   }
294   \end{minipage}
295  \end{picture}
296  \begin{picture}(0,0)(-265,-150)
297   \includegraphics[width=2.4cm]{m_lely.eps}
298  \end{picture}
299  \begin{picture}(0,0)(-333,-175)
300   \begin{minipage}{5cm}
301   {\tiny
302    1. Lid\\[-7pt]
303    2. Heating\\[-7pt]
304    3. Source\\[-7pt]
305    4. Crucible\\[-7pt]
306    5. Insulation\\[-7pt]
307    6. Seed crystal
308   }
309   \end{minipage}
310  \end{picture}
311  \begin{picture}(0,0)(-230,-35)
312  \framebox{
313  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
314  }
315  \end{picture}
316  \begin{picture}(0,0)(-230,-10)
317  \framebox{
318  \begin{minipage}{3cm}
319  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
320                                less advanced}
321  \end{minipage}
322  }
323  \end{picture}
324
325 \end{slide}
326
327 \begin{slide}
328
329  {\large\bf
330   Fabrication of silicon carbide
331  }
332
333  \small
334
335  Alternative approach:
336  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
337  \begin{itemize}
338   \item \underline{Implantation step 1}\\
339         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
340         $\Rightarrow$ box-like distribution of equally sized
341                        and epitactically oriented SiC precipitates
342                        
343   \item \underline{Implantation step 2}\\
344         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
345         $\Rightarrow$ destruction of SiC nanocrystals
346                       in growing amorphous interface layers
347   \item \underline{Annealing}\\
348         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
349         $\Rightarrow$ homogeneous, stoichiometric SiC layer
350                       with sharp interfaces
351  \end{itemize}
352
353  \begin{minipage}{6.3cm}
354  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
355  {\tiny
356   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
357  }
358  \end{minipage}
359 \framebox{
360  \begin{minipage}{6.3cm}
361  \begin{center}
362  {\color{blue}
363   Precipitation mechanism not yet fully understood!
364  }
365  \renewcommand\labelitemi{$\Rightarrow$}
366  \small
367  \underline{Understanding the SiC precipitation}
368  \begin{itemize}
369   \item significant technological progress in SiC thin film formation
370   \item perspectives for processes relying upon prevention of SiC precipitation
371  \end{itemize}
372  \end{center}
373  \end{minipage}
374 }
375  
376 \end{slide}
377
378 % contents
379
380 \begin{slide}
381
382 {\large\bf
383  Outline
384 }
385
386  \begin{itemize}
387   \item Supposed precipitation mechanism of SiC in Si
388   \item Utilized simulation techniques
389         \begin{itemize}
390          \item Molecular dynamics (MD) simulations
391          \item Density functional theory (DFT) calculations
392         \end{itemize}
393   \item C and Si self-interstitial point defects in silicon
394   \item Silicon carbide precipitation simulations
395   \item Summary / Conclusion / Outlook
396  \end{itemize}
397
398 \end{slide}
399
400 \begin{slide}
401
402  {\large\bf
403   Supposed precipitation mechanism of SiC in Si
404  }
405
406  \scriptsize
407
408  \vspace{0.1cm}
409
410  \begin{minipage}{3.8cm}
411  Si \& SiC lattice structure\\[0.2cm]
412  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
413  \hrule
414  \end{minipage}
415  \hspace{0.6cm}
416  \begin{minipage}{3.8cm}
417  \begin{center}
418  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
419  \end{center}
420  \end{minipage}
421  \hspace{0.6cm}
422  \begin{minipage}{3.8cm}
423  \begin{center}
424  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
425  \end{center}
426  \end{minipage}
427
428  \begin{minipage}{4cm}
429  \begin{center}
430  C-Si dimers (dumbbells)\\[-0.1cm]
431  on Si interstitial sites
432  \end{center}
433  \end{minipage}
434  \hspace{0.2cm}
435  \begin{minipage}{4.2cm}
436  \begin{center}
437  Agglomeration of C-Si dumbbells\\[-0.1cm]
438  $\Rightarrow$ dark contrasts
439  \end{center}
440  \end{minipage}
441  \hspace{0.2cm}
442  \begin{minipage}{4cm}
443  \begin{center}
444  Precipitation of 3C-SiC in Si\\[-0.1cm]
445  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
446  \& release of Si self-interstitials
447  \end{center}
448  \end{minipage}
449
450  \begin{minipage}{3.8cm}
451  \begin{center}
452  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
453  \end{center}
454  \end{minipage}
455  \hspace{0.6cm}
456  \begin{minipage}{3.8cm}
457  \begin{center}
458  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
459  \end{center}
460  \end{minipage}
461  \hspace{0.6cm}
462  \begin{minipage}{3.8cm}
463  \begin{center}
464  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
465  \end{center}
466  \end{minipage}
467
468 \begin{pspicture}(0,0)(0,0)
469 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
470 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
471 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
472 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
473 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
474  $4a_{\text{Si}}=5a_{\text{SiC}}$
475  }}}
476 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
477 \hkl(h k l) planes match
478  }}}
479 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
480 r = 2 - 4 nm
481  }}}
482 \end{pspicture}
483
484 \end{slide}
485
486 \begin{slide}
487
488  {\large\bf
489   Molecular dynamics (MD) simulations
490  }
491
492  \vspace{12pt}
493
494  \small
495
496  {\bf MD basics:}
497  \begin{itemize}
498   \item Microscopic description of N particle system
499   \item Analytical interaction potential
500   \item Numerical integration using Newtons equation of motion\\
501         as a propagation rule in 6N-dimensional phase space
502   \item Observables obtained by time and/or ensemble averages
503  \end{itemize}
504  {\bf Details of the simulation:}
505  \begin{itemize}
506   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
507   \item Ensemble: NpT (isothermal-isobaric)
508         \begin{itemize}
509          \item Berendsen thermostat:
510                $\tau_{\text{T}}=100\text{ fs}$
511          \item Berendsen barostat:\\
512                $\tau_{\text{P}}=100\text{ fs}$,
513                $\beta^{-1}=100\text{ GPa}$
514         \end{itemize}
515   \item Erhart/Albe potential: Tersoff-like bond order potential
516   \vspace*{12pt}
517         \[
518         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
519         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
520         \]
521  \end{itemize}
522
523  \begin{picture}(0,0)(-230,-30)
524   \includegraphics[width=5cm]{tersoff_angle.eps} 
525  \end{picture}
526  
527 \end{slide}
528
529 \begin{slide}
530
531  {\large\bf
532   Density functional theory (DFT) calculations
533  }
534
535  \small
536
537  Basic ingredients necessary for DFT
538
539  \begin{itemize}
540   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
541         \begin{itemize}
542          \item ... uniquely determines the ground state potential
543                / wavefunctions
544          \item ... minimizes the systems total energy
545         \end{itemize}
546   \item \underline{Born-Oppenheimer}
547         - $N$ moving electrons in an external potential of static nuclei
548 \[
549 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
550               +\sum_i^N V_{\text{ext}}(r_i)
551               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
552 \]
553   \item \underline{Effective potential}
554         - averaged electrostatic potential \& exchange and correlation
555 \[
556 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
557                  +V_{\text{XC}}[n(r)]
558 \]
559   \item \underline{Kohn-Sham system}
560         - Schr\"odinger equation of N non-interacting particles
561 \[
562 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
563 =\epsilon_i\Phi_i(r)
564 \quad
565 \Rightarrow
566 \quad
567 n(r)=\sum_i^N|\Phi_i(r)|^2
568 \]
569   \item \underline{Self-consistent solution}\\
570 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
571 which in turn depends on $n(r)$
572   \item \underline{Variational principle}
573         - minimize total energy with respect to $n(r)$
574  \end{itemize}
575
576 \end{slide}
577
578 \begin{slide}
579
580  {\large\bf
581   Density functional theory (DFT) calculations
582  }
583
584  \small
585
586  \vspace*{0.2cm}
587
588  Details of applied DFT calculations in this work
589
590  \begin{itemize}
591   \item \underline{Exchange correlation functional}
592         - approximations for the inhomogeneous electron gas
593         \begin{itemize}
594          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
595          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
596         \end{itemize}
597   \item \underline{Plane wave basis set}
598         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
599 \[
600 \rightarrow
601 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
602 \qquad ({\color{blue}300\text{ eV}})
603 \]
604   \item \underline{Brillouin zone sampling} -
605         {\color{blue}$\Gamma$-point only} calculations
606   \item \underline{Pseudo potential} 
607         - consider only the valence electrons
608   \item \underline{Code} - VASP 4.6
609  \end{itemize}
610
611  \vspace*{0.2cm}
612
613  MD and structural optimization
614
615  \begin{itemize}
616   \item MD integration: Gear predictor corrector algorithm
617   \item Pressure control: Parrinello-Rahman pressure control
618   \item Structural optimization: Conjugate gradient method
619  \end{itemize}
620
621 \begin{pspicture}(0,0)(0,0)
622 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
623 \end{pspicture}
624
625 \end{slide}
626
627 \begin{slide}
628
629  {\large\bf
630   C and Si self-interstitial point defects in silicon
631  }
632
633  \small
634
635  \vspace*{0.3cm}
636
637 \begin{minipage}{8cm}
638 Procedure:\\[0.3cm]
639   \begin{pspicture}(0,0)(7,5)
640   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
641    \parbox{7cm}{
642    \begin{itemize}
643     \item Creation of c-Si simulation volume
644     \item Periodic boundary conditions
645     \item $T=0\text{ K}$, $p=0\text{ bar}$
646    \end{itemize}
647   }}}}
648 \rput(3.5,2.1){\rnode{insert}{\psframebox{
649  \parbox{7cm}{
650   \begin{center}
651   Insertion of interstitial C/Si atoms
652   \end{center}
653   }}}}
654   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
655    \parbox{7cm}{
656    \begin{center}
657    Relaxation / structural energy minimization
658    \end{center}
659   }}}}
660   \ncline[]{->}{init}{insert}
661   \ncline[]{->}{insert}{cool}
662  \end{pspicture}
663 \end{minipage}
664 \begin{minipage}{5cm}
665   \includegraphics[width=5cm]{unit_cell_e.eps}\\
666 \end{minipage}
667
668 \begin{minipage}{9cm}
669  \begin{tabular}{l c c}
670  \hline
671  & size [unit cells] & \# atoms\\
672 \hline
673 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
674 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
675 \hline
676  \end{tabular}
677 \end{minipage}
678 \begin{minipage}{4cm}
679 {\color{red}$\bullet$} Tetrahedral\\
680 {\color{green}$\bullet$} Hexagonal\\
681 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
682 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
683 {\color{cyan}$\bullet$} Bond-centered\\
684 {\color{black}$\bullet$} Vacancy / Substitutional
685 \end{minipage}
686
687 \end{slide}
688
689 \begin{slide}
690
691  \footnotesize
692
693 \begin{minipage}{9.5cm}
694
695  {\large\bf
696   Si self-interstitial point defects in silicon\\
697  }
698
699 \begin{tabular}{l c c c c c}
700 \hline
701  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
702 \hline
703  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
704  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
705 \hline
706 \end{tabular}\\[0.2cm]
707
708 \begin{minipage}{4.7cm}
709 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
710 \end{minipage}
711 \begin{minipage}{4.7cm}
712 \begin{center}
713 {\tiny nearly T $\rightarrow$ T}\\
714 \end{center}
715 \includegraphics[width=4.7cm]{nhex_tet.ps}
716 \end{minipage}\\
717
718 \underline{Hexagonal} \hspace{2pt}
719 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
720 \framebox{
721 \begin{minipage}{2.7cm}
722 $E_{\text{f}}^*=4.48\text{ eV}$\\
723 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
724 \end{minipage}
725 \begin{minipage}{0.4cm}
726 \begin{center}
727 $\Rightarrow$
728 \end{center}
729 \end{minipage}
730 \begin{minipage}{2.7cm}
731 $E_{\text{f}}=3.96\text{ eV}$\\
732 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
733 \end{minipage}
734 }
735 \begin{minipage}{2.9cm}
736 \begin{flushright}
737 \underline{Vacancy}\\
738 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
739 \end{flushright}
740 \end{minipage}
741
742 \end{minipage}
743 \begin{minipage}{3.5cm}
744
745 \begin{flushright}
746 \underline{\hkl<1 1 0> dumbbell}\\
747 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
748 \underline{Tetrahedral}\\
749 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
750 \underline{\hkl<1 0 0> dumbbell}\\
751 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
752 \end{flushright}
753
754 \end{minipage}
755
756 \end{slide}
757
758 \begin{slide}
759
760 \footnotesize
761
762  {\large\bf
763   C interstitial point defects in silicon\\[-0.1cm]
764  }
765
766 \begin{tabular}{l c c c c c c r}
767 \hline
768  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
769 \hline
770  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
771  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
772 \hline
773 \end{tabular}\\[0.1cm]
774
775 \framebox{
776 \begin{minipage}{2.7cm}
777 \underline{Hexagonal} \hspace{2pt}
778 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
779 $E_{\text{f}}^*=9.05\text{ eV}$\\
780 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
781 \end{minipage}
782 \begin{minipage}{0.4cm}
783 \begin{center}
784 $\Rightarrow$
785 \end{center}
786 \end{minipage}
787 \begin{minipage}{2.7cm}
788 \underline{\hkl<1 0 0>}\\
789 $E_{\text{f}}=3.88\text{ eV}$\\
790 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
791 \end{minipage}
792 }
793 \begin{minipage}{2cm}
794 \hfill
795 \end{minipage}
796 \begin{minipage}{3cm}
797 \begin{flushright}
798 \underline{Tetrahedral}\\
799 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
800 \end{flushright}
801 \end{minipage}
802
803 \framebox{
804 \begin{minipage}{2.7cm}
805 \underline{Bond-centered}\\
806 $E_{\text{f}}^*=5.59\text{ eV}$\\
807 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
808 \end{minipage}
809 \begin{minipage}{0.4cm}
810 \begin{center}
811 $\Rightarrow$
812 \end{center}
813 \end{minipage}
814 \begin{minipage}{2.7cm}
815 \underline{\hkl<1 1 0> dumbbell}\\
816 $E_{\text{f}}=5.18\text{ eV}$\\
817 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
818 \end{minipage}
819 }
820 \begin{minipage}{2cm}
821 \hfill
822 \end{minipage}
823 \begin{minipage}{3cm}
824 \begin{flushright}
825 \underline{Substitutional}\\
826 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
827 \end{flushright}
828 \end{minipage}
829
830 \end{slide}
831
832 \begin{slide}
833
834 \footnotesize
835
836  {\large\bf\boldmath
837   C \hkl<1 0 0> dumbbell interstitial configuration\\
838  }
839
840 {\tiny
841 \begin{tabular}{l c c c c c c c c}
842 \hline
843  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
844 \hline
845 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
846 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
847 \hline
848 \end{tabular}\\[0.2cm]
849 \begin{tabular}{l c c c c }
850 \hline
851  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
852 \hline
853 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
854 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
855 \hline
856 \end{tabular}\\[0.2cm]
857 \begin{tabular}{l c c c}
858 \hline
859  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
860 \hline
861 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
862 VASP & 0.109 & -0.065 & 0.174 \\
863 \hline
864 \end{tabular}\\[0.6cm]
865 }
866
867 \begin{minipage}{3.0cm}
868 \begin{center}
869 \underline{Erhart/Albe}
870 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
871 \end{center}
872 \end{minipage}
873 \begin{minipage}{3.0cm}
874 \begin{center}
875 \underline{VASP}
876 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
877 \end{center}
878 \end{minipage}\\
879
880 \begin{picture}(0,0)(-185,10)
881 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
882 \end{picture}
883 \begin{picture}(0,0)(-280,-150)
884 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
885 \end{picture}
886
887 \begin{pspicture}(0,0)(0,0)
888 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
889 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
890 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
891 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
892 \end{pspicture}
893
894 \end{slide}
895
896 \begin{slide}
897
898 \small
899
900 \begin{minipage}{8.5cm}
901
902  {\large\bf
903   Bond-centered interstitial configuration\\[-0.1cm]
904  }
905
906 \begin{minipage}{3.0cm}
907 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
908 \end{minipage}
909 \begin{minipage}{5.2cm}
910 \begin{itemize}
911  \item Linear Si-C-Si bond
912  \item Si: one C \& 3 Si neighbours
913  \item Spin polarized calculations
914  \item No saddle point!\\
915        Real local minimum!
916 \end{itemize}
917 \end{minipage}
918
919 \framebox{
920  \tiny
921  \begin{minipage}[t]{6.5cm}
922   \begin{minipage}[t]{1.2cm}
923   {\color{red}Si}\\
924   {\tiny sp$^3$}\\[0.8cm]
925   \underline{${\color{black}\uparrow}$}
926   \underline{${\color{black}\uparrow}$}
927   \underline{${\color{black}\uparrow}$}
928   \underline{${\color{red}\uparrow}$}\\
929   sp$^3$
930   \end{minipage}
931   \begin{minipage}[t]{1.4cm}
932   \begin{center}
933   {\color{red}M}{\color{blue}O}\\[0.8cm]
934   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
935   $\sigma_{\text{ab}}$\\[0.5cm]
936   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
937   $\sigma_{\text{b}}$
938   \end{center}
939   \end{minipage}
940   \begin{minipage}[t]{1.0cm}
941   \begin{center}
942   {\color{blue}C}\\
943   {\tiny sp}\\[0.2cm]
944   \underline{${\color{white}\uparrow\uparrow}$}
945   \underline{${\color{white}\uparrow\uparrow}$}\\
946   2p\\[0.4cm]
947   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
948   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
949   sp
950   \end{center}
951   \end{minipage}
952   \begin{minipage}[t]{1.4cm}
953   \begin{center}
954   {\color{blue}M}{\color{green}O}\\[0.8cm]
955   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
956   $\sigma_{\text{ab}}$\\[0.5cm]
957   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
958   $\sigma_{\text{b}}$
959   \end{center}
960   \end{minipage}
961   \begin{minipage}[t]{1.2cm}
962   \begin{flushright}
963   {\color{green}Si}\\
964   {\tiny sp$^3$}\\[0.8cm]
965   \underline{${\color{green}\uparrow}$}
966   \underline{${\color{black}\uparrow}$}
967   \underline{${\color{black}\uparrow}$}
968   \underline{${\color{black}\uparrow}$}\\
969   sp$^3$
970   \end{flushright}
971   \end{minipage}
972  \end{minipage}
973 }\\[0.1cm]
974
975 \framebox{
976 \begin{minipage}{4.5cm}
977 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
978 \end{minipage}
979 \begin{minipage}{3.5cm}
980 {\color{gray}$\bullet$} Spin up\\
981 {\color{green}$\bullet$} Spin down\\
982 {\color{blue}$\bullet$} Resulting spin up\\
983 {\color{yellow}$\bullet$} Si atoms\\
984 {\color{red}$\bullet$} C atom
985 \end{minipage}
986 }
987
988 \end{minipage}
989 \begin{minipage}{4.2cm}
990 \begin{flushright}
991 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
992 {\color{green}$\Box$} {\tiny unoccupied}\\
993 {\color{red}$\bullet$} {\tiny occupied}
994 \end{flushright}
995 \end{minipage}
996
997 \end{slide}
998
999 \begin{slide}
1000
1001  {\large\bf\boldmath
1002   Migration of the C \hkl<1 0 0> dumbbell interstitial
1003  }
1004
1005 \scriptsize
1006
1007  {\small Investigated pathways}
1008
1009 \begin{minipage}{8.5cm}
1010 \begin{minipage}{8.3cm}
1011 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1012 \begin{minipage}{2.4cm}
1013 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1014 \end{minipage}
1015 \begin{minipage}{0.4cm}
1016 $\rightarrow$
1017 \end{minipage}
1018 \begin{minipage}{2.4cm}
1019 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1020 \end{minipage}
1021 \begin{minipage}{0.4cm}
1022 $\rightarrow$
1023 \end{minipage}
1024 \begin{minipage}{2.4cm}
1025 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1026 \end{minipage}
1027 \end{minipage}\\
1028 \begin{minipage}{8.3cm}
1029 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1030 \begin{minipage}{2.4cm}
1031 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1032 \end{minipage}
1033 \begin{minipage}{0.4cm}
1034 $\rightarrow$
1035 \end{minipage}
1036 \begin{minipage}{2.4cm}
1037 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1038 \end{minipage}
1039 \begin{minipage}{0.4cm}
1040 $\rightarrow$
1041 \end{minipage}
1042 \begin{minipage}{2.4cm}
1043 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1044 \end{minipage}
1045 \end{minipage}\\
1046 \begin{minipage}{8.3cm}
1047 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1048 \begin{minipage}{2.4cm}
1049 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1050 \end{minipage}
1051 \begin{minipage}{0.4cm}
1052 $\rightarrow$
1053 \end{minipage}
1054 \begin{minipage}{2.4cm}
1055 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1056 \end{minipage}
1057 \begin{minipage}{0.4cm}
1058 $\rightarrow$
1059 \end{minipage}
1060 \begin{minipage}{2.4cm}
1061 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1062 \end{minipage}
1063 \end{minipage}
1064 \end{minipage}
1065 \framebox{
1066 \begin{minipage}{4.2cm}
1067  {\small Constrained relaxation\\
1068          technique (CRT) method}\\
1069 \includegraphics[width=4cm]{crt_orig.eps}
1070 \begin{itemize}
1071  \item Constrain diffusing atom
1072  \item Static constraints 
1073 \end{itemize}
1074 \vspace*{0.3cm}
1075  {\small Modifications}\\
1076 \includegraphics[width=4cm]{crt_mod.eps}
1077 \begin{itemize}
1078  \item Constrain all atoms
1079  \item Update individual\\
1080        constraints
1081 \end{itemize}
1082 \end{minipage}
1083 }
1084
1085 \end{slide}
1086
1087 \begin{slide}
1088
1089  {\large\bf\boldmath
1090   Migration of the C \hkl<1 0 0> dumbbell interstitial
1091  }
1092
1093 \scriptsize
1094
1095 \framebox{
1096 \begin{minipage}{5.9cm}
1097 \begin{flushleft}
1098 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1099 \end{flushleft}
1100 \begin{center}
1101 \begin{picture}(0,0)(60,0)
1102 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1103 \end{picture}
1104 \begin{picture}(0,0)(-5,0)
1105 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1106 \end{picture}
1107 \begin{picture}(0,0)(-55,0)
1108 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1109 \end{picture}
1110 \begin{picture}(0,0)(12.5,10)
1111 \includegraphics[width=1cm]{110_arrow.eps}
1112 \end{picture}
1113 \begin{picture}(0,0)(90,0)
1114 \includegraphics[height=0.9cm]{001_arrow.eps}
1115 \end{picture}
1116 \end{center}
1117 \vspace*{0.35cm}
1118 \end{minipage}
1119 }
1120 \begin{minipage}{0.3cm}
1121 \hfill
1122 \end{minipage}
1123 \framebox{
1124 \begin{minipage}{5.9cm}
1125 \begin{flushright}
1126 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1127 \end{flushright}
1128 \begin{center}
1129 \begin{picture}(0,0)(60,0)
1130 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1131 \end{picture}
1132 \begin{picture}(0,0)(5,0)
1133 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1134 \end{picture}
1135 \begin{picture}(0,0)(-55,0)
1136 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1137 \end{picture}
1138 \begin{picture}(0,0)(12.5,10)
1139 \includegraphics[width=1cm]{100_arrow.eps}
1140 \end{picture}
1141 \begin{picture}(0,0)(90,0)
1142 \includegraphics[height=0.9cm]{001_arrow.eps}
1143 \end{picture}
1144 \end{center}
1145 \vspace*{0.3cm}
1146 \end{minipage}\\
1147 }
1148
1149 \vspace*{0.05cm}
1150
1151 \framebox{
1152 \begin{minipage}{5.9cm}
1153 \begin{flushleft}
1154 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1155 \end{flushleft}
1156 \begin{center}
1157 \begin{picture}(0,0)(60,0)
1158 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1159 \end{picture}
1160 \begin{picture}(0,0)(10,0)
1161 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1162 \end{picture}
1163 \begin{picture}(0,0)(-60,0)
1164 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1165 \end{picture}
1166 \begin{picture}(0,0)(12.5,10)
1167 \includegraphics[width=1cm]{100_arrow.eps}
1168 \end{picture}
1169 \begin{picture}(0,0)(90,0)
1170 \includegraphics[height=0.9cm]{001_arrow.eps}
1171 \end{picture}
1172 \end{center}
1173 \vspace*{0.3cm}
1174 \end{minipage}
1175 }
1176 \begin{minipage}{0.3cm}
1177 \hfill
1178 \end{minipage}
1179 \begin{minipage}{6.5cm}
1180 VASP results
1181 \begin{itemize}
1182  \item Energetically most favorable path
1183        \begin{itemize}
1184         \item Path 2
1185         \item Activation energy: $\approx$ 0.9 eV 
1186         \item Experimental values: 0.73 ... 0.87 eV
1187        \end{itemize}
1188        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1189  \item Reorientation (path 3)
1190        \begin{itemize}
1191         \item More likely composed of two consecutive steps of type 2
1192         \item Experimental values: 0.77 ... 0.88 eV
1193        \end{itemize}
1194        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1195 \end{itemize}
1196 \end{minipage}
1197
1198 \end{slide}
1199
1200 \begin{slide}
1201
1202  {\large\bf\boldmath
1203   Migration of the C \hkl<1 0 0> dumbbell interstitial
1204  }
1205
1206 \scriptsize
1207
1208  \vspace{0.1cm}
1209
1210 \begin{minipage}{6.5cm}
1211
1212 \framebox{
1213 \begin{minipage}[t]{5.9cm}
1214 \begin{flushleft}
1215 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1216 \end{flushleft}
1217 \begin{center}
1218 \begin{pspicture}(0,0)(0,0)
1219 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1220 \end{pspicture}
1221 \begin{picture}(0,0)(60,-50)
1222 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1223 \end{picture}
1224 \begin{picture}(0,0)(5,-50)
1225 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1226 \end{picture}
1227 \begin{picture}(0,0)(-55,-50)
1228 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1229 \end{picture}
1230 \begin{picture}(0,0)(12.5,-40)
1231 \includegraphics[width=1cm]{110_arrow.eps}
1232 \end{picture}
1233 \begin{picture}(0,0)(90,-45)
1234 \includegraphics[height=0.9cm]{001_arrow.eps}
1235 \end{picture}\\
1236 \begin{pspicture}(0,0)(0,0)
1237 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1238 \end{pspicture}
1239 \begin{picture}(0,0)(60,-15)
1240 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1241 \end{picture}
1242 \begin{picture}(0,0)(35,-15)
1243 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1244 \end{picture}
1245 \begin{picture}(0,0)(-5,-15)
1246 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1247 \end{picture}
1248 \begin{picture}(0,0)(-55,-15)
1249 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1250 \end{picture}
1251 \begin{picture}(0,0)(12.5,-5)
1252 \includegraphics[width=1cm]{100_arrow.eps}
1253 \end{picture}
1254 \begin{picture}(0,0)(90,-15)
1255 \includegraphics[height=0.9cm]{010_arrow.eps}
1256 \end{picture}
1257 \end{center}
1258 \end{minipage}
1259 }\\[0.1cm]
1260
1261 \begin{minipage}{5.9cm}
1262 Erhart/Albe results
1263 \begin{itemize}
1264  \item Lowest activation energy: $\approx$ 2.2 eV
1265  \item 2.4 times higher than VASP
1266  \item Different pathway
1267 \end{itemize}
1268 \end{minipage}
1269
1270 \end{minipage}
1271 \begin{minipage}{6.5cm}
1272
1273 \framebox{
1274 \begin{minipage}{5.9cm}
1275 %\begin{flushright}
1276 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1277 %\end{flushright}
1278 %\begin{center}
1279 %\begin{pspicture}(0,0)(0,0)
1280 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1281 %\end{pspicture}
1282 %\begin{picture}(0,0)(60,-5)
1283 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1284 %\end{picture}
1285 %\begin{picture}(0,0)(0,-5)
1286 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1287 %\end{picture}
1288 %\begin{picture}(0,0)(-55,-5)
1289 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1290 %\end{picture}
1291 %\begin{picture}(0,0)(12.5,5)
1292 %\includegraphics[width=1cm]{100_arrow.eps}
1293 %\end{picture}
1294 %\begin{picture}(0,0)(90,0)
1295 %\includegraphics[height=0.9cm]{001_arrow.eps}
1296 %\end{picture}
1297 %\end{center}
1298 %\vspace{0.2cm}
1299 %\end{minipage}
1300 %}\\[0.2cm]
1301 %
1302 %\framebox{
1303 %\begin{minipage}{5.9cm}
1304 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1305 \end{minipage}
1306 }\\[0.1cm]
1307
1308 \begin{minipage}{5.9cm}
1309 Transition involving \ci{} \hkl<1 1 0>
1310 \begin{itemize}
1311  \item Bond-centered configuration unstable\\
1312        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1313  \item Transition minima of path 2 \& 3\\
1314        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1315  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1316  \item 2.4 - 3.4 times higher than VASP
1317  \item Rotation of dumbbell orientation
1318 \end{itemize}
1319 \end{minipage}
1320
1321 \end{minipage}
1322
1323 \end{slide}
1324
1325 \begin{slide}
1326
1327  {\large\bf\boldmath
1328   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1329  }
1330
1331 \small
1332
1333 \vspace*{0.1cm}
1334
1335 Binding energy: 
1336 $
1337 E_{\text{b}}=
1338 E_{\text{f}}^{\text{defect combination}}-
1339 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1340 E_{\text{f}}^{\text{2nd defect}}
1341 $
1342
1343 \vspace*{0.1cm}
1344
1345 {\scriptsize
1346 \begin{tabular}{l c c c c c c}
1347 \hline
1348  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1349  \hline
1350  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1351  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1352  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1353  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1354  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1355  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1356  \hline
1357  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1358  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1359 \hline
1360 \end{tabular}
1361 }
1362
1363 \vspace*{0.3cm}
1364
1365 \footnotesize
1366
1367 \begin{minipage}[t]{3.8cm}
1368 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1369 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1370 \end{minipage}
1371 \begin{minipage}[t]{3.5cm}
1372 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1373 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1374 \end{minipage}
1375 \begin{minipage}[t]{5.5cm}
1376 \begin{itemize}
1377  \item Restricted to VASP simulations
1378  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1379  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1380  \item Stress compensation / increase
1381  \item Most favorable: C clustering
1382  \item Unfavored: antiparallel orientations
1383  \item Indication of energetically favored\\
1384        agglomeration
1385 \end{itemize}
1386 \end{minipage}
1387
1388 \begin{picture}(0,0)(-295,-130)
1389 \includegraphics[width=3.5cm]{comb_pos.eps}
1390 \end{picture}
1391
1392 \end{slide}
1393
1394 \begin{slide}
1395
1396  {\large\bf\boldmath
1397   Combinations of C-Si \hkl<1 0 0>-type interstitials
1398  }
1399
1400 \small
1401
1402 \vspace*{0.1cm}
1403
1404 Energetically most favorable combinations along \hkl<1 1 0>
1405
1406 \vspace*{0.1cm}
1407
1408 {\scriptsize
1409 \begin{tabular}{l c c c c c c}
1410 \hline
1411  & 1 & 2 & 3 & 4 & 5 & 6\\
1412 \hline
1413 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1414 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1415 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1416 \hline
1417 \end{tabular}
1418 }
1419
1420 \vspace*{0.3cm}
1421
1422 \begin{minipage}{7.0cm}
1423 \includegraphics[width=7cm]{db_along_110_cc.ps}
1424 \end{minipage}
1425 \begin{minipage}{6.0cm}
1426 \begin{center}
1427 {\color{blue}
1428  Interaction proportional to reciprocal cube of C-C distance
1429 }\\[0.2cm]
1430  Saturation in the immediate vicinity
1431 \end{center}
1432 \end{minipage}
1433
1434 \vspace{0.2cm}
1435
1436 \end{slide}
1437
1438 \begin{slide}
1439
1440  {\large\bf\boldmath
1441   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1442  }
1443
1444  \scriptsize
1445
1446 \begin{center}
1447 \begin{minipage}{3.2cm}
1448 \includegraphics[width=3cm]{sub_110_combo.eps}
1449 \end{minipage}
1450 \begin{minipage}{7.8cm}
1451 \begin{tabular}{l c c c c c c}
1452 \hline
1453 C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1454                    \hkl<1 0 1> & \hkl<-1 0 1> \\
1455 \hline
1456 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1457 2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1458 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1459 4 & \RM{4} & B & D & E & E & D \\
1460 5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1461 \hline
1462 \end{tabular}
1463 \end{minipage}
1464 \end{center}
1465
1466 \begin{center}
1467 \begin{tabular}{l c c c c c c c c c c}
1468 \hline
1469 Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1470 \hline
1471 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1472 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1473 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1474 \hline
1475 \end{tabular}
1476 \end{center}
1477
1478 \begin{minipage}{6.0cm}
1479 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1480 \end{minipage}
1481 \begin{minipage}{7cm}
1482 \small
1483 \begin{itemize}
1484  \item IBS: C may displace Si\\
1485        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1486  \item Assumption:\\
1487        \hkl<1 1 0>-type $\rightarrow$ favored combination
1488  \renewcommand\labelitemi{$\Rightarrow$}
1489  \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
1490        ($E_{\text{f}}=3.88\text{ eV}$)
1491  \item Interaction drops quickly to zero\\
1492        (low interaction capture radius)
1493 \end{itemize}
1494 \end{minipage}
1495
1496 \end{slide}
1497
1498 \begin{slide}
1499
1500  {\large\bf\boldmath
1501   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1502  }
1503
1504  \footnotesize
1505
1506 \vspace{0.1cm}
1507
1508 \begin{minipage}[t]{3cm}
1509 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1510 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1511 \end{minipage}
1512 \begin{minipage}[t]{7cm}
1513 \vspace{0.2cm}
1514 \begin{center}
1515  Low activation energies\\
1516  High activation energies for reverse processes\\
1517  $\Downarrow$\\
1518  {\color{blue}C$_{\text{sub}}$ very stable}\\
1519 \vspace*{0.1cm}
1520  \hrule
1521 \vspace*{0.1cm}
1522  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1523  $\Downarrow$\\
1524  {\color{blue}Formation of SiC by successive substitution by C}
1525
1526 \end{center}
1527 \end{minipage}
1528 \begin{minipage}[t]{3cm}
1529 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1530 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1531 \end{minipage}
1532
1533
1534 \framebox{
1535 \begin{minipage}{5.9cm}
1536 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1537 \begin{center}
1538 \begin{picture}(0,0)(70,0)
1539 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1540 \end{picture}
1541 \begin{picture}(0,0)(30,0)
1542 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1543 \end{picture}
1544 \begin{picture}(0,0)(-10,0)
1545 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1546 \end{picture}
1547 \begin{picture}(0,0)(-48,0)
1548 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1549 \end{picture}
1550 \begin{picture}(0,0)(12.5,5)
1551 \includegraphics[width=1cm]{100_arrow.eps}
1552 \end{picture}
1553 \begin{picture}(0,0)(97,-10)
1554 \includegraphics[height=0.9cm]{001_arrow.eps}
1555 \end{picture}
1556 \end{center}
1557 \vspace{0.1cm}
1558 \end{minipage}
1559 }
1560 \begin{minipage}{0.3cm}
1561 \hfill
1562 \end{minipage}
1563 \framebox{
1564 \begin{minipage}{5.9cm}
1565 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1566 \begin{center}
1567 \begin{picture}(0,0)(60,0)
1568 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1569 \end{picture}
1570 \begin{picture}(0,0)(25,0)
1571 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1572 \end{picture}
1573 \begin{picture}(0,0)(-20,0)
1574 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1575 \end{picture}
1576 \begin{picture}(0,0)(-55,0)
1577 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1578 \end{picture}
1579 \begin{picture}(0,0)(12.5,5)
1580 \includegraphics[width=1cm]{100_arrow.eps}
1581 \end{picture}
1582 \begin{picture}(0,0)(95,0)
1583 \includegraphics[height=0.9cm]{001_arrow.eps}
1584 \end{picture}
1585 \end{center}
1586 \vspace{0.1cm}
1587 \end{minipage}
1588 }
1589
1590 \end{slide}
1591
1592 \begin{slide}
1593
1594  {\large\bf
1595   Conclusion of defect / migration / combined defect simulations
1596  }
1597
1598  \footnotesize
1599
1600 \vspace*{0.1cm}
1601
1602 Defect structures
1603 \begin{itemize}
1604  \item Accurately described by quantum-mechanical simulations
1605  \item Less accurate description by classical potential simulations
1606  \item Underestimated formation energy of \cs{} by classical approach
1607  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
1608 \end{itemize}
1609
1610 Migration
1611 \begin{itemize}
1612  \item C migration pathway in Si identified
1613  \item Consistent with reorientation and diffusion experiments
1614 \end{itemize} 
1615 \begin{itemize}
1616  \item Different path and ...
1617  \item overestimated barrier by classical potential calculations
1618 \end{itemize} 
1619
1620 Concerning the precipitation mechanism
1621 \begin{itemize}
1622  \item Agglomeration of C-Si dumbbells energetically favorable
1623        (stress compensation)
1624  \item C-Si indeed favored compared to
1625        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1626  \item Possible low interaction capture radius of
1627        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1628  \item Low barrier for
1629        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
1630  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1631        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1632 \end{itemize} 
1633 \begin{center}
1634 {\color{blue}Results suggest increased participation of \cs}
1635 \end{center}
1636
1637 \end{slide}
1638
1639 \begin{slide}
1640
1641  {\large\bf
1642   Silicon carbide precipitation simulations
1643  }
1644
1645  \small
1646
1647 {\scriptsize
1648  \begin{pspicture}(0,0)(12,6.5)
1649   % nodes
1650   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1651    \parbox{7cm}{
1652    \begin{itemize}
1653     \item Create c-Si volume
1654     \item Periodc boundary conditions
1655     \item Set requested $T$ and $p=0\text{ bar}$
1656     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1657    \end{itemize}
1658   }}}}
1659   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1660    \parbox{7cm}{
1661    Insertion of C atoms at constant T
1662    \begin{itemize}
1663     \item total simulation volume {\pnode{in1}}
1664     \item volume of minimal SiC precipitate {\pnode{in2}}
1665     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1666           precipitate
1667    \end{itemize} 
1668   }}}}
1669   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1670    \parbox{7.0cm}{
1671    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1672   }}}}
1673   \ncline[]{->}{init}{insert}
1674   \ncline[]{->}{insert}{cool}
1675   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1676   \rput(7.8,6){\footnotesize $V_1$}
1677   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1678   \rput(9.2,4.85){\tiny $V_2$}
1679   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1680   \rput(9.55,4.45){\footnotesize $V_3$}
1681   \rput(7.9,3.2){\pnode{ins1}}
1682   \rput(9.22,2.8){\pnode{ins2}}
1683   \rput(11.0,2.4){\pnode{ins3}}
1684   \ncline[]{->}{in1}{ins1}
1685   \ncline[]{->}{in2}{ins2}
1686   \ncline[]{->}{in3}{ins3}
1687  \end{pspicture}
1688 }
1689
1690 \begin{itemize}
1691  \item Restricted to classical potential simulations
1692  \item $V_2$ and $V_3$ considered due to low diffusion
1693  \item Amount of C atoms: 6000
1694        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1695  \item Simulation volume: $31\times 31\times 31$ unit cells
1696        (238328 Si atoms)
1697 \end{itemize}
1698
1699 \end{slide}
1700
1701 \begin{slide}
1702
1703  {\large\bf\boldmath
1704   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1705  }
1706
1707  \small
1708
1709 \begin{minipage}{6.5cm}
1710 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1711 \end{minipage} 
1712 \begin{minipage}{6.5cm}
1713 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1714 \end{minipage} 
1715
1716 \begin{minipage}{6.5cm}
1717 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1718 \end{minipage} 
1719 \begin{minipage}{6.5cm}
1720 \scriptsize
1721 \underline{Low C concentration ($V_1$)}\\
1722 \hkl<1 0 0> C-Si dumbbell dominated structure
1723 \begin{itemize}
1724  \item Si-C bumbs around 0.19 nm
1725  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1726        concatenated dumbbells of various orientation
1727  \item Si-Si NN distance stretched to 0.3 nm
1728 \end{itemize}
1729 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1730 \underline{High C concentration ($V_2$, $V_3$)}\\
1731 High amount of strongly bound C-C bonds\\
1732 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1733 Only short range order observable\\
1734 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1735 \end{minipage} 
1736
1737 \end{slide}
1738
1739 \begin{slide}
1740
1741  {\large\bf
1742   Limitations of molecular dynamics and short range potentials
1743  }
1744
1745 \footnotesize
1746
1747 \vspace{0.2cm}
1748
1749 \underline{Time scale problem of MD}\\[0.2cm]
1750 Minimize integration error\\
1751 $\Rightarrow$ discretization considerably smaller than
1752               reciprocal of fastest vibrational mode\\[0.1cm]
1753 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
1754 $\Rightarrow$ suitable choice of time step:
1755               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
1756 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
1757 Several local minima in energy surface separated by large energy barriers\\
1758 $\Rightarrow$ transition event corresponds to a multiple
1759               of vibrational periods\\
1760 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
1761               infrequent transition events\\[0.1cm]
1762 {\color{blue}Accelerated methods:}
1763 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1764
1765 \vspace{0.3cm}
1766
1767 \underline{Limitations related to the short range potential}\\[0.2cm]
1768 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
1769 and 2$^{\text{nd}}$ next neighbours\\
1770 $\Rightarrow$ overestimated unphysical high forces of next neighbours
1771
1772 \vspace{0.3cm}
1773
1774 \framebox{
1775 \color{red}
1776 Potential enhanced problem of slow phase space propagation
1777 }
1778
1779 \vspace{0.3cm}
1780
1781 \underline{Approach to the (twofold) problem}\\[0.2cm]
1782 Increased temperature simulations without TAD corrections\\
1783 (accelerated methods or higher time scales exclusively not sufficient)
1784
1785 \begin{picture}(0,0)(-260,-30)
1786 \framebox{
1787 \begin{minipage}{4.2cm}
1788 \tiny
1789 \begin{center}
1790 \vspace{0.03cm}
1791 \underline{IBS}
1792 \end{center}
1793 \begin{itemize}
1794 \item 3C-SiC also observed for higher T
1795 \item higher T inside sample
1796 \item structural evolution vs.\\
1797       equilibrium properties
1798 \end{itemize}
1799 \end{minipage}
1800 }
1801 \end{picture}
1802
1803 \begin{picture}(0,0)(-305,-155)
1804 \framebox{
1805 \begin{minipage}{2.5cm}
1806 \tiny
1807 \begin{center}
1808 retain proper\\
1809 thermodynmic sampling
1810 \end{center}
1811 \end{minipage}
1812 }
1813 \end{picture}
1814
1815 \end{slide}
1816
1817 \begin{slide}
1818
1819  {\large\bf
1820   Increased temperature simulations at low C concentration
1821  }
1822
1823 \small
1824
1825 \begin{minipage}{6.5cm}
1826 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
1827 \end{minipage}
1828 \begin{minipage}{6.5cm}
1829 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
1830 \end{minipage}
1831
1832 \begin{minipage}{6.5cm}
1833 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
1834 \end{minipage}
1835 \begin{minipage}{6.5cm}
1836 \scriptsize
1837  \underline{Si-C bonds:}
1838  \begin{itemize}
1839   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1840   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1841  \end{itemize}
1842  \underline{Si-Si bonds:}
1843  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1844  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1845  \underline{C-C bonds:}
1846  \begin{itemize}
1847   \item C-C next neighbour pairs reduced (mandatory)
1848   \item Peak at 0.3 nm slightly shifted
1849         \begin{itemize}
1850          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1851                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1852                combinations (|)\\
1853                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1854                ($\downarrow$)
1855          \item Range [|-$\downarrow$]:
1856                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1857                with nearby Si$_{\text{I}}$}
1858         \end{itemize}
1859  \end{itemize}
1860 \end{minipage}
1861
1862 \begin{picture}(0,0)(-330,-74)
1863 \color{blue}
1864 \framebox{
1865 \begin{minipage}{1.6cm}
1866 \tiny
1867 \begin{center}
1868 stretched SiC\\[-0.1cm]
1869 in c-Si
1870 \end{center}
1871 \end{minipage}
1872 }
1873 \end{picture}
1874
1875 \end{slide}
1876
1877 \begin{slide}
1878
1879  {\large\bf
1880   Increased temperature simulations at high C concentration
1881  }
1882
1883 \footnotesize
1884
1885 \begin{minipage}{6.5cm}
1886 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1887 \end{minipage}
1888 \begin{minipage}{6.5cm}
1889 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1890 \end{minipage}
1891
1892 \begin{center}
1893 Decreasing cut-off artifact\\
1894 High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1895 $\Rightarrow$ hard to categorize
1896 \end{center}
1897
1898 \vspace{0.1cm}
1899
1900 \framebox{
1901 \begin{minipage}[t]{6.0cm}
1902 0.186 nm: Si-C pairs $\uparrow$\\
1903 (as expected in 3C-SiC)\\[0.2cm]
1904 0.282 nm: Si-C-C\\[0.2cm]
1905 $\approx$0.35 nm: C-Si-Si
1906 \end{minipage}
1907 }
1908 \begin{minipage}{0.2cm}
1909 \hfill
1910 \end{minipage}
1911 \framebox{
1912 \begin{minipage}[t]{6.0cm}
1913 0.15 nm: C-C pairs $\uparrow$\\
1914 (as expected in graphite/diamond)\\[0.2cm]
1915 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
1916 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
1917 \end{minipage}
1918 }
1919
1920 \vspace{0.1cm}
1921
1922 \begin{center}
1923 {\color{red}Amorphous} SiC-like phase remains\\
1924 Slightly sharper peaks
1925 $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
1926 due to temperature\\[0.1cm]
1927 \framebox{
1928 \bf
1929 Actual SiC precipitation not accessible by MD
1930 }
1931 \end{center}
1932
1933 \end{slide}
1934
1935 \begin{slide}
1936
1937  {\large\bf
1938   Summary and Conclusions
1939  }
1940
1941  \scriptsize
1942
1943 \vspace{0.1cm}
1944
1945 \framebox{
1946 \begin{minipage}{12.9cm}
1947  \underline{Defects}
1948  \begin{itemize}
1949    \item DFT / EA
1950         \begin{itemize}
1951          \item Point defects excellently / fairly well described
1952                by DFT / EA
1953          \item C$_{\text{sub}}$ drastically underestimated by EA
1954          \item EA predicts correct ground state:
1955                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
1956          \item Identified migration path explaining
1957                diffusion and reorientation experiments by DFT
1958          \item EA fails to describe \ci{} migration:
1959                Wrong path \& overestimated barrier
1960         \end{itemize}
1961    \item Combinations of defects
1962          \begin{itemize}
1963           \item Agglomeration of point defects energetically favorable
1964                 by compensation of stress
1965           \item Formation of C-C unlikely
1966           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
1967           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
1968                 Low barrier (\unit[0.77]{eV}) \& low capture radius
1969         \end{itemize}
1970  \end{itemize}
1971 \end{minipage}
1972 }
1973
1974 \vspace{0.2cm}
1975
1976 \framebox{
1977 \begin{minipage}[t]{12.9cm}
1978  \underline{Pecipitation simulations}
1979  \begin{itemize}
1980   \item High C concentration $\rightarrow$ amorphous SiC like phase
1981   \item Problem of potential enhanced slow phase space propagation
1982   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
1983   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
1984   \item High T necessary to simulate IBS conditions (far from equilibrium)
1985   \item Precipitation by successive agglomeration of \cs (epitaxy)
1986   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
1987         (stretched SiC, interface)
1988  \end{itemize}
1989 \end{minipage}
1990 }
1991
1992 \end{slide}
1993
1994 \begin{slide}
1995
1996  {\large\bf
1997   Acknowledgements
1998  }
1999
2000  \vspace{0.1cm}
2001
2002  \small
2003
2004  Thanks to \ldots
2005
2006  \underline{Augsburg}
2007  \begin{itemize}
2008   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2009   \item Ralf Utermann (EDV)
2010  \end{itemize}
2011  
2012  \underline{Helsinki}
2013  \begin{itemize}
2014   \item Prof. K. Nordlund (MD)
2015  \end{itemize}
2016  
2017  \underline{Munich}
2018  \begin{itemize}
2019   \item Bayerische Forschungsstiftung (financial support)
2020  \end{itemize}
2021  
2022  \underline{Paderborn}
2023  \begin{itemize}
2024   \item Prof. J. Lindner (SiC)
2025   \item Prof. G. Schmidt (DFT + financial support)
2026   \item Dr. E. Rauls (DFT + SiC)
2027   \item Dr. S. Sanna (VASP)
2028  \end{itemize}
2029
2030 \vspace{0.2cm}
2031
2032 \begin{center}
2033 \framebox{
2034 \bf Thank you for your attention!
2035 }
2036 \end{center}
2037
2038 \end{slide}
2039
2040 \end{document}