fe97f69d71d6a93645b74db0053d38c0132f5898
[lectures/latex.git] / posic / thesis / summary_outlook.tex
1 \chapter{Summary and conclusions}
2 \label{chapter:summary}
3
4
5 Experimental studies revealed increased implantation temperatures to be more efficient than postannealing methods for the formation of topotactically aligned precipitates \cite{kimura82,eichhorn02}.
6 In particular, restructuring of strong C-C bonds is affected \cite{deguchi92}, which preferentially arise if additional kinetic energy provided by an increase of the implantation temperature is missing to accelerate or even enable atomic rearrangements.
7 This is assumed to be related to the problem of slow structural evolution encountered in the high C concentration simulations due to the insertion of high amounts of C into a small volume within a short period of time resulting in essentially no time for the system to rearrange.
8 % rt implantation + annealing
9 Implantations of an understoichiometric dose at room temperature followed by thermal annealing results in small spherical sized C$_{\text{i}}$ agglomerates at temperatures below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size at temperatures above \unit[700]{$^{\circ}$C} \cite{werner96}.
10 Since, however, the implantation temperature is considered more efficient than the postannealing temperature, SiC precipitates are expected -- and indeed are observed for as-implanted samples \cite{lindner99,lindner01} -- in implantations performed at \unit[450]{$^{\circ}$C}.
11 Implanted C is therefore expected to occupy substitutionally usual Si lattice sites right from the start.
12
13 Thus, we propose an increased participation of C$_{\text{s}}$ already in the initial stages of the implantation process at temperatures above \unit[450]{$^{\circ}$C}, the temperature most applicable for the formation of SiC layers of high crystalline quality and topotactical alignment\cite{lindner99}.
14 Thermally activated, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by Si$_{\text{i}}$.
15 The associated emission of Si$_{\text{i}}$ is needed for several reasons.
16 For the agglomeration and rearrangement of C, Si$_{\text{i}}$ is needed to turn C$_{\text{s}}$ into highly mobile C$_{\text{i}}$ again.
17 Since the conversion of a coherent SiC structure, i.e. C$_{\text{s}}$ occupying the Si lattice sites of one of the two fcc lattices that build up the c-Si diamond lattice, into incoherent SiC is accompanied by a reduction in volume, large amounts of strain are assumed to reside in the coherent as well as at the surface of the incoherent structure.
18 Si$_{\text{i}}$ serves either as a supply of Si atoms needed in the surrounding of the contracted precipitates or as an interstitial defect minimizing the emerging strain energy of a coherent precipitate.
19 The latter has been directly identified in the present simulation study, i.e. structures of two C$_{\text{s}}$ atoms and Si$_{\text{i}}$ located in the vicinity.
20
21 It is, thus, concluded that precipitation occurs by successive agglomeration of C$_{\text{s}}$ as already proposed by Nejim et~al.\cite{nejim95}.
22 This agrees well with a previous ab initio study on defects in C implanted Si\cite{zirkelbach11a}, which showed C$_{\text{s}}$ to occur in all probability.
23 However, agglomeration and rearrangement is enabled by mobile C$_{\text{i}}$, which has to be present at the same time and is formed by recombination of C$_{\text{s}}$ and Si$_{\text{i}}$.
24 In contrast to assumptions of an abrupt precipitation of an agglomerate of C$_{\text{i}}$\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}, however, structural evolution is believed to occur by a successive occupation of usual Si lattice sites with substitutional C.
25 This mechanism satisfies the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate, whereas there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.
26