not that much merges ...
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index da28041..faf4971 100644 (file)
@@ -148,14 +148,15 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     \label{img:dv_ls}
     \end{figure}
     Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess.
-    Der gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten.
+    Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten.
     In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet.
     Erstaunlichwerweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben.
     Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist.
     Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht.
     Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt.
 
-    Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 nm$.
+    Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 nm$ mit zunehmenden $d_r$.
+    HIERWEITER
     Ausserdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen.
     Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$.