typos fixed 1-4
[lectures/latex.git] / nlsop / diplom / modell.tex
index 7b6fa8b..eb63242 100644 (file)
@@ -6,10 +6,10 @@
   Im Folgenden soll auf das Modell zur Bildung dieser geordneten amorphen Ausscheidungen eingegangen werden.
   Es wurde erstmals in \cite{basic_phys_proc} vorgestellt.
   Die Idee des Modells ist schematisch in Abbildung \ref{img:modell} gezeigt.
-  \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu gerodneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell}
+  \printimg{h}{width=15cm}{modell_ng.eps}{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu geordneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$"=implantierten Silizium.}{img:modell}
   % alternativ model1_s_german.eps
 
-  Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}.
+  Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}.
   Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ unter den gegebenen Bedingungen ionenstrahlinduziert epitaktisch rekristallisiert, w"ahrend rein thermische Rekristallisation von amorphen Silizium ($a-Si$) erst oberhalb $550 \, ^{\circ} \mathrm{C}$ erfolgt \cite{csepregi}.
   Zuf"allig amorphisierte Gebiete werden demnach mit hoher Wahrscheinlichkeit sehr schnell rekristallisieren.
   Die rein zuf"allige Amorphisierung, f"ur die immer eine geringe Wahrscheinlichkeit besteht, bezeichnet man als ballistische Amorphisierung.
   Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt.
   Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist.
   Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind.
-  Bei bis zu $5$ st"undigen Tempervorg"angen bei  $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen zeigt.
-  Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinen Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt.
+  Bei bis zu f"unfst"undigen Tempervorg"angen bei  $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen, zeigt.
+  Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinem Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt.
   Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet.
 
-  Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischen Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}.
+  Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}.
   Eine entsprechende geringere Dichte wird f"ur unterst"ochiometrisches amorphes $SiC_x$ im Vergleich zu kristallinem Silizium angenommen.
   Die amorphen Gebiete sind demnach bestrebt sich auszudehnen und "uben Druckspannungen auf die kristalline Umgebung aus.
   Diese sind in Abbildung \ref{img:modell} durch die Pfeile dargestellt.
@@ -40,7 +40,7 @@
   Da die Lamellen aus einzelnen sph"arischen $a-SiC_x$-Ausscheidungen hervorgehen, ist zu erwarten, dass die Kohlenstoffkonzentration lateral eine Modulation entlang der Lamellen aufweist.
   Die Modulation sollte allerdings schwach sein, wie aus folgenden "Uberlegungen zur Diffusion folgt.
 
-  Die amorphen Gebiete dienen als Senke f"ur Kohlenstoff, der von der kristallinen Umgebung in die amorphe Ausscheidung diffundieren kann, um so die "Ubers"attigung mit Kohelnstoff in den kristallinen Gebieten zu reduzieren.
+  Die amorphen Gebiete dienen als Senke f"ur Kohlenstoff, der von der kristallinen Umgebung in die amorphe Ausscheidung diffundieren kann, um so die "Ubers"attigung mit Kohlenstoff in den kristallinen Gebieten zu reduzieren.
   Die L"oslichkeit von Kohlenstoff in kristallinen Silizium ($c-Si$) bei Raumtemperatur ist nahezu Null \cite{bean}.
   Die amorphen Gebiete reichern sich mit Kohlenstoff an und erh"ohen wiederum die lateralen Spannungen auf die Umgebung.
   Mit zunehmender Dosis bilden sich so durchgehende kohlenstoffreiche amorphe Lamellen.