more updates (typos)
[lectures/latex.git] / nlsop / diplom / modell.tex
index eb63242..f254c1b 100644 (file)
@@ -16,8 +16,8 @@
 
   Aus dem vorherigen Kapitel ist bekannt, dass die Implantation unter den oben genannten Bedingungen bei sehr hohen Dosen zur Bildung von amorphen Phasen f"uhrt.
   Die Amorphisierung bei den gegebenen Temperaturen oberhalb $130 \, ^{\circ} \mathrm{C}$ muss also dem Vorhandensein von Kohlenstoff zugeschrieben werden, der die amorphe Phase stabilisiert \cite{kennedy}.
-  Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \textrm{\AA}$) erkl"aren.
-  Auf Grund des Unterschiedes von fast $20\%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird.
+  Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \, \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \, \textrm{\AA}$) erkl"aren.
+  Auf Grund des Unterschiedes von fast $20\, \%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} \, J cm^{-2}$ abgesch"atzt wird.
   Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt.
   Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist.
   Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind.
@@ -25,7 +25,7 @@
   Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinem Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt.
   Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet.
 
-  Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}.
+  Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\, \%$ geringere Dichte im Vergleich zu kubischem Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}.
   Eine entsprechende geringere Dichte wird f"ur unterst"ochiometrisches amorphes $SiC_x$ im Vergleich zu kristallinem Silizium angenommen.
   Die amorphen Gebiete sind demnach bestrebt sich auszudehnen und "uben Druckspannungen auf die kristalline Umgebung aus.
   Diese sind in Abbildung \ref{img:modell} durch die Pfeile dargestellt.