figures changed + marked to be pruned parts of teh first part of the document
[lectures/latex.git] / posic / publications / sic_prec_merge.tex
index 0e1daf5..c71aa38 100644 (file)
@@ -7,6 +7,7 @@
 \usepackage{amsmath}
 \usepackage{amsfonts}
 \usepackage{amssymb}
+\usepackage{color}
 
 \newcommand{\si}{Si$_{\text{i}}${}}
 \newcommand{\ci}{C$_{\text{i}}${}}
 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
+\newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
 
 % additional stuff
 \usepackage{miller}
 
+\newcommand{\prune}[1]{{\color{red} #1}}
+\newcommand{\possprune}[1]{{\color{blue} #1}}
+
 \begin{document}
 
-\title{Combined ab initio and classical potential simulation study on the silicon carbide precipitation in silicon}
+\title{Combined {\em ab initio} and classical potential simulation study on the silicon carbide precipitation in silicon}
 \author{F. Zirkelbach}
 \author{B. Stritzker}
 \affiliation{Experimentalphysik IV, Universit\"at Augsburg, 86135 Augsburg, Germany}
 
 \begin{abstract}
 Atomistic simulations on the silicon carbide precipitation in bulk silicon employing both, classical potential and first-principles methods are presented.
-These aime to clarify a controversy concerning the precipitation mechanism as revealed from literature.
+%These aime to clarify a controversy concerning the precipitation mechanism as revealed from literature.
+The calculations aim at a comprehensive, microscopic understanding of the precipitation mechanism in the context of controversial discussions in the literature.
 %
 For the quantum-mechanical treatment, basic processes assumed in the precipitation process are calculated in feasible systems of small size.
-The migration mechanism of a carbon \hkl<1 0 0> interstitial and silicon \hkl<1 1 0> self-interstitial in otherwise defect-free silicon using density functional theory calculations are investigated.
+The migration mechanism of a carbon \hkl<1 0 0> interstitial and silicon \hkl<1 1 0> self-interstitial in otherwise defect-free silicon are investigated using density functional theory calculations.
 The influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically.
 Interactions of various combinations of defects have been characterized including a couple of selected migration pathways within these configurations.
 Almost all of the investigated pairs of defects tend to agglomerate allowing for a reduction in strain.
@@ -46,11 +52,14 @@ The formation of structures involving strong carbon-carbon bonds turns out to be
 In contrast, substitutional carbon occurs in all probability.
 A long range capture radius has been observed for pairs of interstitial carbon as well as interstitial carbon and vacancies.
 A rather small capture radius is predicted for substitutional carbon and silicon self-interstitials.
-We derive conclusions on the precipitation mechanism of silicon carbide in bulk silicon and discuss conformability to experimental findings.
+%
+%We derive conclusions on the precipitation mechanism of silicon carbide in bulk silicon and discuss conformability to experimental findings.
+Initial assumptions regarding the precipitation mechanism of silicon carbide in bulk silicon are established and conformability to experimental findings is discussed.
 %
 Furthermore, results of the accurate first-principles calculations on defects and carbon diffusion in silicon are compared to results of classical potential simulations revealing significant limitations of the latter method.
 An approach to work around this problem is proposed.
-Finally, results of the classical potential molecular dynamics simulations of large systems are discussed, which allow to draw further conclusions on the precipitation mechanism of silicon carbide in silicon.
+Finally, results of the classical potential molecular dynamics simulations of large systems are examined, which reinforce previous assumptions and give further insight into basic processes involved in the silicon carbide transition.
+%Finally, results of the classical potential molecular dynamics simulations of large systems are discussed, which allow to draw further conclusions on the precipitation mechanism of silicon carbide in silicon.
 \end{abstract}
 
 \keywords{point defects, migration, interstitials, first-principles calculations, classical potentials, molecular dynamics, silicon carbide, ion implantation}
@@ -67,7 +76,7 @@ Different polytypes exhibit different properties, in which the cubic phase of Si
 Much progress has been made in 3C-SiC thin film growth by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE) on hexagonal SiC\cite{powell90,fissel95,fissel95_apl} and Si\cite{nishino83,nishino87,kitabatake93,fissel95_apl} substrates.
 However, the frequent occurrence of defects such as twins, dislocations and double position boundaries remains a challenging problem. 
 Apart from these methods, high-dose carbon implantation into crystalline silicon (c-Si) with subsequent or in situ annealing was found to result in SiC microcrystallites in Si\cite{borders71}.
-Utilized and enhanced, ion beam synthesis (IBS) has become a promising method to form thin SiC layers of high quality and exclusively of the 3C polytype embedded in and epitactically aligned to the Si host featuring a sharp interface\cite{lindner99,lindner01,lindner02}.
+Utilized and enhanced, ion beam synthesis (IBS) has become a promising method to form thin SiC layers of high quality and exclusively of the 3C polytype embedded in and epitaxially aligned to the Si host featuring a sharp interface\cite{lindner99,lindner01,lindner02}.
 
 However, the process of the formation of SiC precipitates in Si during C implantation is not yet fully understood.
 \begin{figure}
@@ -95,9 +104,9 @@ It will likewise offer perspectives for processes that rely upon prevention of p
 Atomistic simulations offer a powerful tool to study materials on a microscopic level providing detailed insight not accessible by experiment.
 %
 A lot of theoretical work has been done on intrinsic point defects in Si\cite{bar-yam84,bar-yam84_2,car84,batra87,bloechl93,tang97,leung99,colombo02,goedecker02,al-mushadani03,hobler05,sahli05,posselt08,ma10}, threshold displacement energies in Si\cite{mazzarolo01,holmstroem08} important in ion implantation, C defects and defect reactions in Si\cite{tersoff90,dal_pino93,capaz94,burnard93,leary97,capaz98,zhu98,mattoni2002,park02,jones04}, the SiC/Si interface\cite{chirita97,kitabatake93,cicero02,pizzagalli03} and defects in SiC\cite{bockstedte03,rauls03a,gao04,posselt06,gao07}.
-However, none of the mentioned studies consistently investigates entirely the relevant defect structures and reactions concentrated on the specific problem of 3C-SiC formation in C implanted Si.
+However, none of the mentioned studies comprehenisvely investigates all the relevant defect structures and reactions concentrated on the specific problem of 3C-SiC formation in C implanted Si.
 % but mattoni2002 actually did a lot. maybe this should be mentioned!^M
-In fact, in a combined analytical potential molecular dynamics and ab initio study\cite{mattoni2002} the interaction of substitutional C with Si self-interstitials and C interstitials is evaluated.
+In fact, in a combined analytical potential molecular dynamics and {\em ab initio} study\cite{mattoni2002} the interaction of substitutional C with Si self-interstitials and C interstitials is evaluated.
 However, investigations are, first of all, restricted to interaction chains along the \hkl[1 1 0] and \hkl[-1 1 0] direction, secondly lacking combinations of C interstitials and, finally, not considering migration barriers providing further information on the probability of defect agglomeration.
  
 In particular, molecular dynamics (MD) constitutes a suitable technique to investigate their dynamical and structural properties.
@@ -110,21 +119,22 @@ All these potentials are short range potentials employing a cut-off function,  w
 It was shown that the Tersoff potential properly describes binding energies of combinations of C defects in Si\cite{mattoni2002}.
 However, investigations of brittleness in covalent materials\cite{mattoni2007} identified the short range character of these potentials to be responsible for overestimated forces necessary to snap the bond of two neighbored atoms.
 In a previous study\cite{zirkelbach10}, we determined the influence on the migration barrier for C diffusion in Si.
-Using the Erhart/Albe (EA) potential\cite{albe_sic_pot}, an overestimated barrier height compared to ab initio calculations and experiment is obtained.
+Using the Erhart/Albe (EA) potential\cite{albe_sic_pot}, an overestimated barrier height compared to {\em ab initio} calculations and experiment is obtained.
 A proper description of C diffusion, however, is crucial for the problem under study.
 
-In this work, a combined ab initio and empirical potential simulation study on the initially mentioned SiC precipitation mechanism has been performed.
+In this work, a combined {\em ab initio} and empirical potential simulation study on the initially mentioned SiC precipitation mechanism has been performed.
 %
 By first-principles atomistic simulations this work aims to shed light on basic processes involved in the precipitation mechanism of SiC in Si.
-During implantation defects such as vacancies (V), substitutional C (C$_{\text{s}}$), interstitial C (C$_{\text{i}}$) and Si self-interstitials (Si$_{\text{i}}$) are created, which play a decisive role in the precipitation process.
-A systematic investigation of density functional theory (DFT) calculations of the structure, energetics and mobility of carbon defects in silicon as well as the influence of other point defects in the surrounding is presented.
+During implantation, defects such as vacancies (V), substitutional C (C$_{\text{s}}$), interstitial C (C$_{\text{i}}$) and Si self-interstitials (Si$_{\text{i}}$) are created, which play a decisive role in the precipitation process.
+A systematic investigation of density functional theory (DFT) calculations of the structure, energetics and mobility of C defects in Si as well as the influence of other point defects in the surrounding is presented.
 %
 Furthermore, highly accurate quantum-mechanical results have been used to identify shortcomings of the classical potentials, which are then taken into account in these type of simulations.
 
 %  --------------------------------------------------------------------------------
 \section{Methodology}
+\label{meth}
 % ----- DFT ------
-The first-principles DFT calculations have been performed with the plane-wave based Vienna ab initio Simulation package (VASP)\cite{kresse96}.
+The first-principles DFT calculations have been performed with the plane-wave based Vienna {\em ab initio} Simulation package (VASP)\cite{kresse96}.
 The Kohn-Sham equations were solved using the generalized-gradient exchange-correlation functional approximation proposed by Perdew and Wang\cite{perdew86,perdew92}.
 The electron-ion interaction is described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}.
 Throughout this work, an energy cut-off of \unit[300]{eV} was used to expand the wave functions into the plane-wave basis.
@@ -142,13 +152,13 @@ For the classical potential calculations, defect structures were modeled in a su
 Reproducing the SiC precipitation was attempted by the successive insertion of 6000 C atoms (the number necessary to form a 3C-SiC precipitate with a radius of $\approx 3.1$ nm) into the Si host, which has a size of 31 Si unit cells in each direction consisting of 238328 Si atoms.
 At constant temperature 10 atoms were inserted at a time.
 Three different regions within the total simulation volume were considered for a statistically distributed insertion of the C atoms: $V_1$ corresponding to the total simulation volume, $V_2$ corresponding to the size of the precipitate and $V_3$, which holds the necessary amount of Si atoms of the precipitate.
-After C insertion the simulation has been continued for \unit[100]{ps} and is cooled down to \unit[20]{$^{\circ}$C} afterwards.
+After C insertion, the simulation has been continued for \unit[100]{ps} and is cooled down to \unit[20]{$^{\circ}$C} afterwards.
 A Tersoff-like bond order potential by Erhart and Albe (EA)\cite{albe_sic_pot} has been utilized, which accounts for nearest neighbor interactions realized by a cut-off function dropping the interaction to zero in between the first and second nearest neighbor distance.
 The potential was used as is, i.e. without any repulsive potential extension at short interatomic distances.
 Constant pressure simulations are realized by the Berendsen barostat\cite{berendsen84} using a time constant of \unit[100]{fs} and a bulk modulus of \unit[100]{GPa} for Si.
 The temperature was kept constant by the Berendsen thermostat\cite{berendsen84} with a time constant of \unit[100]{fs}.
 Integration of the equations of motion was realized by the velocity Verlet algorithm\cite{verlet67} and a fixed time step of \unit[1]{fs}.
-For structural relaxation of defect structures the same algorithm was used with the temperature set to 0 K.
+For structural relaxation of defect structures, the same algorithm was used with the temperature set to 0 K.
 
 The formation energy $E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}$ of a defect configuration is defined by choosing SiC as a particle reservoir for the C impurity, i.e. the chemical potentials are determined by the cohesive energies of a perfect Si and SiC supercell after ionic relaxation.
 %
@@ -171,23 +181,25 @@ In a first step, quantum-mechanical calculations of defects in Si and respective
 Shortcomings of the analytical potential approach are revealed and its applicability is discussed.
 
 \subsection{Carbon and silicon defect configurations}
+\label{subsection:sep_def}
 
+%./visualize_cc_bonds -w 640 -h 480 -d results/c_100_2333_nosym_sp -nll -0.20 -0.20 -0.20 -fur 1.20 1.20 1.20 -b 0.0 0.0 0.0 1.0 1.0 1.0 -c 0.3 -1.7 1.1 -L 0.5 -1.0 0.5 -r 0.6 -A 2 109 217 1.9
 \begin{figure}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{Si$_{\text{i}}$ \hkl<1 1 0> DB}\\
-\includegraphics[width=\columnwidth]{si110.eps}
+\includegraphics[width=\columnwidth]{si110_bonds.eps}
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{Si$_{\text{i}}$ hexagonal}\\
-\includegraphics[width=\columnwidth]{sihex.eps}
+\includegraphics[width=\columnwidth]{sihex_bonds.eps}
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{Si$_{\text{i}}$ tetrahedral}\\
-\includegraphics[width=\columnwidth]{sitet.eps}
+\includegraphics[width=\columnwidth]{sitet_bonds.eps}
 \end{minipage}\\
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{Si$_{\text{i}}$ \hkl<1 0 0> DB}\\
-\includegraphics[width=\columnwidth]{si100.eps}
+\includegraphics[width=\columnwidth]{si100_bonds.eps}
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{Vacancy}\\
@@ -195,21 +207,21 @@ Shortcomings of the analytical potential approach are revealed and its applicabi
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{C$_{\text{s}}$}\\
-\includegraphics[width=\columnwidth]{csub.eps}
+\includegraphics[width=\columnwidth]{csub_bonds.eps}
 \end{minipage}\\
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{C$_{\text{i}}$ \hkl<1 0 0> DB}\\
-\includegraphics[width=\columnwidth]{c100.eps}
+\includegraphics[width=\columnwidth]{c100_bonds.eps}
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{C$_{\text{i}}$ \hkl<1 1 0> DB}\\
-\includegraphics[width=\columnwidth]{c110.eps}
+\includegraphics[width=\columnwidth]{c110_bonds.eps}
 \end{minipage}
 \begin{minipage}[t]{0.32\columnwidth}
 \underline{C$_{\text{i}}$ bond-centered}\\
-\includegraphics[width=\columnwidth]{cbc.eps}
+\includegraphics[width=\columnwidth]{cbc_bonds.eps}
 \end{minipage}
-\caption{Configurations of Si and C point defects in Si. Si and C atoms are illustrated by yellow and gray spheres respectively. Bonds are drawn whenever considered appropriate to ease identifying defect structures for the reader. Dumbbell configurations are abbreviated by DB.}
+\caption{Configurations of Si and C point defects in Si. Si and C atoms are illustrated by yellow and gray spheres respectively. Bonds of the defect atoms are drawn in red color. Dumbbell configurations are abbreviated by DB.}
 \label{fig:sep_def}
 \end{figure}
 Table~\ref{table:sep_eof} summarizes the formation energies of relevant defect structures for the EA and DFT calculations.
@@ -223,26 +235,26 @@ The respective structures are shown in Fig.~\ref{fig:sep_def}.
  \multicolumn{10}{l}{Present study} \\
  VASP & 3.39 & 3.42 & 3.77 & 4.41 & 3.63 & 1.95 & 3.72 & 4.16 & 4.66 \\
  Erhart/Albe & 4.39 & 4.48$^*$ & 3.40 & 5.42 & 3.13 & 0.75 & 3.88 & 5.18 & 5.59$^*$ \\
- \multicolumn{10}{l}{Other ab initio studies} \\
+ \multicolumn{10}{l}{Other {\em ab initio} studies} \\
  Ref.\cite{al-mushadani03} & 3.40 & 3.45 & - & - & 3.53 & - & - & - & - \\
  Ref.\cite{leung99} & 3.31 & 3.31 & 3.43 & - & - & - & - & - & - \\
  Ref.\cite{dal_pino93,capaz94} & - & - & - & - & - & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}
 \end{tabular}
 \end{ruledtabular}
-\caption{Formation energies of C and Si point defects in c-Si determined by classical potential and ab initio methods. The formation energies are given in electron volts. T denotes the tetrahedral and BC the bond-centered configuration. Subscript i and s indicates the interstitial and substitutional configuration. Dumbbell configurations are abbreviated by DB. Formation energies for unstable configurations obtained by classical potential MD are marked by an asterisk and determined by using the low kinetic energy configuration shortly before the relaxation into the more favorable configuration starts.}
+\caption{Formation energies of C and Si point defects in c-Si determined by classical potential and {\em ab initio} methods. The formation energies are given in electron volts. T denotes the tetrahedral and BC the bond-centered configuration. Subscript i and s indicates the interstitial and substitutional configuration. Dumbbell configurations are abbreviated by DB. Formation energies for unstable configurations obtained by classical potential MD are marked by an asterisk and determined by using the low kinetic energy configuration shortly before the relaxation into the more favorable configuration starts.}
 \label{table:sep_eof}
 \end{table*}
 
 Although discrepancies exist, classical potential and first-principles methods depict the correct order of the formation energies with regard to C defects in Si.
 Substitutional C (C$_{\text{s}}$) constitutes the energetically most favorable defect configuration.
 Since the C atom occupies an already vacant Si lattice site, C$_{\text{s}}$ is not an interstitial defect.
-The quantum-mechanical result agrees well with the result of another ab initio study\cite{dal_pino93}.
+The quantum-mechanical result agrees well with the result of another {\em ab initio} study\cite{dal_pino93}.
 Clearly, the empirical potential underestimates the C$_{\text{s}}$ formation energy.
 The C interstitial defect with the lowest energy of formation has been found to be the C-Si \hkl<1 0 0> interstitial dumbbell (C$_{\text{i}}$ \hkl<1 0 0> DB), which, thus, constitutes the ground state of an additional C impurity in otherwise perfect c-Si.
 This finding is in agreement with several theoretical\cite{burnard93,leary97,dal_pino93,capaz94} and experimental\cite{watkins76,song90} investigations.
 However, to our best knowledge, no energy of formation based on first-principles calculations has yet been explicitly stated in literature for the ground-state configuration.
 %
-Astonishingly EA and DFT predict almost equal formation energies.
+Astonishingly, EA and DFT predict almost equal formation energies.
 There are, however, geometric differences with regard to the DB position within the tetrahedron spanned by the four neighbored Si atoms, as already reported in a previous study\cite{zirkelbach10}.
 Since the energetic description is considered more important than the structural description, minor discrepancies of the latter are assumed non-problematic.
 The second most favorable configuration is the C$_{\text{i}}$ \hkl<1 1 0> DB followed by the C$_{\text{i}}$ bond-centered (BC) configuration.
@@ -254,10 +266,10 @@ A more detailed discussion of C defects in Si modeled by EA and DFT including fu
 
 Regarding intrinsic defects in Si, classical potential and {\em ab initio} methods predict energies of formation that are within the same order of magnitude.
 %
-However discrepancies exist.
+However, discrepancies exist.
 Quantum-mechanical results reveal the Si$_{\text{i}}$ \hkl<1 1 0> DB to compose the energetically most favorable configuration closely followed by the hexagonal and tetrahedral configuration, which is the consensus view for Si$_{\textrm{i}}$ and compares well to results from literature\cite{leung99,al-mushadani03}.
 The EA potential does not reproduce the correct ground state.
-Instead the tetrahedral defect configuration is favored.
+Instead, the tetrahedral defect configuration is favored.
 This limitation is assumed to arise due to the cut-off.
 In the tetrahedral configuration the second neighbors are only slightly more distant than the first neighbors, which creates the particular problem.
 Indeed, an increase of the cut-off results in increased values of the formation energies\cite{albe_sic_pot}, which is most significant for the tetrahedral configuration.
@@ -284,24 +296,24 @@ However, the present study indicates a local minimum state for the BC defect if
 Another DFT calculation without fully accounting for the electron spin results in the smearing of a single electron over two non-degenerate Kohn-Sham states and an increase of the total energy by \unit[0.3]{eV} for the BC configuration.
 %
 A more detailed description can be found in a previous study\cite{zirkelbach10}.
-Next to the C$_{\text{i}}$ BC configuration the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.
-For the vacancy the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.
-In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.
+Next to the C$_{\text{i}}$ BC configuration, the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.
+For the vacancy, the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.
+In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration, the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.
 No other configuration, within the ones that are mentioned, is affected.
 
 \subsection{Mobility of carbon defects}
 \label{subsection:cmob}
 
 To accurately model the SiC precipitation, which involves the agglomeration of C, a proper description of the migration process of the C impurity is required.
-As shown in a previous study\cite{zirkelbach10}, quantum-mechanical results properly describe the C$_{\text{i}}$ \hkl<1 0 0> DB diffusion resulting in a migration barrier height of \unit[0.90]{eV}, excellently matching experimental values of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90} and, for this reason, reinforcing the respective migration path as already proposed by Capaz et~al.\cite{capaz94}.
-During transition a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates towards a  C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
+As shown in a previous study\cite{zirkelbach10}, quantum-mechanical results properly describe the C$_{\text{i}}$ \hkl<1 0 0> DB diffusion resulting in a migration barrier height of \unit[0.90]{eV} excellently matching experimental values of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90} and, for this reason, reinforcing the respective migration path as already proposed by Capaz et~al.\cite{capaz94}.
+During transition, a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates towards a  C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
 However, it turned out that the description fails if the EA potential is used, which overestimates the migration barrier (\unit[2.2]{eV}) by a factor of 2.4.
 In addition a different diffusion path is found to exhibit the lowest migration barrier.
 A C$_{\text{i}}$ \hkl[0 0 -1] DB turns into the \hkl[0 0 1] configuration at the neighbored lattice site.
 The transition involves the C$_{\text{i}}$ BC configuration, which, however, was found to be unstable relaxing into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration.
 If the migration is considered to occur within a single step, the kinetic energy of \unit[2.2]{eV} is sufficient to turn the \hkl<1 0 0> DB into the BC and back into a \hkl<1 0 0> DB configuration.
 If, on the other hand, a two step process is assumed, the BC configuration will most probably relax into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration resulting in different relative energies of the intermediate state and the saddle point.
-For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0> DB configuration, is proposed and displayed in Fig.~\ref{fig:mig}.
+For the latter case, a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0> DB configuration, is proposed and displayed in Fig.~\ref{fig:mig}.
 \begin{figure}
 \begin{center}
 \includegraphics[width=\columnwidth]{110mig.ps}
@@ -309,15 +321,426 @@ For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0
 \caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
 \label{fig:mig}
 \end{figure}
-Approximately \unit[2.24]{eV} are needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
+The activation energy of approximately \unit[2.24]{eV} is needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
 Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
 Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10}.
-The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
-By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by ab initio calculations.
+The former diffusion process, however, would more nicely agree with the {\em ab initio} path, since the migration is accompanied by a rotation of the DB orientation.
+By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp\left((\unit[2.24]{eV}+\unit[0.90]{eV})/{k_{\text{B}}T}\right)$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by {\em ab initio} calculations.
 
 Accordingly, the effective barrier of migration of C$_{\text{i}}$ is overestimated by a factor of 2.4 to 3.5 compared to the highly accurate quantum-mechanical methods.
 This constitutes a serious limitation that has to be taken into account for modeling the C-Si system using the otherwise quite promising EA potential.
 
+\section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
+\label{sec:qm}
+
+The implantation of highly energetic C atoms results in a multiplicity of possible defect configurations.
+Next to individual Si$_{\text{i}}$, C$_{\text{i}}$, V and C$_{\text{s}}$ defects, combinations of these defects and their interaction are considered important for the problem under study.
+In the following, pairs of the ground state and, thus, most probable defect configurations that are believed to be fundamental in the Si to SiC conversion and related diffusion processes are investigated.
+These systems are small enough to allow for a first-principles treatment.
+
+\subsection{Pairs of C$_{\text{i}}$}
+
+% prune next
+\prune{
+C$_{\text{i}}$ pairs of the \hkl<1 0 0> type have been investigated in the first part.
+}
+Fig.~\ref{fig:combos_ci} schematically displays the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure and various positions for the second defect (1-5) that have been used for investigating defect pairs.
+Table~\ref{table:dc_c-c} summarizes resulting binding energies for the combination with a second C-Si \hkl<1 0 0> DB obtained for different orientations at positions 1 to 5.
+\begin{figure}
+\subfigure[]{\label{fig:combos_ci}\includegraphics[width=0.45\columnwidth]{combos_ci.eps}}
+\hspace{0.1cm}
+\subfigure[]{\label{fig:combos_si}\includegraphics[width=0.45\columnwidth]{combos.eps}}
+\caption{Position of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB (I) (Fig.~\ref{fig:combos_ci}) and of the lattice site chosen for the initial Si$_{\text{i}}$ \hkl<1 1 0> DB (Si$_{\text{i}}$) (Fig.~\ref{fig:combos_si}). Lattice sites for the second defect used for investigating defect pairs are numbered from 1 to 5.} 
+\label{fig:combos}
+\end{figure}
+\begin{table}
+\begin{ruledtabular}
+\begin{tabular}{l c c c c c c }
+ & 1 & 2 & 3 & 4 & 5 & R \\
+\hline
+ \hkl[0 0 -1] & -0.08 & -1.15 & -0.08 & 0.04 & -1.66 & -0.19\\
+ \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
+ \hkl[0 -1 0] & -2.39 & -0.17 & -0.10 & -0.27 & -1.88 & -0.05\\
+ \hkl[0 1 0] & -2.25 & -1.90 & -2.25 & -0.12 & -1.38 & -0.06\\
+ \hkl[-1 0 0] & -2.39 & -0.36 & -2.25 & -0.12 & -1.88 & -0.05\\
+ \hkl[1 0 0] & -2.25 & -2.16 & -0.10 & -0.27 & -1.38 & -0.06\\
+\end{tabular}
+\end{ruledtabular}
+\caption{Binding energies in eV of C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs. Equivalent configurations exhibit equal energies. Column 1 lists the orientation of the second defect, which is combined with the initial C$_{\text{i}}$ \hkl[0 0 -1] DB. The position index of the second defect is given in the first row according to Fig.~\ref{fig:combos}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable defect separation distance ($\approx \unit[1.3]{nm}$) due to periodic boundary conditions.}
+\label{table:dc_c-c}
+\end{table}
+Most of the obtained configurations result in binding energies well below zero indicating a preferable agglomeration of this type of defects.
+For increasing distances of the defect pair, the binding energy approaches to zero (R in Table~\ref{table:dc_c-c}) as it is expected for non-interacting isolated defects.
+Energetically favorable and unfavorable configurations can be explained by stress compensation and increase respectively based on the resulting net strain of the respective configuration of the defect combination.
+Antiparallel orientations of the second defect, i.e. \hkl[0 0 1] for positions located below the \hkl(0 0 1) plane with respect to the initial one (positions 1, 2 and 4) form the energetically most unfavorable configurations.
+In contrast, the parallel and particularly the twisted orientations constitute energetically favorable configurations, in which a vast reduction of strain is enabled by combination of these defects.
+
+Mattoni et al.\cite{mattoni2002} predict the ground-state configuration for a \hkl[1 0 0] or equivalently a \hkl[0 1 0] defect created at position 1.
+Both defects basically maintain the as-isolated DB structure resulting in a binding energy of \unit[-2.1]{eV}.
+In this work, we observed a further relaxation of this defect structure.
+The C atom of the second and the Si atom of the initial DB move towards each other forming a bond, which results in a somewhat lower binding energy of \unit[-2.25]{eV}.
+The structure is displayed in the bottom right of Fig.~\ref{fig:188-225}.
+Apart from that, we found a more favorable configuration for the combination with a \hkl[0 -1 0] and \hkl[-1 0 0] DB respectively, which is assumed to constitute the actual ground-state configuration of two C$_{\text{i}}$ DBs in Si.
+The atomic arrangement is shown in the bottom right of Fig.~\ref{fig:036-239}.
+The two C$_{\text{i}}$ atoms form a strong C-C bond, which is responsible for the large gain in energy resulting in a binding energy of \unit[-2.39]{eV}.
+
+% possibly prune next
+\possprune{
+Investigating migration barriers allows to predict the probability of formation of defect complexes by thermally activated diffusion processes.
+}
+% ground state configuration, C cluster
+Based on the lowest energy migration path of a single C$_{\text{i}}$ DB, the configuration, in which the second C$_{\text{i}}$ DB is oriented along \hkl[0 1 0] at position 2, is assumed to constitute an ideal starting point for a transition into the ground state.
+In addition, the starting configuration exhibits a low binding energy (\unit[-1.90]{eV}) and is, thus, very likely to occur.
+However, a barrier height of more than \unit[4]{eV} was detected resulting in a low probability for the transition.
+% possibly prune next
+\possprune{
+The high activation energy is attributed to the stability of such a low energy configuration, in which the C atom of the second DB is located close to the initial DB.
+}
+Low barriers have only been identified for transitions starting from energetically less favorable configurations, e.g. the configuration of a \hkl[-1 0 0] DB located at position 2 (\unit[-0.36]{eV}).
+Starting from this configuration, an activation energy of only \unit[1.2]{eV} is necessary for the transition into the ground-state configuration.
+The corresponding migration energies and atomic configurations are displayed in Fig.~\ref{fig:036-239}.
+\begin{figure}
+\includegraphics[width=\columnwidth]{036-239.ps}
+\caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[-1 0 0] DB at position 2 (left) into a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 1 (right). An activation energy of \unit[1.2]{eV} is observed.}
+\label{fig:036-239}
+\end{figure}
+%  strange mig from -190 -> -2.39 (barrier > 4 eV)
+% C-C migration -> idea:
+%  mig from low energy confs has extremely high barrier!
+%  low barrier only from energetically less/unfavorable confs (?)! <- prove!
+%  => low probability of C-C clustering ?!?
+%
+% should possibly be transfered to discussion section
+Since thermally activated C clustering is, thus, only possible by traversing energetically unfavored configurations, extensive C clustering is not expected.
+Furthermore, the migration barrier of \unit[1.2]{eV} is still higher than the activation energy of \unit[0.9]{eV} observed for a single C$_{\text{i}}$ \hkl<1 0 0> DB in c-Si.
+% possibly prune next until EOP
+\possprune{
+The migration barrier of a C$_{\text{i}}$ DB in a complex system is assumed to approximate the barrier of a DB in a separated system with increasing defect separation.
+Accordingly, lower migration barriers are expected for pathways resulting in larger separations of the C$_{\text{i}}$ DBs.
+% acknowledged by 188-225 (reverse order) calc
+However, if the increase of separation is accompanied by an increase in binding energy, this difference is needed in addition to the activation energy for the respective migration process.
+Configurations, which exhibit both, a low binding energy as well as afferent transitions with low activation energies are, thus, most probable C$_{\text{i}}$ complex structures.
+On the other hand, if elevated temperatures enable migrations with huge activation energies, comparably small differences in configurational energy can be neglected resulting in an almost equal occupation of such configurations.
+% EOP
+In both cases,} the configuration yielding a binding energy of \unit[-2.25]{eV} is promising.
+First of all, it constitutes the second most energetically favorable structure.
+Secondly, a migration path with a barrier as low as \unit[0.47]{eV} exists starting from a configuration of largely separated defects exhibiting a low binding energy (\unit[-1.88]{eV}).
+The migration barrier and corresponding structures are shown in Fig.~\ref{fig:188-225}.
+\begin{figure}
+\includegraphics[width=\columnwidth]{188-225.ps}
+\caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 5 (left) into a C$_{\text{i}}$ \hkl[1 0 0] DB at position 1 (right). An activation energy of \unit[0.47]{eV} is observed.}
+\label{fig:188-225}
+\end{figure}
+Finally, this type of defect pair is represented four times (two times more often than the ground-state configuration) within the systematically investigated configuration space.
+The latter is considered very important at high temperatures, accompanied by an increase in the entropic contribution to structure formation.
+As a result, C defect agglomeration indeed is expected, but only a low probability is assumed for C-C clustering by thermally activated processes with regard to the considered process time in IBS.
+% alternatively: ... considered period of time (of the IBS process).
+%
+% ?!?
+% look for precapture mechanism (local minimum in energy curve)
+% also: plot energy all confs with respect to C-C distance
+%       maybe a pathway exists traversing low energy confs ?!?
+
+% point out that configurations along 110 were extended up to the 6th NN in that direction
+The binding energies of the energetically most favorable configurations with the second DB located along the \hkl[1 1 0] direction and resulting C-C distances of the relaxed structures are summarized in Table~\ref{table:dc_110}.
+\begin{table}
+\begin{ruledtabular}
+\begin{tabular}{l c c c c c c }
+ & 1 & 2 & 3 & 4 & 5 & 6 \\
+\hline
+ $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
+C-C distance [nm] & 0.14 & 0.46 & 0.65 & 0.86 & 1.05 & 1.08 
+\end{tabular}
+\end{ruledtabular}
+\caption{Binding energies $E_{\text{b}}$ and C-C distance of energetically most favorable C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs separated along the \hkl[1 1 0] bond chain.}
+\label{table:dc_110}
+\end{table}
+The binding energy of these configurations with respect to the C-C distance is plotted in Fig.~\ref{fig:dc_110}.
+\begin{figure}
+\includegraphics[width=\columnwidth]{db_along_110_cc_n.ps}
+\caption{Minimum binding energy of dumbbell combinations separated along \hkl[1 1 0] with respect to the C-C distance. The blue line is a guide for the eye and the green curve corresponds to the most suitable fit function consisting of all but the first data point.}
+\label{fig:dc_110}
+\end{figure}
+The interaction is found to be proportional to the reciprocal cube of the C-C distance for extended separations of the C$_{\text{i}}$ and saturates for the smallest possible separation, i.e. the ground-state configuration.
+Not considering the previously mentioned elevated barriers for migration, an attractive interaction between the C$_{\text{i}}$ defects indeed is detected with a capture radius that clearly exceeds \unit[1]{nm}.
+The interpolated graph suggests the disappearance of attractive interaction forces, which are proportional to the slope of the graph, in between the two lowest separation distances of the defects.
+This finding, in turn, supports the previously established assumption of C agglomeration and absence of C clustering.
+
+\begin{table}
+\begin{ruledtabular}
+\begin{tabular}{l c c c c c c }
+ & 1 & 2 & 3 & 4 & 5 & R \\
+\hline
+C$_{\text{s}}$ & 0.26$^a$/-1.28$^b$ & -0.51 & -0.93$^A$/-0.95$^B$ & -0.15 & 0.49 & -0.05\\
+V & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31
+\end{tabular}
+\end{ruledtabular}
+\caption{Binding energies of combinations of the C$_{\text{i}}$ \hkl[0 0 -1] defect with a substitutional C or vacancy located at positions 1 to 5 according to Fig.~\ref{fig:combos_ci}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable distance due to periodic boundary conditions.}
+\label{table:dc_c-sv}
+\end{table}
+
+\subsection{C$_{\text{i}}$ next to C$_{\text{s}}$}
+
+The first row of Table~\ref{table:dc_c-sv} lists the binding energies of C$_{\text{s}}$ next to the C$_{\text{i}}$ \hkl[0 0 -1] DB.
+For C$_{\text{s}}$ located at position 1 and 3 the configurations a and A correspond to the naive relaxation of the structure by substituting the Si atom by a C atom in the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure at positions 1 and 3 respectively.
+However, small displacements of the involved atoms near the defect result in different stable structures labeled b and B respectively.
+Fig.~\ref{fig:093-095} and \ref{fig:026-128} show structures A, B and a, b together with the barrier of migration for the A to B and a to b transition respectively. 
+
+% A B
+%./visualize_contcar -w 640 -h 480 -d results/c_00-1_c3_csub_B -nll -0.20 -0.4 -0.1 -fur 0.9 0.6 0.9 -c 0.5 -1.5 0.375 -L 0.5 0 0.3 -r 0.6 -A -1 2.465
+\begin{figure}
+\includegraphics[width=\columnwidth]{093-095.ps}
+\caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 3 (left) into a configuration of a twofold coordinated Si$_{\text{i}}$ located in between two C$_{\text{s}}$ atoms occupying the lattice sites of the initial DB and position 3 (right). An activation energy of \unit[0.44]{eV} is observed.}
+\label{fig:093-095}
+\end{figure}
+Configuration A consists of a C$_{\text{i}}$ \hkl[0 0 -1] DB with threefold coordinated Si and C DB atoms slightly disturbed by the C$_{\text{s}}$ at position 3 facing the Si DB atom as a neighbor.
+By a single bond switch, i.e. the breaking of a Si-Si in favor of a Si-C bond, configuration B is obtained, which shows a twofold coordinated Si atom located in between two substitutional C atoms residing on regular Si lattice sites.
+This configuration has been identified and described by spectroscopic experimental techniques\cite{song90_2} as well as theoretical studies\cite{leary97,capaz98}.
+Configuration B is found to constitute the energetically slightly more favorable configuration.
+However, the gain in energy due to the significantly lower energy of a Si-C compared to a Si-Si bond turns out to be smaller than expected due to a large compensation by introduced strain as a result of the Si interstitial structure.
+Present results show a difference in energy of states A and B, which exactly matches the experimental value of \unit[0.02]{eV}\cite{song90_2} reinforcing qualitatively correct results of previous theoretical studies on these structures.
+% mattoni: A favored by 0.4 eV - NO, it is indeed B (reinforce Song and Capaz)!
+%
+% AB transition
+The migration barrier was identified to be \unit[0.44]{eV}, almost three times higher than the experimental value of \unit[0.16]{eV}\cite{song90_2} estimated for the neutral charge state transition in p- and n-type Si.
+Keeping in mind the formidable agreement of the energy difference with experiment, the overestimated activation energy is quite unexpected.
+Obviously, either the CRT algorithm fails to seize the actual saddle point structure or the influence of dopants has exceptional effect in the experimentally covered diffusion process being responsible for the low migration barrier.
+% not satisfactory!
+
+% a b
+\begin{figure}
+\includegraphics[width=\columnwidth]{026-128.ps}
+\caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 1 (left) into a C-C \hkl[1 0 0] DB occupying the lattice site at position 1 (right). An activation energy of \unit[0.1]{eV} is observed.}
+\label{fig:026-128}
+\end{figure}
+Configuration a is similar to configuration A, except that the C$_{\text{s}}$ atom at position 1 is facing the C DB atom as a neighbor resulting in the formation of a strong C-C bond and a much more noticeable perturbation of the DB structure.
+Nevertheless, the C and Si DB atoms remain threefold coordinated.
+Although the C-C bond exhibiting a distance of \unit[0.15]{nm} close to the distance expected in diamond or graphite should lead to a huge gain in energy, a repulsive interaction with a binding energy of \unit[0.26]{eV} is observed due to compressive strain of the Si DB atom and its top neighbors (\unit[0.230]{nm}/\unit[0.236]{nm}) along with additional tensile strain of the C$_{\text{s}}$ and its three neighboring Si atoms (\unit[0.198-0.209]{nm}/\unit[0.189]{nm}).
+Again a single bond switch, i.e. the breaking of the bond of the Si atom bound to the fourfold coordinated C$_{\text{s}}$ atom and the formation of a double bond between the two C atoms, results in configuration b.
+The two C atoms form a \hkl[1 0 0] DB sharing the initial C$_{\text{s}}$ lattice site while the initial Si DB atom occupies its previously regular lattice site.
+The transition is accompanied by a large gain in energy as can be seen in Fig.~\ref{fig:026-128} making it the ground-state configuration of a C$_{\text{s}}$ and C$_{\text{i}}$ DB in Si yet \unit[0.33]{eV} lower in energy than configuration B.
+This finding is in good agreement with a combined {\em ab initio} and experimental study of Liu et~al.\cite{liu02}, who first proposed this structure as the ground state identifying an energy difference compared to configuration B of \unit[0.2]{eV}.
+% mattoni: A favored by 0.2 eV - NO! (again, missing spin polarization?)
+A net magnetization of two spin up electrons, which are equally localized as in the Si$_{\text{i}}$ \hkl<1 0 0> DB structure is observed.
+In fact, these two configurations are very similar and are qualitatively different from the C$_{\text{i}}$ \hkl<1 0 0> DB that does not show magnetization but a nearly collinear bond of the C DB atom to its two neighbored Si atoms while the Si DB atom approximates \unit[120]{$^{\circ}$} angles in between its bonds.
+Configurations a, A and B are not affected by spin polarization and show zero magnetization.
+Mattoni et~al.\cite{mattoni2002}, in contrast, find configuration b less favorable than configuration A by \unit[0.2]{eV}.
+Next to differences in the XC functional and plane-wave energy cut-off, this discrepancy might be attributed to the neglect of spin polarization in their calculations, which -- as has been shown for the C$_{\text{i}}$ BC configuration -- results in an increase of configurational energy.
+Indeed, investigating the migration path from configurations a to b and, in doing so, reusing the wave functions of the previous migration step, the final structure, i.e. configuration b, was obtained with zero magnetization and an increase in configurational energy by \unit[0.2]{eV}.
+Obviously, a different energy minimum of the electronic system is obtained indicating hysteresis behavior.
+However, since the total energy is lower for the magnetic result it is believed to constitute the real, i.e. global, minimum with respect to electronic minimization.
+%
+% a b transition
+A low activation energy of \unit[0.1]{eV} is observed for the a$\rightarrow$b transition.
+Thus, configuration a is very unlikely to occur in favor of configuration b.
+
+% repulsive along 110
+A repulsive interaction is observed for C$_{\text{s}}$ at lattice sites along \hkl[1 1 0], i.e. positions 1 (configuration a) and 5.
+This is due to tensile strain originating from both, the C$_{\text{i}}$ DB and the C$_{\text{s}}$ atom residing within the \hkl[1 1 0] bond chain.
+This finding agrees well with results by Mattoni et~al.\cite{mattoni2002}.
+% all other investigated results: attractive interaction. stress compensation.
+In contrast, all other investigated configurations show attractive interactions.
+The most favorable configuration is found for C$_{\text{s}}$ at position 3, which corresponds to the lattice site of one of the upper neighbored Si atoms of the DB structure that is compressively strained along \hkl[1 -1 0] and \hkl[0 0 1] by the C-Si DB.
+The substitution with C allows for most effective compensation of strain.
+This structure is followed by C$_{\text{s}}$ located at position 2, the lattice site of one of the neighbor atoms below the two Si atoms that are bound to the C$_{\text{i}}$ DB atom.
+As mentioned earlier, these two lower Si atoms indeed experience tensile strain along the \hkl[1 1 0] bond chain.
+However, additional compressive strain along \hkl[0 0 1] exists.
+The latter is partially compensated by the C$_{\text{s}}$ atom.
+Yet less of compensation is realized if C$_{\text{s}}$ is located at position 4 due to a larger separation although both bottom Si atoms of the DB structure are indirectly affected, i.e. each of them is connected by another Si atom to the C atom enabling the reduction of strain along \hkl[0 0 1].
+
+% c agglomeration vs c clustering ... migs to b conf
+% 2 more migs: 051 -> 128 and 026! forgot why ... probably it's about probability of C clustering
+Obviously agglomeration of C$_{\text{i}}$ and C$_{\text{s}}$ is energetically favorable except for separations along one of the \hkl<1 1 0> directions.
+The energetically most favorable configuration (configuration b) forms a strong but compressively strained C-C bond with a separation distance of \unit[0.142]{nm} sharing a Si lattice site.
+\possprune{
+Again, conclusions concerning the probability of formation are drawn by investigating migration paths.
+}
+Since C$_{\text{s}}$ is unlikely to exhibit a low activation energy for migration the focus is on C$_{\text{i}}$.
+Pathways starting from the two next most favored configurations were investigated, which show activation energies above \unit[2.2]{eV} and \unit[3.5]{eV} respectively.
+Although lower than the barriers for obtaining the ground state of two C$_{\text{i}}$ defects, the activation energies are yet considered too high.
+\possprune{
+For the same reasons as in the last subsection, structures other than the ground-state configuration are, thus, assumed to arise more likely due to much lower activation energies necessary for their formation and still comparatively low binding energies.
+}
+
+\subsection{C$_{\text{i}}$ next to V}
+
+\prune{
+In the last subsection configurations of a C$_{\text{i}}$ DB with C$_{\text{s}}$ occupying a vacant site have been investigated.
+}
+\possprune{
+Additionally, configurations might arise in IBS, in which the impinging C atom creates a vacant site near a C$_{\text{i}}$ DB, but does not occupy it.
+}
+Resulting binding energies of a C$_{\text{i}}$ DB and a nearby vacancy are listed in the second row of Table~\ref{table:dc_c-sv}.
+All investigated structures are preferred compared to isolated, largely separated defects.
+In contrast to C$_{\text{s}}$, this is also valid for positions along \hkl[1 1 0] resulting in an entirely attractive interaction between defects of these types.
+Even for the largest possible distance (R) achieved in the calculations of the periodic supercell, a binding energy as low as \unit[-0.31]{eV} is observed.
+The ground-state configuration is obtained for a V at position 1.
+The C atom of the DB moves towards the vacant site forming a stable C$_{\text{s}}$ configuration resulting in the release of a huge amount of energy.
+The second most favorable configuration is accomplished for a V located at position 3 due to the reduction of compressive strain of the Si DB atom and its two upper Si neighbors present in the C$_{\text{i}}$ DB configuration.
+This configuration is followed by the structure, in which a vacant site is created at position 2.
+Similar to the observations for C$_{\text{s}}$ in the last subsection, a reduction of strain along \hkl[0 0 1] is enabled by this configuration.
+Relaxed structures of the latter two defect combinations are shown in the bottom left of Fig.~\ref{fig:314-539} and \ref{fig:059-539} respectively together with their energetics during transition into the ground state.
+\begin{figure}
+\includegraphics[width=\columnwidth]{314-539.ps}
+\caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 3 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.1]{eV} is observed.}
+\label{fig:314-539}
+\end{figure}
+\begin{figure}
+\includegraphics[width=\columnwidth]{059-539.ps}
+\caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 2 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.6]{eV} is observed.}
+\label{fig:059-539}
+\end{figure}
+Activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} are observed.
+In the first case, the Si and C atom of the DB move towards the vacant and initial DB lattice site respectively.
+In total, three Si-Si and one more Si-C bond is formed during transition.
+In the second case, the lowest barrier is found for the migration of Si number 1, which is substituted by the C$_{\text{i}}$ atom, towards the vacant site.
+A net amount of five Si-Si and one Si-C bond are additionally formed during transition.
+The direct migration of the C$_{\text{i}}$ atom onto the vacant lattice site results in a somewhat higher barrier of \unit[1.0]{eV}.
+In both cases, the formation of additional bonds is responsible for the vast gain in energy rendering almost impossible the reverse processes.
+
+In summary, pairs of C$_{\text{i}}$ DBs and Vs, like no other before, show highly attractive interactions for all investigated combinations independent of orientation and separation direction of the defects.
+Furthermore, small activation energies, even for transitions into the ground state, exist.
+Based on these results, a high probability for the formation of C$_{\text{s}}$ must be concluded.
+
+\subsection{C$_{\text{s}}$ next to Si$_{\text{i}}$}
+\label{subsection:cs_si}
+
+As shown in section~\ref{subsection:sep_def}, C$_{\text{s}}$ exhibits the lowest energy of formation.
+Considering a perfect Si crystal and conservation of particles, however, the occupation of a Si lattice site by a slowed down implanted C atom is necessarily accompanied by the formation of a Si self-interstitial.
+\prune{
+There are good reasons for the existence of regions exhibiting such configurations with regard to the IBS process.
+Highly energetic C atoms are able to kick out a Si atom from its lattice site, resulting in a Si self-interstitial accompanied by a vacant site, which might get occupied by another C atom that lost almost all of its kinetic energy.
+%Thus, configurations of C$_{\text{s}}$ and Si self-interstitials are investigated in the following.
+Provided that the first C atom, which created the V and Si$_{\text{i}}$ pair has enough kinetic energy to escape the affected region, the C$_{\text{s}}$-Si$_{\text{i}}$ pair can be described as a separated defect complex.
+}
+The Si$_{\text{i}}$ \hkl<1 1 0> DB, which was found to exhibit the lowest energy of formation within the investigated self-interstitial configurations, is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.
+
+\begin{table}
+\begin{ruledtabular}
+\begin{tabular}{l c c c c c c}
+ & \hkl[1 1 0] & \hkl[-1 1 0] & \hkl[0 1 1] & \hkl[0 -1 1] &
+   \hkl[1 0 1] & \hkl[-1 0 1] \\
+\hline
+1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
+2 & \RM{2} & \RM{6} & \RM{6} & \RM{2} & \RM{8} & \RM{5} \\
+3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
+4 & \RM{4} & \RM{7} & \RM{9} & \RM{10} & \RM{10} & \RM{9} \\
+5 & \RM{5} & \RM{8} & \RM{6} & \RM{2} & \RM{6} & \RM{2} \\
+\end{tabular}
+\caption{Equivalent configurations labeled \RM{1}-\RM{10} of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}. The respective orientation of the Si$_{\text{i}}$ DB is given in the first row.}
+\label{table:dc_si-s}
+\end{ruledtabular}
+\end{table}
+\begin{table*}
+\begin{ruledtabular}
+\begin{tabular}{l c c c c c c c c c c}
+ & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & \RM{6} & \RM{7} & \RM{8} & \RM{9} & \RM{10} \\
+\hline
+$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
+$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
+$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
+\end{tabular}
+\caption{Formation energies $E_{\text{f}}$, binding energies $E_{\text{b}}$ and C$_{\text{s}}$-Si$_{\text{i}}$ separation distances of configurations combining C$_{\text{s}}$ and Si$_{\text{i}}$ as defined in Table~\ref{table:dc_si-s}.}
+\label{table:dc_si-s_e}
+\end{ruledtabular}
+\end{table*}
+Table~\ref{table:dc_si-s} classifies equivalent configurations of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}.
+Corresponding formation as well as binding energies and the separation distances of the C$_{\text{s}}$ atom and the Si$_{\text{i}}$ DB lattice site are listed in Table~\ref{table:dc_si-s_e}.
+In total, ten different configurations exist within the investigated range.
+Configuration \RM{1} constitutes the energetically most favorable structure exhibiting a formation energy of \unit[4.37]{eV}.
+Obviously, the configuration of a Si$_{\text{i}}$ \hkl[1 1 0] DB and a neighbored C$_{\text{s}}$ atom along the bond chain, which has the same direction as the alignment of the DB, enables the largest possible reduction of strain.
+The relaxed structure is displayed in the bottom right of Fig.~\ref{fig:162-097}.
+Compressive strain originating from the Si$_{\text{i}}$ is compensated by tensile strain inherent to the C$_{\text{s}}$ configuration.
+The Si$_{\text{i}}$ DB atoms are displaced towards the lattice site occupied by the C$_{\text{s}}$ atom in such a way that the Si$_{\text{i}}$ DB atom closest to the C atom does no longer form bonds to its top Si neighbors, but to the next neighbored Si atom along \hkl[1 1 0].
+
+However, the configuration is energetically less favorable than the \hkl<1 0 0> C$_{\text{i}}$ DB, which, thus, remains the ground state of a C atom introduced into otherwise perfect c-Si.
+The transition involving the latter two configurations is shown in Fig.~\ref{fig:162-097}.
+\begin{figure}
+\includegraphics[width=\columnwidth]{162-097.ps}
+\caption{Migration barrier and structures of the transition of a \hkl[1 1 0] Si$_{\text{i}}$ DB next to C$_{\text{s}}$ (right) into the C$_{\text{i}}$ \hkl[0 0 -1] DB configuration (left). An activation energy of \unit[0.12]{eV} and \unit[0.77]{eV} for the reverse process is observed.}
+\label{fig:162-097}
+\end{figure}
+An activation energy as low as \unit[0.12]{eV} is necessary for the migration into the ground-state configuration.
+Accordingly, the C$_{\text{i}}$ \hkl<1 0 0> DB configuration is assumed to occur more likely.
+However, only \unit[0.77]{eV} are needed for the reverse process, i.e. the formation of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB out of the ground state.
+Due to the low activation energy, this process must be considered to be activated without much effort either thermally or by introduced energy of the implantation process.
+
+\begin{figure}
+%\includegraphics[width=\columnwidth]{c_sub_si110.ps}
+\includegraphics[width=\columnwidth]{c_sub_si110_data.ps}
+\caption{Binding energies of combinations of a C$_{\text{s}}$ and a Si$_{\text{i}}$ DB with respect to the separation distance.}
+%\caption{Binding energies of combinations of a C$_{\text{s}}$ and a Si$_{\text{i}}$ DB with respect to the separation distance. The interaction strength of the defect pairs are well approximated by a Lennard-Jones 6-12 potential, which is used for curve fitting.}
+\label{fig:dc_si-s}
+\end{figure}
+Fig.~\ref{fig:dc_si-s} shows the binding energies of pairs of C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB with respect to the separation distance.
+%The interaction of the defects is well approximated by a Lennard-Jones (LJ) 6-12 potential, which is used for curve fitting.
+%Unable to model possible positive values of the binding energy, i.e. unfavorable configurations, located to the right of the minimum, the LJ fit should rather be thought as a guide for the eye describing the decrease of the interaction strength, i.e. the absolute value of the binding energy, with increasing separation distance.
+%The binding energy quickly drops to zero.
+%The LJ fit estimates almost zero interaction already at \unit[0.6]{nm}, indicating a low interaction capture radius of the defect pair.
+As can be seen, the interaction strength, i.e. the absolute value of the binding energy, quickly drops to zero with increasing separation distance.
+Almost zero interaction may be assumed already at distances about \unit[0.5-0.6]{nm}, indicating a low interaction capture radius of the defect pair.
+In IBS, highly energetic collisions are assumed to easily produce configurations of defects exhibiting separation distances exceeding the capture radius.
+For this reason, C$_{\text{s}}$ without a Si$_{\text{i}}$ DB located within the immediate proximity, which is, thus, unable to form the thermodynamically stable C$_{\text{i}}$ \hkl<1 0 0> DB, constitutes a most likely configuration to be found in IBS.
+
+Similar to what was previously mentioned, configurations of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB might be particularly important at higher temperatures due to the low activation energy necessary for its formation.
+At higher temperatures the contribution of entropy to structural formation increases, which might result in a spatial separation even for defects located within the capture radius.
+Indeed, an {\em ab initio} molecular dynamics run at \unit[900]{$^{\circ}$C} starting from configuration \RM{1}, which -- based on the above findings -- is assumed to recombine into the ground-state configuration, results in a separation of the C$_{\text{s}}$ and Si$_{\text{i}}$ DB by more than 4 neighbor distances realized in a repeated migration mechanism of annihilating and arising Si$_{\text{i}}$  DBs.
+The atomic configurations for two different points in time are shown in Fig.~\ref{fig:md}.
+Si atoms 1 and 2, which form the initial DB, occupy Si lattice sites in the final configuration while Si atom 3 is transferred from a regular lattice site into the interstitial lattice.
+\begin{figure}
+\begin{minipage}{0.49\columnwidth}
+\includegraphics[width=\columnwidth]{md01_bonds.eps}
+\end{minipage}
+\begin{minipage}{0.49\columnwidth}
+\includegraphics[width=\columnwidth]{md02_bonds.eps}\\
+\end{minipage}\\
+\begin{minipage}{0.49\columnwidth}
+\begin{center}
+$t=\unit[2230]{fs}$
+\end{center}
+\end{minipage}
+\begin{minipage}{0.49\columnwidth}
+\begin{center}
+$t=\unit[2900]{fs}$
+\end{center}
+\end{minipage}
+\caption{Atomic configurations of an {\em ab initio} molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ \hkl[1 1 0] DB (atoms 1 and 2). Equal atoms are marked by equal numbers.}
+\label{fig:md}
+\end{figure}
+
+\subsection{Mobility of silicon defects}
+
+Separated configurations of \cs{} and \si{} become even more likely if Si diffusion exhibits a low barrier of migration.
+Concerning the mobility of the ground-state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
+Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
+These are of the same order of magnitude than values derived from other {\em ab initio} studies\cite{bloechl93,sahli05}.
+The low barriers indeed enable configurations of further separated \cs{} and \si{} atoms by the highly mobile \si{} atom departing from the \cs{} defect as observed in the previously discussed MD simulation.
+
+\subsection{Summary}
+
+Obtained results for separated point defects in Si are in good agreement to previous theoretical work on this subject, both for intrinsic defects\cite{leung99,al-mushadani03} as well as for C point defects\cite{dal_pino93,capaz94}.
+The ground-state configurations of these defects, i.e. the Si$_{\text{i}}$ \hkl<1 1 0> and C$_{\text{i}}$ \hkl<1 0 0> DB, have been reproduced and compare well to previous findings of theoretical investigations on Si$_{\text{i}}$\cite{leung99,al-mushadani03} as well as theoretical\cite{dal_pino93,capaz94,burnard93,leary97,jones04} and experimental\cite{watkins76,song90} studies on C$_{\text{i}}$.
+A quantitatively improved activation energy of \unit[0.9]{eV} for a qualitatively equal migration path based on studies by Capaz et.~al.\cite{capaz94} to experimental values\cite{song90,lindner06,tipping87} ranging from \unit[0.70-0.87]{eV} reinforce their derived mechanism of diffusion for C$_{\text{i}}$ in Si.
+
+The investigation of defect pairs indicated a general trend of defect agglomeration mainly driven by the potential of strain reduction.
+Obtained results for the most part compare well with results gained in previous studies\cite{leary97,capaz98,mattoni2002,liu02} and show an astonishingly good agreement with experiment\cite{song90}.
+For configurations involving two C impurities, the ground-state configurations have been found to consist of C-C bonds, which are responsible for the vast gain in energy.
+However, based on investigations of possible migration pathways, these structures are less likely to arise than structures, in which both C atoms are interconnected by another Si atom, which is due to high activation energies of the respective pathways or alternative pathways featuring less high activation energies, which, however, involve intermediate unfavorable configurations.
+Thus, agglomeration of C$_{\text{i}}$ is expected while the formation of C-C bonds is assumed to fail to appear by thermally activated diffusion processes.
+
+In contrast, C$_{\text{i}}$ and Vs were found to efficiently react with each other exhibiting activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} resulting in stable C$_{\text{s}}$ configurations.
+In addition, we observed a highly attractive interaction exhibiting a large capture radius, effective independent of the orientation and the direction of separation of the defects.
+Accordingly, the formation of C$_{\text{s}}$ is very likely to occur.
+Comparatively high energies necessary for the reverse process reveal this configuration to be extremely stable.
+
+Investigating configurations of C$_{\text{s}}$ and Si$_{\text{i}}$, formation energies higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB were obtained keeping up previously derived assumptions concerning the ground state of C$_{\text{i}}$ in otherwise perfect Si.
+However, a small capture radius was identified for the respective interaction that might prevent the recombination of defects exceeding a separation of \unit[0.6]{nm} into the ground-state configuration.
+In addition, a rather small activation energy of \unit[0.77]{eV} allows for the formation of a C$_{\text{s}}$-Si$_{\text{i}}$ pair originating from the C$_{\text{i}}$ \hkl<1 0 0> DB structure by thermally activated processes.
+Thus, elevated temperatures might lead to configurations of C$_{\text{s}}$ and a remaining Si atom in the near interstitial lattice, which is supported by the result of the molecular dynamics run.
+
+% add somewhere: nearly same energies of C_i -> Si_i + C_s, Si_i mig and C_i mig
+
+
 
 
 
@@ -326,14 +749,14 @@ This constitutes a serious limitation that has to be taken into account for mode
 
 \section{Excursus: Competition of C$_{\text{i}}$ and C$_{\text{s}}$-Si$_{\text{i}}$}
 
-As has been shown, the energetically most favorable configuration of C$_{\text{s}}$ and Si$_{\text{i}}$ is obtained for C$_{\text{s}}$ located at the neighbored lattice site along the \hkl<1 1 0> bond chain of a Si$_{\text{i}}$ \hkl<1 1 0> DB.
+As has been shown in section \ref{subsection:cs_si}, the energetically most favorable configuration of C$_{\text{s}}$ and Si$_{\text{i}}$ is obtained for C$_{\text{s}}$ located at the neighbored lattice site along the \hkl<1 1 0> bond chain of a Si$_{\text{i}}$ \hkl<1 1 0> DB.
 However, the energy of formation is slightly higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground state for a C impurity introduced into otherwise perfect c-Si.
 
 For a possible clarification of the controversial views on the participation of C$_{\text{s}}$ in the precipitation mechanism by classical potential simulations, test calculations need to ensure the proper description of the relative formation energies of combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ compared to C$_{\text{i}}$.
 This is particularly important since the energy of formation of C$_{\text{s}}$ is drastically underestimated by the EA potential.
 A possible occurrence of C$_{\text{s}}$ could then be attributed to a lower energy of formation of the C$_{\text{s}}$-Si$_{\text{i}}$ combination due to the low formation energy of  C$_{\text{s}}$, which is obviously wrong.
 
-Since quantum-mechanical calculations reveal the Si$_{\text{i}}$ \hkl<1 1 0> DB as the ground state configuration of Si$_{\text{i}}$ in Si it is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.
+Since quantum-mechanical calculations reveal the Si$_{\text{i}}$ \hkl<1 1 0> DB as the ground-state configuration of Si$_{\text{i}}$ in Si, it is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.
 Empirical potentials, however, predict Si$_{\text{i}}$ T to be the energetically most favorable configuration.
 Thus, investigations of the relative energies of formation of defect pairs need to include combinations of C$_{\text{s}}$ with Si$_{\text{i}}$ T.
 Results of VASP and EA calculations are summarized in Table~\ref{tab:defect_combos}.
@@ -346,44 +769,34 @@ Results of VASP and EA calculations are summarized in Table~\ref{tab:defect_comb
  Erhart/Albe & 3.88 & 4.93 & 5.25$^{\text{a}}$/5.08$^{\text{b}}$/4.43$^{\text{c}}$
 \end{tabular}
 \end{ruledtabular}
-\caption{Formation energies of defect configurations of a single C impurity in otherwise perfect c-Si determined by classical potential and ab initio methods. The formation energies are given in electron volts. T denotes the tetrahedral and the subscripts i and s indicate the interstitial and substitutional configuration. Superscripts a, b and c denote configurations of C$_{\text{s}}$ located at the first, second and third nearest neighbored lattice site with respect to the Si$_{\text{i}}$ atom.}
+\caption{Formation energies of defect configurations of a single C impurity in otherwise perfect c-Si determined by classical potential and {\em ab initio} methods. The formation energies are given in electron volts. T denotes the tetrahedral and the subscripts i and s indicate the interstitial and substitutional configuration. Superscripts a, b and c denote configurations of C$_{\text{s}}$ located at the first, second and third nearest neighbored lattice site with respect to the Si$_{\text{i}}$ atom.}
 \label{tab:defect_combos}
 \end{table}
-Obviously the EA potential properly describes the relative energies of formation.
-Combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ T are energetically less favorable than the ground state C$_{\text{i}}$ \hkl<1 0 0> DB configuration.
-With increasing separation distance the energies of formation decrease.
+Obviously, the EA potential properly describes the relative energies of formation.
+Combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ T are energetically less favorable than the ground-state C$_{\text{i}}$ \hkl<1 0 0> DB configuration.
+With increasing separation distance, the energies of formation decrease.
 However, even for non-interacting defects, the energy of formation, which is then given by the sum of the formation energies of the separated defects (\unit[4.15]{eV}) is still higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB.
-Unexpectedly, the structure of a Si$_{\text{i}}$ \hkl<1 1 0> DB and a neighbored C$_{\text{s}}$, which is the most favored configuration of a C$_{\text{s}}$ and Si$_{\text{i}}$ DB according to quantum-mechanical calculations\cite{zirkelbach11a}, likewise constitutes an energetically favorable configuration within the EA description, which is even preferred over the two least separated configurations of C$_{\text{s}}$ and Si$_{\text{i}}$ T.
+Unexpectedly, the structure of a Si$_{\text{i}}$ \hkl<1 1 0> DB and a neighbored C$_{\text{s}}$, which is the most favored configuration of a C$_{\text{s}}$ and Si$_{\text{i}}$ DB according to the quantum-mechanical calculations, likewise constitutes an energetically favorable configuration within the EA description, which is even preferred over the two least separated configurations of C$_{\text{s}}$ and Si$_{\text{i}}$ T.
 This is attributed to an effective reduction in strain enabled by the respective combination.
 Quantum-mechanical results reveal a more favorable energy of fomation for the C$_{\text{s}}$ and Si$_{\text{i}}$ T (a) configuration.
 However, this configuration is unstable involving a structural transition into the C$_{\text{i}}$ \hkl<1 1 0> interstitial, thus, not maintaining the tetrahedral Si nor the substitutional C defect.
 
 Thus, the underestimated energy of formation of C$_{\text{s}}$ within the EA calculation does not pose a serious limitation in the present context.
-Since C is introduced into a perfect Si crystal and the number of particles is conserved in simulation, the creation of C$_{\text{s}}$ is accompanied by the creation of Si$_{\text{i}}$, which is energetically less favorable than the ground state, i.e. the C$_{\text{i}}$ \hkl<1 0 0> DB configuration, for both, the EA and ab initio treatment.
+Since C is introduced into a perfect Si crystal and the number of particles is conserved in simulation, the creation of C$_{\text{s}}$ is accompanied by the creation of Si$_{\text{i}}$, which is energetically less favorable than the ground state, i.e. the C$_{\text{i}}$ \hkl<1 0 0> DB configuration, for both, the EA and {\em ab initio} treatment.
 In either case, no configuration more favorable than the C$_{\text{i}}$ \hkl<1 0 0> DB has been found.
 Thus, a proper description with respect to the relative energies of formation is assumed for the EA potential.
 
 
-
-
-
-
-\section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
-\label{sec:qm}
-
-Qm stuff ... more accurate, less efficient ... some small probs that ...
-or in intro ...
-
-\subsection{Mobility of silicon defects}
-
-% todo- where to put mobility
-Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
-Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
-These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.
-
 \section{Classical potential calculations on the SiC precipitation in Si}
 \label{sec:md}
 
+The MD technique is used to gain insight into the behavior of C existing in different concentrations in c-Si on the microscopic level at finite temperatures.
+Simulations are restricted to classical potential simulations using the procedure introduced in section \ref{meth}.
+In a first step, simulations are performed, which try to mimic the conditions during IBS.
+Results reveal limitations of the employed potential and MD in general.
+With reference to the results of the last section, a workaround is discussed.
+The approach is follwed and, finally, results gained by the MD simulations are interpreted drawing special attention to the established controversy concerning precipitation of SiC in Si.
+
 \subsection{Molecular dynamics simulations}
 
 Fig.~\ref{fig:450} shows the radial distribution functions of simulations, in which C was inserted at \unit[450]{$^{\circ}$C}, an operative and efficient temperature in IBS\cite{lindner99}, for all three insertion volumes.
@@ -404,7 +817,7 @@ Thus, in the following, the focus is on low ($V_1$) and high ($V_2$, $V_3$) C co
 
 In the low C concentration simulation the number of C-C bonds is small, as can be seen in the upper part of Fig.~\ref{fig:450:a}.
 On average, there are only 0.2 C atoms per Si unit cell.
-By comparing the Si-C peaks of the low concentration simulation with the resulting Si-C distances of a C$_{\text{i}}$ \hkl<1 0 0> DB in Fig.~\ref{fig:450:b} it becomes evident that the structure is clearly dominated by this kind of defect.
+By comparing the Si-C peaks of the low concentration simulation with the resulting Si-C distances of a C$_{\text{i}}$ \hkl<1 0 0> DB in Fig.~\ref{fig:450:b}, it becomes evident that the structure is clearly dominated by this kind of defect.
 One exceptional peak at \unit[0.26]{nm} (marked with an arrow in Fig.~\ref{fig:450:b}) exists, which is due to the Si-C cut-off, at which the interaction is pushed to zero.
 Investigating the C-C peak at \unit[0.31]{nm}, which is also available for low C concentrations as can be seen in the upper inset of Fig.~\ref{fig:450:a}, reveals a structure of two concatenated, differently oriented C$_{\text{i}}$ \hkl<1 0 0> DBs to be responsible for this distance.
 Additionally, in the inset of the bottom part of Fig.\ref{fig:450:a} the Si-Si radial distribution shows non-zero values at distances around \unit[0.3]{nm}, which, again, is due to the DB structure stretching two neighbored Si atoms.
@@ -424,7 +837,7 @@ For high C concentrations, a rearrangement of the amorphous SiC structure, which
 On closer inspection two reasons for describing this obstacle become evident.
 
 First of all, there is the time scale problem inherent to MD in general.
-To minimize the integration error the discretized time step must be chosen smaller than the reciprocal of the fastest vibrational mode resulting in a time step of \unit[1]{fs} for the investigated materials system.
+To minimize the integration error, the discretized time step must be chosen smaller than the reciprocal of the fastest vibrational mode resulting in a time step of \unit[1]{fs} for the investigated materials system.
 Limitations in computer power result in a slow propagation in phase space.
 Several local minima exist, which are separated by large energy barriers.
 Due to the low probability of escaping such a local minimum, a single transition event corresponds to a multiple of vibrational periods.
@@ -443,7 +856,7 @@ This is also true for the low concentration simulations dominated by the occurre
 
 \subsection{Increased temperature simulations}
 
-Due to the problem of slow phase space propagation, which is enhanced by the employed potential, pushing the time scale to the limits of computational resources or applying one of the above mentioned accelerated dynamics methods exclusively might not be sufficient.
+Due to the problem of slow phase space propagation, which is enhanced by the employed potential, pushing the time scale to the limits of computational resources or applying one of the above mentioned accelerated dynamics methods exclusively, might not be sufficient.
 Instead, higher temperatures are utilized to compensate overestimated diffusion barriers.
 These are overestimated by a factor of 2.4 to 3.5.
 Scaling the absolute temperatures accordingly results in maximum temperatures of \unit[1460-2260]{$^{\circ}$C}.
@@ -472,7 +885,7 @@ Obviously, the structure obtained at \unit[450]{$^{\circ}$C}, which was found to
 Comparing the radial distribution at \unit[2050]{$^{\circ}$C} to the resulting bonds of C$_{\text{s}}$ in c-Si excludes all possibility of doubt.
 
 The phase transformation is accompanied by an arising Si-Si peak at \unit[0.325]{nm} in Fig.~\ref{fig:tot:si-si}, which corresponds to the distance of next neighbored Si atoms along the \hkl<1 1 0> bond chain with C$_{\text{s}}$ in between.
-Since the expected distance of these Si pairs in 3C-SiC is \unit[0.308]{nm} the existing SiC structures embedded in the c-Si host are stretched.
+Since the expected distance of these Si pairs in 3C-SiC is \unit[0.308]{nm}, the existing SiC structures embedded in the c-Si host are stretched.
 
 According to the C-C radial distribution displayed in Fig.~\ref{fig:tot:c-c}, agglomeration of C fails to appear even for elevated temperatures, as can be seen on the total amount of C pairs within the investigated separation range, which does not change significantly.
 However, a small decrease in the amount of neighbored C pairs can be observed with increasing temperature.
@@ -524,13 +937,13 @@ For both structures the C atom appears to reside on a substitutional rather than
 However, huge amounts of damage hamper identification.
 The alignment of the investigated structures to the c-Si host is lost in many cases, which suggests the necessity of much more time for structural evolution to maintain the topotactic orientation of the precipitate.
 
-\section{Discussion and Summary}
+\subsection{Summary of classical potential calculations}
 
 Investigations are targeted at the initially stated controversy of SiC precipitation, i.e. whether precipitation occurs abruptly after enough C$_{\text{i}}$ agglomerated or after a successive agglomeration of C$_{\text{s}}$ on usual Si lattice sites (and Si$_{\text{i}}$) followed by a contraction into incoherent SiC.
-Results of a previous ab initio study on defects and defect combinations in C implanted Si\cite{zirkelbach11a} suggest C$_{\text{s}}$ to play a decisive role in the precipitation of SiC in Si.
-To support previous assumptions MD simulations, which are capable of modeling the necessary amount of atoms, i.e. the precipitate and the surrounding c-Si structure, have been employed in the current study.
+Results of the previous {\em ab initio} study on defects and defect combinations in C implanted Si suggest C$_{\text{s}}$ to play a decisive role in the precipitation of SiC in Si.
+To support previous assumptions, MD simulations, which are capable of modeling the necessary amount of atoms, i.e. the precipitate and the surrounding c-Si structure, have been employed in the current study.
 
-In a previous comparative study\cite{zirkelbach10} we have shown that the utilized empirical potential fails to describe some selected processes.
+In a previous comparative study\cite{zirkelbach10}, we have shown that the utilized empirical potential fails to describe some selected processes.
 Thus, limitations of the employed potential have been further investigated and taken into account in the present study.
 We focussed on two major shortcomings: the overestimated activation energy and the improper description of intrinsic and C point defects in Si.
 Overestimated forces between nearest neighbor atoms that are expected for short range potentials\cite{mattoni2007} have been confirmed to influence the C$_{\text{i}}$ diffusion.
@@ -548,16 +961,52 @@ For the low C concentrations, time scales are still too low to observe C agglome
 However, we observed a phase transition of the C$_{\text{i}}$-dominated into a clearly C$_{\text{s}}$-dominated structure.
 The amount of substitutionally occupied C atoms increases with increasing temperature.
 Entropic contributions are assumed to be responsible for these structures at elevated temperatures that deviate from the ground state at 0 K.
-Indeed, in a previous ab initio MD simulation\cite{zirkelbach11a} performed at \unit[900]{$^{\circ}$C} we observed the departing of a Si$_{\text{i}}$ \hkl<1 1 0> DB located next to a C$_{\text{s}}$ atom instead of a recombination into the ground state configuration, i.e. a C$_{\text{i}}$ \hkl<1 0 0> DB.
+Indeed, in the {\em ab initio} MD simulation performed at \unit[900]{$^{\circ}$C}, we observed the departing of a Si$_{\text{i}}$ \hkl<1 1 0> DB located next to a C$_{\text{s}}$ atom instead of a recombination into the ground-state configuration, i.e. a C$_{\text{i}}$ \hkl<1 0 0> DB.
+
+\section{Conclusions}
+
+Results of the present atomistic simulation study based on first-principles as well as classical potential methods allow to draw conclusions on mechanisms involved in the process of SiC conversion in Si.
+Agglomeration of C$_{\text{i}}$ is energetically favored and enabled by a low activation energy for migration.
+Although ion implantation is a process far from thermodynamic equilibrium, which might result in phases not described by the Si/C phase diagram, i.e. a C phase in Si, high activation energies are believed to be responsible for a low probability of the formation of C-C clusters.
+
+In the context of the initially stated controversy present in the precipitation model, quantum-mechanical results suggest an increased participation of C$_{\text{s}}$ already in the initial stage due to its high probability of incidence.
+%
+In the MD calculations, increased temperatures simulate the conditions prevalent in IBS that deviate the system from thermodynamic equilibrium enabling C$_{\text{i}}$ to turn into C$_{\text{s}}$.
+%
+The associated emission of Si$_{\text{i}}$ serves two needs: as a vehicle for other C$_{\text{s}}$ atoms and as a supply of Si atoms needed elsewhere to form the SiC structure.
+As for the vehicle, Si$_{\text{i}}$ is believed to react with C$_{\text{s}}$ turning it into highly mobile C$_{\text{i}}$ again, allowing for the rearrangement of the C atom.
+The rearrangement is crucial to end up in a configuration of C atoms only occupying substitutionally the lattice sites of one of the two fcc lattices that build up the diamond lattice.
+% TODO: add SiC structure info to intro
+On the other hand, the conversion of some region of Si into SiC by substitutional C is accompanied by a reduction of the volume since SiC exhibits a \unit[20]{\%} smaller lattice constant than Si.
+The reduction in volume is compensated by excess Si$_{\text{i}}$ serving as building blocks for the surrounding Si host or a further formation of SiC.
+
+
+
+
+It is worth to mention that there is no contradiction to results of the HREM studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}.
+Regions showing dark contrasts in an otherwise undisturbed Si lattice are attributed to C atoms in the interstitial lattice.
+However, there is no particular reason for the C species to reside in the interstitial lattice.
+Contrasts are also assumed for Si$_{\text{i}}$.
+Once precipitation occurs, regions of dark contrasts disappear in favor of Moir\'e patterns indicating 3C-SiC in c-Si due to the mismatch in the lattice constant.
+Until then, however, these regions are either composed of stretched coherent SiC and interstitials or of already contracted incoherent SiC surrounded by Si and interstitials, where the latter is too small to be detected in HREM.
+In both cases Si$_{\text{i}}$ might be attributed a third role, which is the partial compensation of tensile strain that is present either in the stretched SiC or at the interface of the contracted SiC and the Si host.
+
+In addition, the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate is satisfied by the mechanism of successive positioning of C$_{\text{s}}$.
+In contrast, there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.
 
+Moreover, results of the MD simulations at different temperatures and C concentrations can be correlated to experimental findings.
 % postannealing less efficient than hot implantation
-Experimental studies revealed increased implantation temperatures to be more efficient than postannealing methods for the formation of topotactically aligned precipitates\cite{eichhorn02}.
+Experimental studies revealed increased implantation temperatures to be more efficient than postannealing methods for the formation of topotactically aligned precipitates\cite{kimura82,eichhorn02}.
 In particular, restructuring of strong C-C bonds is affected\cite{deguchi92}, which preferentially arise if additional kinetic energy provided by an increase of the implantation temperature is missing to accelerate or even enable atomic rearrangements.
 We assume this to be related to the problem of slow structural evolution encountered in the high C concentration simulations due to the insertion of high amounts of C into a small volume within a short period of time resulting in essentially no time for the system to rearrange.
 % rt implantation + annealing
-Implantations of an understoichiometric dose at room temperature followed by thermal annealing results in small spherical sized C$_{\text{i}}$ agglomerates at temperatures below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size at temperatures above \unit[700]{$^{\circ}$C}\cite{werner96}.
-Since, however, the implantation temperature is considered more efficient than the postannealing temperature, SiC precipitates are expected -- and indeed are observed for as-implanted samples\cite{lindner99,lindner01} -- in implantations performed at \unit[450]{$^{\circ}$C}.
-Implanted C is therefore expected to occupy substitutionally usual Si lattice sites right from the start.
+More substantially, understoichiometric implantations at room temperature into preamorphized Si followed by a solid phase epitaxial regrowth step at \degc{700} result in Si$_{1-x}$C$_x$ layers in the diamond cubic phase with C residing on substitutional Si lattice sites \cite{strane93}.
+The strained structure is found to be stable up to \degc{810}.
+Coherent clustering followed by precipitation is suggested if these structures are annealed at higher temperatures.
+%
+Similar, implantations of an understoichiometric dose at room temperature followed by thermal annealing results in small spherical sized C$_{\text{i}}$ agglomerates at temperatures below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size at temperatures above \unit[700]{$^{\circ}$C}\cite{werner96}.
+Since, however, the implantation temperature is considered more efficient than the postannealing temperature, SiC precipitates are expected and indeed observed for as-implanted samples in implantations performed at \unit[450]{$^{\circ}$C}\cite{lindner99,lindner01}.
+Thus, implanted C is likewise expected to occupy substitutionally usual Si lattice sites right from the start for implantations into c-Si at elevated temperatures.
 
 Thus, we propose an increased participation of C$_{\text{s}}$ already in the initial stages of the implantation process at temperatures above \unit[450]{$^{\circ}$C}, the temperature most applicable for the formation of SiC layers of high crystalline quality and topotactical alignment\cite{lindner99}.
 Thermally activated, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by Si$_{\text{i}}$.
@@ -567,12 +1016,27 @@ Since the conversion of a coherent SiC structure, i.e. C$_{\text{s}}$ occupying
 Si$_{\text{i}}$ serves either as a supply of Si atoms needed in the surrounding of the contracted precipitates or as an interstitial defect minimizing the emerging strain energy of a coherent precipitate.
 The latter has been directly identified in the present simulation study, i.e. structures of two C$_{\text{s}}$ atoms and Si$_{\text{i}}$ located in the vicinity.
 
-It is, thus, concluded that precipitation occurs by successive agglomeration of C$_{\text{s}}$ as already proposed by Nejim et~al.\cite{nejim95}.
-This agrees well with a previous ab initio study on defects in C implanted Si\cite{zirkelbach11a}, which showed C$_{\text{s}}$ to occur in all probability.
+\section{Summary}
+
+In summary, C and Si point defects in Si, combinations of these defects and diffusion processes within such configurations have been investigated.
+We have shown that C interstitials in Si tend to agglomerate, which is mainly driven by a reduction of strain.
+Investigations of migration pathways, however, allow to conclude that C clustering is hindered due to high activation energies of the respective diffusion processes.
+A highly attractive interaction and a large capture radius has been identified for the C$_{\text{i}}$ \hkl<1 0 0> DB and the vacancy indicating a high probability for the formation of C$_{\text{s}}$.
+In contrast, a rapidly decreasing interaction with respect to the separation distance has been identified for C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB resulting in a low probability of defects exhibiting respective separations to transform into the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground-state configuration for a C atom introduced into otherwise perfect Si. 
+An increased participation of \cs{} during implantation at elevated temperatures is concluded.
+
+Results of the classical potential MD simulations reinforce conclusions drawn from first-principles calculations.
+Increased temperatures were utilized to compensate overestimated diffusion barriers and simulate conditions of the IBS process, which is far from equilibrium.
+A transition of a \ci-dominated structure at low temperatures into a \cs-dominated structure at high temperatures was observed.
+The associated \si{} existing in structures of the high temperature simulations is directly identified to compensate tensile strain available in stretched structures of \cs, which are considered initial, coherently aligned SiC precipitates.
+
+We conclude that precipitation occurs by successive agglomeration of C$_{\text{s}}$ as already proposed by Nejim et~al.\cite{nejim95}.
 However, agglomeration and rearrangement is enabled by mobile C$_{\text{i}}$, which has to be present at the same time and is formed by recombination of C$_{\text{s}}$ and Si$_{\text{i}}$.
 In contrast to assumptions of an abrupt precipitation of an agglomerate of C$_{\text{i}}$\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}, however, structural evolution is believed to occur by a successive occupation of usual Si lattice sites with substitutional C.
 This mechanism satisfies the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate, whereas there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.
 
+
+
 % ----------------------------------------------------
 \section*{Acknowledgment}
 We gratefully acknowledge financial support by the Bayerische Forschungsstiftung (DPA-61/05) and the Deutsche Forschungsgemeinschaft (DFG SCHM 1361/11).
@@ -580,7 +1044,425 @@ We gratefully acknowledge financial support by the Bayerische Forschungsstiftung
 
 % --------------------------------- references -------------------
 
-\bibliography{../../bibdb/bibdb}{}
-\bibliographystyle{h-physrev3}
+%\bibliography{../../bibdb/bibdb}{}
+%\bibliographystyle{h-physrev3}
+
+
+\begin{thebibliography}{100}
+
+\bibitem{edgar92}
+J.~H. Edgar,
+\newblock J. Mater. Res. {\bf 7}, 235 (1992).
+
+\bibitem{morkoc94}
+H.~Morko\c{c}, S.~Strite, G.~B. Gao, M.~E. Lin, B.~Sverdlov, and M.~Burns,
+\newblock J. Appl. Phys. {\bf 76}, 1363 (1994).
+
+\bibitem{wesch96}
+W.~Wesch,
+\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 116}, 305 (1996).
+
+\bibitem{capano97}
+M.~A. Capano and R.~J. Trew,
+\newblock MRS Bull. {\bf 22}, 19 (1997).
+
+\bibitem{park98}
+Y.~S. Park,
+\newblock {\em Si{C} Materials and Devices} (Academic Press, San Diego, 1998).
+
+\bibitem{fischer90}
+G.~R. Fisher and P.~Barnes,
+\newblock Philos. Mag. B {\bf 61}, 217 (1990).
+
+\bibitem{powell90}
+J.~A. Powell, D.~J. Larkin, L.~G. Matus, W.~J. Choyke, J.~L. Bradshaw,
+  L.~Henderson, M.~Yoganathan, J.~Yang, and P.~Pirouz,
+\newblock Appl. Phys. Lett. {\bf 56}, 1353 (1990).
+
+\bibitem{fissel95}
+A.~Fissel, U.~Kaiser, E.~Ducke, B.~Schr{\"{o}}ter, and W.~Richter,
+\newblock J. Cryst. Growth {\bf 154}, 72 (1995).
+
+\bibitem{fissel95_apl}
+A.~Fissel, B.~Schr{\"{o}}ter, and W.~Richter,
+\newblock Appl. Phys. Lett. {\bf 66}, 3182 (1995).
+
+\bibitem{nishino83}
+S.~Nishino, J.~A. Powell, and H.~A. Will,
+\newblock Appl. Phys. Lett. {\bf 42}, 460 (1983).
+
+\bibitem{nishino87}
+S.~Nishino, H.~Suhara, H.~Ono, and H.~Matsunami,
+\newblock J. Appl. Phys. {\bf 61}, 4889 (1987).
+
+\bibitem{kitabatake93}
+M.~Kitabatake, M.~Deguchi, and T.~Hirao,
+\newblock J. Appl. Phys. {\bf 74}, 4438 (1993).
+
+\bibitem{borders71}
+J.~A. Borders, S.~T. Picraux, and W.~Beezhold,
+\newblock Appl. Phys. Lett. {\bf 18}, 509 (1971).
+
+\bibitem{lindner99}
+J.~K.~N. Lindner and B.~Stritzker,
+\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 147}, 249 (1999).
+
+\bibitem{lindner01}
+J.~K.~N. Lindner,
+\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 178}, 44 (2001).
+
+\bibitem{lindner02}
+J.~K.~N. Lindner,
+\newblock Appl. Phys. A {\bf 77}, 27 (2003).
+
+\bibitem{lindner99_2}
+J.~K.~N. Lindner and B.~Stritzker,
+\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 148}, 528 (1999).
+
+\bibitem{werner96}
+P.~Werner, R.~K{\"{o}}gler, W.~Skorupa, and D.~Eichler,
+\newblock in {\em Proceedings of the 11th International Conference on Ion Implantation Technology}, pp. 675--678, 1996.
+
+\bibitem{werner97}
+P.~Werner, S.~Eichler, G.~Mariani, R.~K{\"{o}}gler, and W.~Skorupa,
+\newblock Appl. Phys. Lett. {\bf 70}, 252 (1997).
+
+\bibitem{eichhorn99}
+F.~Eichhorn, N.~Schell, W.~Matz, and R.~K{\"{o}}gler,
+\newblock J. Appl. Phys. {\bf 86}, 4184 (1999).
+
+\bibitem{koegler03}
+R.~K{\"{o}}gler, F.~Eichhorn, J.~R. Kaschny, A.~M{\"{u}}cklich, H.~Reuther,
+  W.~Skorupa, C.~Serre, and A.~Perez-Rodriguez,
+\newblock Appl. Phys. A: Mater. Sci. Process. {\bf 76}, 827 (2003).
+
+\bibitem{strane94}
+J.~W. Strane, H.~J. Stein, S.~R. Lee, S.~T. Picraux, J.~K. Watanabe, and J.~W.
+  Mayer,
+\newblock J. Appl. Phys. {\bf 76}, 3656 (1994).
+
+\bibitem{guedj98}
+C.~Guedj, M.~W. Dashiell, L.~Kulik, J.~Kolodzey, and A.~Hairie,
+\newblock J. Appl. Phys. {\bf 84}, 4631 (1998).
+
+\bibitem{nejim95}
+A.~Nejim, P.~L.~F. Hemment, and J.~Stoemenos,
+\newblock Appl. Phys. Lett. {\bf 66}, 2646 (1995).
+
+\bibitem{strane96}
+J.~W. Strane, S.~R. Lee, H.~J. Stein, S.~T. Picraux, J.~K. Watanabe, and J.~W.
+  Mayer,
+\newblock J. Appl. Phys. {\bf 79}, 637 (1996).
+
+\bibitem{laveant2002}
+P.~Lav\'eant, G.~Gerth, P.~Werner, and U.~G{\"{o}}sele,
+\newblock Mater. Sci. Eng., B {\bf 89}, 241 (2002).
+
+\bibitem{bar-yam84}
+Y.~Bar-Yam and J.~D. Joannopoulos,
+\newblock Phys. Rev. Lett. {\bf 52}, 1129 (1984).
+
+\bibitem{bar-yam84_2}
+Y.~Bar-Yam and J.~D. Joannopoulos,
+\newblock Phys. Rev. B {\bf 30}, 1844 (1984).
+
+\bibitem{car84}
+R.~Car, P.~J. Kelly, A.~Oshiyama, and S.~T. Pantelides,
+\newblock Phys. Rev. Lett. {\bf 52}, 1814 (1984).
+
+\bibitem{batra87}
+I.~P. Batra, F.~F. Abraham, and S.~Ciraci,
+\newblock Phys. Rev. B {\bf 35}, 9552 (1987).
+
+\bibitem{bloechl93}
+P.~E. Bl{\"o}chl, E.~Smargiassi, R.~Car, D.~B. Laks, W.~Andreoni, and S.~T.
+  Pantelides,
+\newblock Phys. Rev. Lett. {\bf 70}, 2435 (1993).
+
+\bibitem{tang97}
+M.~Tang, L.~Colombo, J.~Zhu, and T.~Diaz de~la Rubia,
+\newblock Phys. Rev. B {\bf 55}, 14279 (1997).
+
+\bibitem{leung99}
+W.-K. Leung, R.~J. Needs, G.~Rajagopal, S.~Itoh, and S.~Ihara,
+\newblock Phys. Rev. Lett. {\bf 83}, 2351 (1999).
+
+\bibitem{colombo02}
+L.~Colombo,
+\newblock Annu. Rev. Mater. Res. {\bf 32}, 271 (2002).
+
+\bibitem{goedecker02}
+S.~Goedecker, T.~Deutsch, and L.~Billard,
+\newblock Phys. Rev. Lett. {\bf 88}, 235501 (2002).
+
+\bibitem{al-mushadani03}
+O.~K. Al-Mushadani and R.~J. Needs,
+\newblock Phys. Rev. B {\bf 68}, 235205 (2003).
+
+\bibitem{hobler05}
+G.~Hobler and G.~Kresse,
+\newblock Mater. Sci. Eng., B {\bf 124-125}, 368 (2005).
+
+\bibitem{sahli05}
+B.~Sahli and W.~Fichtner,
+\newblock Phys. Rev. B {\bf 72}, 245210 (2005).
+
+\bibitem{posselt08}
+M.~Posselt, F.~Gao, and H.~Bracht,
+\newblock Phys. Rev. B {\bf 78}, 035208 (2008).
+
+\bibitem{ma10}
+S.~Ma and S.~Wang,
+\newblock Phys. Rev. B {\bf 81}, 193203 (2010).
+
+\bibitem{mazzarolo01}
+M.~Mazzarolo, L.~Colombo, G.~Lulli, and E.~Albertazzi,
+\newblock Phys. Rev. B {\bf 63}, 195207 (2001).
+
+\bibitem{holmstroem08}
+E.~Holmstr{\"o}m, A.~Kuronen, and K.~Nordlund,
+\newblock Phys. Rev. B {\bf 78}, 045202 (2008).
+
+\bibitem{tersoff90}
+J.~Tersoff,
+\newblock Phys. Rev. Lett. {\bf 64}, 1757 (1990).
+
+\bibitem{dal_pino93}
+A.~{Dal Pino}, A.~M. Rappe, and J.~D. Joannopoulos,
+\newblock Phys. Rev. B {\bf 47}, 12554 (1993).
+
+\bibitem{capaz94}
+R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos,
+\newblock Phys. Rev. B {\bf 50}, 7439 (1994).
+
+\bibitem{burnard93}
+M.~J. Burnard and G.~G. DeLeo,
+\newblock Phys. Rev. B {\bf 47}, 10217 (1993).
+
+\bibitem{leary97}
+P.~Leary, R.~Jones, S.~{\"O}berg, and V.~J.~B. Torres,
+\newblock Phys. Rev. B {\bf 55}, 2188 (1997).
+
+\bibitem{capaz98}
+R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos,
+\newblock Phys. Rev. B {\bf 58}, 9845 (1998).
+
+\bibitem{zhu98}
+J.~Zhu,
+\newblock Comput. Mater. Sci. {\bf 12}, 309 (1998).
+
+\bibitem{mattoni2002}
+A.~Mattoni, F.~Bernardini, and L.~Colombo,
+\newblock Phys. Rev. B {\bf 66}, 195214 (2002).
+
+\bibitem{park02}
+S.~Y. Park, J.~D'Arcy-Gall, D.~Gall, J.~A. N.~T. Soares, Y.-W. Kim, H.~Kim,
+  P.~Desjardins, J.~E. Greene, and S.~G. Bishop,
+\newblock J. Appl. Phys. {\bf 91}, 5716 (2002).
+
+\bibitem{jones04}
+R.~Jones, B.~J. Coomer, and P.~R. Briddon,
+\newblock J. Phys.: Condens. Matter {\bf 16}, S2643 (2004).
+
+\bibitem{chirita97}
+V.~Chirita, L.~Hultman, and L.~R. Wallenberg,
+\newblock Thin Solid Films {\bf 294}, 47 (1997).
+
+\bibitem{cicero02}
+G.~Cicero, L.~Pizzagalli, and A.~Catellani,
+\newblock Phys. Rev. Lett. {\bf 89}, 156101 (2002).
+
+\bibitem{pizzagalli03}
+L.~Pizzagalli, G.~Cicero, and A.~Catellani,
+\newblock Phys. Rev. B {\bf 68}, 195302 (2003).
+
+\bibitem{bockstedte03}
+M.~Bockstedte, A.~Mattausch, and O.~Pankratov,
+\newblock Phys. Rev. B {\bf 68}, 205201 (2003).
+
+\bibitem{rauls03a}
+E.~Rauls, T.~Frauenheim, A.~Gali, and P.~De\'ak,
+\newblock Phys. Rev. B {\bf 68}, 155208 (2003).
+
+\bibitem{gao04}
+F.~Gao, W.~J. Weber, M.~Posselt, and V.~Belko,
+\newblock Phys. Rev. B {\bf 69}, 245205 (2004).
+
+\bibitem{posselt06}
+M.~Posselt, F.~Gao, and W.~J. Weber,
+\newblock Phys. Rev. B {\bf 73}, 125206 (2006).
+
+\bibitem{gao07}
+F.~Gao, J.~Du, E.~J. Bylaska, M.~Posselt, and W.~J. Weber,
+\newblock Appl. Phys. Lett. {\bf 90}, 221915 (2007).
+
+\bibitem{stillinger85}
+F.~H. Stillinger and T.~A. Weber,
+\newblock Phys. Rev. B {\bf 31}, 5262 (1985).
+
+\bibitem{brenner90}
+D.~W. Brenner,
+\newblock Phys. Rev. B {\bf 42}, 9458 (1990).
+
+\bibitem{tersoff_si3}
+J.~Tersoff,
+\newblock Phys. Rev. B {\bf 38}, 9902 (1988).
+
+\bibitem{bazant96}
+M.~Z. Bazant and E.~Kaxiras,
+\newblock Phys. Rev. Lett. {\bf 77}, 4370 (1996).
+
+\bibitem{bazant97}
+M.~Z. Bazant, E.~Kaxiras, and J.~F. Justo,
+\newblock Phys. Rev. B {\bf 56}, 8542 (1997).
+
+\bibitem{justo98}
+J.~F. Justo, M.~Z. Bazant, E.~Kaxiras, V.~V. Bulatov, and S.~Yip,
+\newblock Phys. Rev. B {\bf 58}, 2539 (1998).
+
+\bibitem{balamane92}
+H.~Balamane, T.~Halicioglu, and W.~A. Tiller,
+\newblock Phys. Rev. B {\bf 46}, 2250 (1992).
+
+\bibitem{huang95}
+H.~Huang, N.~M. Ghoniem, J.~K. Wong, and M.~Baskes,
+\newblock Modell. Simul. Mater. Sci. Eng. {\bf 3}, 615 (1995).
+
+\bibitem{godet03}
+J.~Godet, L.~Pizzagalli, S.~Brochard, and P.~Beauchamp,
+\newblock J. Phys.: Condens. Matter {\bf 15}, 6943 (2003).
+
+\bibitem{lucas10}
+G.~Lucas, M.~Bertolus, and L.~Pizzagalli,
+\newblock J. Phys.: Condens. Matter {\bf 22}, 035802 (2010).
+
+\bibitem{tersoff_m}
+J.~Tersoff,
+\newblock Phys. Rev. B {\bf 39}, 5566 (1989).
+
+\bibitem{gao02}
+F.~Gao and W.~J. Weber,
+\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 191}, 487 (2002).
+
+\bibitem{albe_sic_pot}
+P.~Erhart and K.~Albe,
+\newblock Phys. Rev. B {\bf 71}, 035211 (2005).
+
+\bibitem{mattoni2007}
+A.~{Mattoni}, M.~{Ippolito}, and L.~{Colombo},
+\newblock Phys. Rev. B {\bf 76}, 224103 (2007).
+
+\bibitem{zirkelbach10}
+F.~Zirkelbach, B.~Stritzker, K.~Nordlund, J.~K.~N. Lindner, W.~G. Schmidt, and
+  E.~Rauls,
+\newblock Phys. Rev. B {\bf 82}, 094110 (2010).
+
+\bibitem{kresse96}
+G.~Kresse and J.~Furthm{\"{u}}ller,
+\newblock Comput. Mater. Sci. {\bf 6}, 15 (1996).
+
+\bibitem{perdew86}
+J.~P. Perdew and Y.~Wang,
+\newblock Phys. Rev. B {\bf 33}, 8800 (1986).
+
+\bibitem{perdew92}
+J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J.
+  Singh, and C.~Fiolhais,
+\newblock Phys. Rev. B {\bf 46}, 6671 (1992).
+
+\bibitem{hamann79}
+D.~R. Hamann, M.~Schl{\"u}ter, and C.~Chiang,
+\newblock Phys. Rev. Lett. {\bf 43}, 1494 (1979).
+
+\bibitem{vanderbilt90}
+D.~Vanderbilt,
+\newblock Phys. Rev. B {\bf 41}, 7892 (1990).
+
+\bibitem{berendsen84}
+H.~J.~C. Berendsen, J.~P.~M. Postma, W.~F. van Gunsteren, A.~DiNola, and J.~R.
+  Haak,
+\newblock J. Chem. Phys. {\bf 81}, 3684 (1984).
+
+\bibitem{verlet67}
+L.~Verlet,
+\newblock Phys. Rev. {\bf 159}, 98 (1967).
+
+\bibitem{kaukonen98}
+M.~Kaukonen, P.~K. Sitch, G.~Jungnickel, R.~M. Nieminen, S.~P{\"o}ykk{\"o},
+  D.~Porezag, and T.~Frauenheim,
+\newblock Phys. Rev. B {\bf 57}, 9965 (1998).
+
+\bibitem{watkins76}
+G.~D. Watkins and K.~L. Brower,
+\newblock Phys. Rev. Lett. {\bf 36}, 1329 (1976).
+
+\bibitem{song90}
+L.~W. Song and G.~D. Watkins,
+\newblock Phys. Rev. B {\bf 42}, 5759 (1990).
+
+\bibitem{zirkelbach09}
+F.~Zirkelbach, J.~K.~N. Lindner, K.~Nordlund, and B.~Stritzker,
+\newblock Mater. Sci. Eng., B {\bf 159-160}, 149 (2009).
+
+\bibitem{lindner06}
+J.~K.~N. Lindner, M.~H{\"a}berlen, G.~Thorwarth, and B.~Stritzker,
+\newblock Mater. Sci. Eng., C {\bf 26}, 857 (2006).
+
+\bibitem{tipping87}
+A.~K. Tipping and R.~C. Newman,
+\newblock Semicond. Sci. Technol. {\bf 2}, 315 (1987).
+
+\bibitem{song90_2}
+L.~W. Song, X.~D. Zhan, B.~W. Benson, and G.~D. Watkins,
+\newblock Phys. Rev. B {\bf 42}, 5765 (1990).
+
+\bibitem{liu02}
+C.-L. Liu, W.~Windl, L.~Borucki, S.~Lu, and X.-Y. Liu,
+\newblock Appl. Phys. Lett. {\bf 80}, 52 (2002).
+
+\bibitem{voter97}
+A.~F. Voter,
+\newblock Phys. Rev. Lett. {\bf 78}, 3908 (1997).
+
+\bibitem{voter97_2}
+A.~F. Voter,
+\newblock J. Chem. Phys. {\bf 106}, 4665 (1997).
+
+\bibitem{voter98}
+A.~F. Voter,
+\newblock Phys. Rev. B {\bf 57}, R13985 (1998).
+
+\bibitem{sorensen2000}
+M.~R. S{\o }rensen and A.~F. Voter,
+\newblock J. Chem. Phys. {\bf 112}, 9599 (2000).
+
+\bibitem{wu99}
+X.~Wu and S.~Wang,
+\newblock J. Chem. Phys. {\bf 110}, 9401 (1999).
+
+\bibitem{tang95}
+M.~Tang and S.~Yip,
+\newblock Phys. Rev. B {\bf 52}, 15150 (1995).
+
+\bibitem{kimura82}
+T.~Kimura, S.~Kagiyama, and S.~Yugo,
+\newblock Thin Solid Films {\bf 94}, 191 (1982).
+
+\bibitem{eichhorn02}
+F.~Eichhorn, N.~Schell, A.~M{\"{u}}cklich, H.~Metzger, W.~Matz, and
+  R.~K{\"{o}}gler,
+\newblock J. Appl. Phys. {\bf 91}, 1287 (2002).
+
+\bibitem{deguchi92}
+M.~Deguchi, M.~Kitabatake, T.~Hirao, N.~Arai, and T.~Izumi,
+\newblock Japanese J. Appl. Phys. {\bf 31}, 343 (1992).
+
+\bibitem{strane93}
+J.~W. Strane, H.~J. Stein, S.~R. Lee, B.~L. Doyle, S.~T. Picraux, and J.~W.
+  Mayer,
+\newblock Appl. Phys. Lett. {\bf 63}, 2786 (1993).
+
+\end{thebibliography}
 
 \end{document}
+