em corrected
[lectures/latex.git] / posic / thesis / defects.tex
index 8dd42a5..16a42e9 100644 (file)
@@ -796,8 +796,8 @@ The evolution of structure and configurational energy is displayed again in Fig.
 Approximately \unit[2.2]{eV} are needed to turn the \ci{} \hkl[0 0 -1] into the \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
 Another barrier of \unit[0.90]{eV} exists for the rotation into the \ci{} \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
 Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in Fig. \ref{fig:defects:110_mig} and Fig. \ref{fig:defects:cp_bc_00-1_mig}.
-The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
-By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by {em ab initio} calculations.
+The former diffusion process, however, would more nicely agree with the {\em ab initio} path, since the migration is accompanied by a rotation of the DB orientation.
+By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by {\em ab initio} calculations.
 
 \subsection{Conclusions}
 
@@ -1153,7 +1153,7 @@ Although the C-C bond exhibiting a distance of \unit[0.15]{nm} close to the dist
 Again a single bond switch, i.e. the breaking of the bond of the Si atom bound to the fourfold coordinated C$_{\text{s}}$ atom and the formation of a double bond between the two C atoms, results in configuration b.
 The two C atoms form a \hkl[1 0 0] DB sharing the initial C$_{\text{s}}$ lattice site while the initial Si DB atom occupies its previously regular lattice site.
 The transition is accompanied by a large gain in energy as can be seen in Fig.~\ref{fig:026-128}, making it the ground-state configuration of a C$_{\text{s}}$ and C$_{\text{i}}$ DB in Si yet \unit[0.33]{eV} lower in energy than configuration B.
-This finding is in good agreement with a combined ab initio and experimental study of Liu et~al.~\cite{liu02}, who first proposed this structure as the ground state identifying an energy difference compared to configuration B of \unit[0.2]{eV}.
+This finding is in good agreement with a combined {\em ab initio} and experimental study of Liu et~al.~\cite{liu02}, who first proposed this structure as the ground state identifying an energy difference compared to configuration B of \unit[0.2]{eV}.
 % mattoni: A favored by 0.2 eV - NO! (again, missing spin polarization?)
 A net magnetization of two spin up electrons, which are equally localized as in the Si$_{\text{i}}$ \hkl<1 0 0> DB structure is observed.
 In fact, these two configurations are very similar and are qualitatively different from the C$_{\text{i}}$ \hkl<1 0 0> DB that does not show magnetization but a nearly collinear bond of the C DB atom to its two neighbored Si atoms while the Si DB atom approximates \unit[120]{$^{\circ}$} angles in between its bonds.
@@ -1446,7 +1446,7 @@ Thus, the existence of C$_{\text{s}}$ is very likely.
 
 Similar to what was previously mentioned, configurations of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB might be particularly important at higher temperatures due to the low activation energy necessary for its formation.
 At higher temperatures, the contribution of entropy to structural formation increases, which might result in a spatial separation even for defects located within the capture radius.
-Indeed, an {em ab initio} MD run at \unit[900]{$^{\circ}$C} starting from configuration \RM{1}, which -- based on the above findings -- is assumed to recombine into the ground state configuration, results in a separation of the C$_{\text{s}}$ and Si$_{\text{i}}$ DB by more than 4 neighbor distances realized in a repeated migration mechanism of annihilating and arising Si$_{\text{i}}$  DBs.
+Indeed, an {\em ab initio} MD run at \unit[900]{$^{\circ}$C} starting from configuration \RM{1}, which -- based on the above findings -- is assumed to recombine into the ground state configuration, results in a separation of the C$_{\text{s}}$ and Si$_{\text{i}}$ DB by more than 4 neighbor distances realized in a repeated migration mechanism of annihilating and arising Si$_{\text{i}}$  DBs.
 The atomic configurations for two different points in time are shown in Fig.~\ref{fig:defects:md}.
 \begin{figure}[tp]
 \begin{center}
@@ -1469,7 +1469,7 @@ $t=\unit[2900]{fs}$
 \end{center}
 \end{minipage}
 \end{center}
-\caption[Atomic configurations of an ab initio molecular dynamics run at {\unit[900]{$^{\circ}$C}} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ {\hkl[1 1 0]} DB.]{Atomic configurations of an ab initio molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ \hkl[1 1 0] DB (atoms 1 and 2). Equal atoms are marked by equal numbers. For substantial atoms, bonds are drawn in red color.}
+\caption[Atomic configurations of an {\em ab initio} molecular dynamics run at {\unit[900]{$^{\circ}$C}} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ {\hkl[1 1 0]} DB.]{Atomic configurations of an {\em ab initio} molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ \hkl[1 1 0] DB (atoms 1 and 2). Equal atoms are marked by equal numbers. For substantial atoms, bonds are drawn in red color.}
 \label{fig:defects:md}
 \end{figure}
 Si atoms 1 and 2, which form the initial DB, occupy Si lattice sites in the final configuration while Si atom 3 is transferred from a regular lattice site into the interstitial lattice.
@@ -1500,7 +1500,7 @@ The respective configurational energies are shown in Fig.~\ref{fig:defects:si_mi
 \caption[Migration barrier of the \si{} {\hkl[1 1 0]} DB into the hexagonal and tetrahedral configuration as well as the hexagonal \si{} to tetrahedral \si{} transition.]{Migration barrier of the \si{} \hkl[1 1 0] DB into the hexagonal (H) and tetrahedral (T) configuration as well as the hexagonal \si{} to tetrahedral \si{} transition.}
 \label{fig:defects:si_mig2}
 \end{figure}
-The obtained activation energies are of the same order of magnitude than values derived from other ab initio studies \cite{bloechl93,sahli05}.
+The obtained activation energies are of the same order of magnitude than values derived from other {\em ab initio} studies \cite{bloechl93,sahli05}.
 The low barriers indeed enable configurations of further separated \cs{} and \si{} atoms by the highly mobile \si{} atom departing from the \cs{} defect as observed in the previously discussed MD simulation.
 
 % kept for nostalgical reason!