weekend ...
[lectures/latex.git] / posic / thesis / defects.tex
index c6072dc..222e4e5 100644 (file)
@@ -413,7 +413,7 @@ However, strictly speaking, the Kohn-Sham levels and orbitals do not have a dire
 \caption[Structure, charge density isosurface and Kohn-Sham level diagram of the bond-centered interstitial configuration.]{Structure, charge density isosurface and Kohn-Sham level diagram of the bond-centered interstitial configuration. Gray, green and blue surfaces mark the charge density of spin up, spin down and the resulting spin up electrons in the charge density isosurface, in which the carbon atom is represented by a red sphere. In the energy level diagram red and green lines mark occupied and unoccupied states.}
 \label{img:defects:bc_conf}
 \end{figure}
-In the BC insterstitial configuration the interstitial atom is located inbetween two next neighbored Si atoms forming linear bonds.
+In the BC insterstitial configuration the interstitial atom is located in between two next neighbored Si atoms forming linear bonds.
 In a previous study this configuration was found to constitute an intermediate saddle point configuration determining the migration barrier of one possibe migration path of a \ci{} \hkl<1 0 0> DB configuration into an equivalent one \cite{capaz94}.
 This is in agreement with results of the EA potential simulations, which reveal this configuration to be unstable relaxing into the \ci{} \hkl<1 1 0> configuration.
 However, this fact could not be reproduced by spin polarized {\textsc vasp} calculations performed in this work.
@@ -745,7 +745,7 @@ Thus, the activation energy should be located within the range of \unit[2.2-2.7]
 Figures \ref{fig:defects:cp_00-1_0-10_mig} and \ref{fig:defects:cp_00-1_ip0-10_mig} show the migration barriers of the \ci{} \hkl<0 0 -1> to \hkl<0 -1 0> DB transition.
 In the first case, the transition involves a change in the lattice site of the C atom whereas in the second case, a reorientation at the same lattice site takes place.
 In the first case, the pathways for the two different time cosntants look similar.
-A local minimum exists inbetween two peaks of the graph.
+A local minimum exists in between two peaks of the graph.
 The corresponding configuration, which is illustrated for the results obtained for a time constant of \unit[1]{fs}, looks similar to the \ci{} \hkl<1 1 0> configuration.
 Indeed, this configuration is obtained by relaxation simulations without constraints of configurations near the minimum.
 Activation energies of roughly \unit[2.8]{eV} and \unit[2.7]{eV} are needed for migration.
@@ -1282,7 +1282,7 @@ The symmetric configuration is, thus, assumed to constitute a local maximum, whi
 Fig.~\ref{fig:defects:050} shows the relaxed structure of a vacancy created at position 5.
 The Si DB atom is largely displaced along \hkl[1 1 0] and somewhat less along \hkl[0 0 -1], which corresponds to the direction towards the vacancy.
 The \si DB atom approaches Si atom number 1.
-Indeed, a non-zero charge density is observed inbetween these two atoms exhibiting a cylinder-like shape superposed with the charge density known from the DB itself.
+Indeed, a non-zero charge density is observed in between these two atoms exhibiting a cylinder-like shape superposed with the charge density known from the DB itself.
 Strain reduced by this huge displacement is partially absorbed by tensile strain on Si atom number 1 originating from attractive forces of the C atom and the vacancy.
 A binding energy of \unit[-0.50]{eV} is observed.