first sent away beta version
[lectures/latex.git] / posic / thesis / defects.tex
index ac35f7c..3d4ea02 100644 (file)
@@ -401,16 +401,75 @@ However, strictly speaking, the Kohn-Sham levels and orbitals do not have a dire
 \begin{figure}[tp]
 \begin{center}
 \begin{minipage}{8cm}
-\includegraphics[width=8cm]{c_pd_vasp/bc_2333.eps}\\
+\begin{center}
+\includegraphics[width=6cm]{c_pd_vasp/bc_2333.eps}\\
+\vspace*{0.2cm}
 \hrule
 \vspace*{0.2cm}
-\includegraphics[width=8cm]{c_100_mig_vasp/im_spin_diff.eps}
+\includegraphics[width=6cm]{c_100_mig_vasp/im_spin_diff.eps}
+\vspace*{0.2cm}
+\framebox{
+ \footnotesize
+ \begin{minipage}[t]{7.5cm}
+  \begin{minipage}[t]{1.4cm}
+  {\color{red}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{red}\uparrow}$}\\
+  sp$^3$
+  \end{minipage}
+  \begin{minipage}[t]{1.6cm}
+  \begin{center}
+  {\color{red}M}{\color{blue}O}\\[0.8cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.2cm}
+  \begin{center}
+  {\color{blue}C}\\
+  {\tiny sp}\\[0.2cm]
+  \underline{${\color{white}\uparrow\uparrow}$}
+  \underline{${\color{white}\uparrow\uparrow}$}\\
+  2p\\[0.4cm]
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
+  sp
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.6cm}
+  \begin{center}
+  {\color{blue}M}{\color{green}O}\\[0.8cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.4cm}
+  \begin{flushright}
+  {\color{green}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{green}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}\\
+  sp$^3$
+  \end{flushright}
+  \end{minipage}
+ \end{minipage}
+}
+\end{center}
 \end{minipage}
 \begin{minipage}{7cm}
 \includegraphics[width=7cm]{c_pd_vasp/bc_2333_ksl.ps}
 \end{minipage}
 \end{center}
-\caption[Structure, charge density isosurface and Kohn-Sham level diagram of the bond-centered interstitial configuration.]{Structure, charge density isosurface and Kohn-Sham level diagram of the bond-centered interstitial configuration. Gray, green and blue surfaces mark the charge density of spin up, spin down and the resulting spin up electrons in the charge density isosurface, in which the carbon atom is represented by a red sphere. In the energy level diagram red and green lines mark occupied and unoccupied states.}
+\caption[Structure, charge density isosurface, molecular orbital diagram and Kohn-Sham level diagram of the bond-centered interstitial configuration.]{Structure, charge density, molecular orbital diagram isosurface and Kohn-Sham level diagram of the bond-centered interstitial configuration. Gray, green and blue surfaces mark the charge density of spin up, spin down and the resulting spin up electrons in the charge density isosurface, in which the carbon atom is represented by a red sphere. In the energy level diagram red and green lines mark occupied and unoccupied states.}
 \label{img:defects:bc_conf}
 \end{figure}
 In the BC insterstitial configuration the interstitial atom is located in between two next neighbored Si atoms forming linear bonds.
@@ -430,7 +489,6 @@ The other two electrons constitute the $2p^2$ orbitals resulting in a net magnet
 This is supported by the charge density isosurface and the Kohn-Sham levels in Fig. \ref{img:defects:bc_conf}.
 The blue torus, which reinforces the assumption of the $p$ orbital, illustrates the resulting spin up electron density.
 In addition, the energy level diagram shows a net amount of two spin up electrons.
-% todo smaller images, therefore add mo image
 
 \section{Migration of the carbon interstitial}
 \label{subsection:100mig}
@@ -441,8 +499,10 @@ In the following, the problem of interstitial C migration in Si is considered.
 Since the \ci{} \hkl<1 0 0> DB is the most probable, hence, most important configuration, the migration of this defect atom from one site of the Si host lattice to a neighboring site is in the focus of investigation.
 \begin{figure}[tp]
 \begin{center}
+%
 \begin{minipage}{15cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
+\centering
+\framebox{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
 \begin{minipage}{4.5cm}
 \includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
 \end{minipage}
@@ -458,9 +518,11 @@ $\rightarrow$
 \begin{minipage}{4.5cm}
 \includegraphics[width=4.5cm]{c_pd_vasp/100_next_2333.eps}
 \end{minipage}
-\end{minipage}\\
+\end{minipage}\\[0.5cm]
+%
 \begin{minipage}{15cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
+\centering
+\framebox{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
 \begin{minipage}{4.5cm}
 \includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
 \end{minipage}
@@ -476,9 +538,11 @@ $\rightarrow$
 \begin{minipage}{4.5cm}
 \includegraphics[width=4.5cm]{c_pd_vasp/0-10_2333.eps}
 \end{minipage}
-\end{minipage}\\
+\end{minipage}\\[0.5cm]
+%
 \begin{minipage}{15cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
+\centering
+\framebox{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
 \begin{minipage}{4.5cm}
 \includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
 \end{minipage}
@@ -522,22 +586,7 @@ The bond to the face-centered Si atom at the bottom of the unit cell breaks and
 
 \begin{figure}[tp]
 \begin{center}
-\includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[1.5cm]
-\begin{picture}(0,0)(150,0)
-\includegraphics[width=2.5cm]{vasp_mig/00-1.eps}
-\end{picture}
-\begin{picture}(0,0)(-10,0)
-\includegraphics[width=2.5cm]{vasp_mig/bc_00-1_sp.eps}
-\end{picture}
-\begin{picture}(0,0)(-120,0)
-\includegraphics[width=2.5cm]{vasp_mig/bc.eps}
-\end{picture}
-\begin{picture}(0,0)(25,20)
-\includegraphics[width=2.5cm]{110_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(200,0)
-\includegraphics[height=2.2cm]{001_arrow.eps}
-\end{picture}
+\includegraphics[width=0.7\textwidth]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
 \end{center}
 \caption[Migration barrier and structures of the \hkl<0 0 -1> DB (left) to BC (right) transition.]{Migration barrier and structures of the \hkl<0 0 -1> DB (left) to BC (right) transition. Bonds of the C atom are illustrated by blue lines.}
 \label{fig:defects:00-1_001_mig}
@@ -551,7 +600,7 @@ In a second process \unit[0.25]{eV} of energy are needed for the system to rever
 \begin{center}
 \includegraphics[width=0.7\textwidth]{00-1_0-10_vasp_s.ps}
 \end{center}
-\caption[Migration barrier and structures of the \hkl<0 0 -1> DB (left) to the \hkl<0 -1 0> DB (right) transition.]{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition. Bonds of the C atom are illustrated by blue lines. {\color{red} Prototype design, adjust related figures!}}
+\caption[Migration barrier and structures of the \hkl<0 0 -1> DB (left) to the \hkl<0 -1 0> DB (right) transition.]{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition. Bonds of the C atom are illustrated by blue lines.}
 % todo read above caption! enable [] hkls in short caption
 \label{fig:defects:00-1_0-10_mig}
 \end{figure}
@@ -560,22 +609,7 @@ The resulting migration barrier of approximately \unit[0.9]{eV} is very close to
 
 \begin{figure}[tp]
 \begin{center}
-\includegraphics[width=13cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[1.8cm]
-\begin{picture}(0,0)(140,0)
-\includegraphics[width=2.2cm]{vasp_mig/00-1_b.eps}
-\end{picture}
-\begin{picture}(0,0)(20,0)
-\includegraphics[width=2.2cm]{vasp_mig/00-1_ip0-10_sp.eps}
-\end{picture}
-\begin{picture}(0,0)(-120,0)
-\includegraphics[width=2.2cm]{vasp_mig/0-10_b.eps}
-\end{picture}
-\begin{picture}(0,0)(25,20)
-\includegraphics[width=2.5cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(200,0)
-\includegraphics[height=2.2cm]{001_arrow.eps}
-\end{picture}
+\includegraphics[width=0.7\textwidth]{00-1_ip0-10_nosym_sp_fullct_vasp_s.ps}
 \end{center}
 \caption[Reorientation barrier and structures of the \hkl<0 0 -1> DB (left) to the \hkl<0 -1 0> DB (right) transition in place.]{Reorientation barrier and structures of the \hkl<0 0 -1> DB (left) to the \hkl<0 -1 0> DB (right) transition in place. Bonds of the carbon atoms are illustrated by blue lines.}
 \label{fig:defects:00-1_0-10_ip_mig}
@@ -691,7 +725,7 @@ For this reason, the assumption that C diffusion and reorientation is achieved b
 %\includegraphics[height=2.2cm]{010_arrow.eps}
 %\end{picture}
 \end{center}
-\caption[Migration barrier and structures of the \ci{} BC to \hkl<0 0 -1> DB transition using the classical EA potential.]{Migration barrier and structures of the \ci{} BC to \hkl[0 0 -1] DB transition using the classical EA potential. Two migration pathways are obtained for different time constants of the Berendsen thermostat. The lowest activation energy is \unit[2.2]{eV}. {\color{red} Prototype design, adjust related figures!}}
+\caption[Migration barrier and structures of the \ci{} BC to \hkl<0 0 -1> DB transition using the classical EA potential.]{Migration barrier and structures of the \ci{} BC to \hkl[0 0 -1] DB transition using the classical EA potential. Two migration pathways are obtained for different time constants of the Berendsen thermostat. The lowest activation energy is \unit[2.2]{eV}.}
 \label{fig:defects:cp_bc_00-1_mig}
 % red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20 -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.75 -1.25 -0.25 -L -0.25 -0.25 -0.25 -r 0.6 -B 0.1
 % blue: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20_tr100/ -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.0 -0.25 1.0 -L 0.0 -0.25 -0.25 -r 0.6 -B 0.1
@@ -711,25 +745,7 @@ Thus, the activation energy should be located within the range of \unit[2.2-2.7]
 
 \begin{figure}[tp]
 \begin{center}
-\includegraphics[width=13cm]{00-1_0-10.ps}\\[2.4cm]
-\begin{pspicture}(0,0)(0,0)
-\psframe[linecolor=red,fillstyle=none](-6,-0.5)(7.2,2.8)
-\end{pspicture}
-\begin{picture}(0,0)(130,-10)
-\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_00.eps}
-\end{picture}
-\begin{picture}(0,0)(0,-10)
-\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_min.eps}
-\end{picture}
-\begin{picture}(0,0)(-120,-10)
-\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_03.eps}
-\end{picture}
-\begin{picture}(0,0)(25,10)
-\includegraphics[width=2.5cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(185,-10)
-\includegraphics[height=2.2cm]{001_arrow.eps}
-\end{picture}
+\includegraphics[width=0.7\textwidth]{00-1_0-10_albe_s.ps}
 \end{center}
 \caption{Migration barrier and structures of the \ci{} \hkl<0 0 -1> to \hkl<0 -1 0>  DB transition using the classical EA potential.}
 % red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_00-1_0-10_s20 -nll -0.56 -0.56 -0.8 -fur 0.3 0.2 0 -c -0.125 -1.7 0.7 -L -0.125 -0.25 -0.25 -r 0.6 -B 0.1
@@ -1642,9 +1658,7 @@ Thus, elevated temperatures might lead to thermodynamically unstable configurati
 
 \fi
 
-% todo
-% maybe move above stuff to conclusion chapter, at least shorten!
-% see remember in sic chapter
+% todo - sync with conclusion chapter
 
 These findings allow to draw conclusions on the mechanisms involved in the process of SiC conversion in Si.
 Agglomeration of C$_{\text{i}}$ is energetically favored and enabled by a low activation energy for migration.