X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=nlsop%2Fdiplom%2Fsimulation.tex;h=3ab02b8c6d42d820283330ca39c5f33c796b3a74;hp=be0aa84f71f25eebd4b2fe7bb5135a64d2ee793b;hb=8495cdc90c095538694c0dbd746249e6d74923af;hpb=d94dc0c755708e1ba960e0679c3314adc81840d1 diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index be0aa84..3ab02b8 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -33,6 +33,9 @@ Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau). Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert. + Die Ausdehnung des Targets in $x,y$-Richtung ist im Gegensatz zur Tiefe sehr gross und kann als unendlich ausgedehnt angenommen werden. + Um die Anzahl der W"urfel in diese Richtungen in der Simulation, aus Gr"unden der Rechenzeit, m"oglichst klein halten zu k"onen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet. + \subsection{Amorphisierung und Rekristallisation} \label{subsection:a_and_r} @@ -104,6 +107,10 @@ Die Parameter sind ebenfalls frei w"ahlbar. Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen. + Prinzipiell sollte man den Kohlenstoff"ubertrag abh"angig von dem bereits vorhandenen Kohlenstoff in dem amorphen Volumen bestimmen. + Da die implantierte Dosis maximal die St"ochiometridosis und der Parameter $d_r$ gro"s genug gew"ahlt ist, kommt es nicht zur "Ubers"attigung. + Der Kohlenstoff in kristallinen Gebieten ist also immer bestrebt in amorphe Gebiete zu diffundieren um die sehr viel geringere S"attigung im Kristallinen zu reduzieren. + \subsection{Sputtern} Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. @@ -189,6 +196,7 @@ Es wird mit einem komplett kristallinen und kohlenstofffreien Target gestartet. \subsection{Amorphisierung und Rekristallisation} + \label{subsection:a_r_step} Im ersten Schritt sollen die Kollisionen und die daraus resultierende Amorphisierung beziehungsweise Rekristallisation simuliert werden. Zun"achst muss das gestossene Volumen ausgew"ahlt werden. @@ -198,7 +206,7 @@ Eine weitere, mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} erzeugte Zufallszahl $r_3 \in [0,Z[$ entsprechend der nuklearen Bremskraft, abgebildet auf die ganze Zahl $m$, legt die Tiefe des getroffenen Volumens fest. Somit hat man den Otrsvektor $\vec{r}(k,l,m)$ f"ur den Amorphisierungs- oder Rekristallisationsvorgang festgelegt. Nun kann die Amorphisierungs- beziehungsweise Rekristallisationswahrscheinlichkeit nach \eqref{eq:p_ca_local} beziehungsweise \eqref{eq:p_ac_genau} berechnet werden. - Eine weiter Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens. + Eine weitere Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens. Es gibt folgende M"oglichkeiten: \begin{enumerate} \item Volumen $\vec{r}(k,l,m)$ ist kristallin.\\ @@ -222,9 +230,159 @@ \subsection{Diffusion und Sputtern} + Die Diffusions-Routine ist wie folgt realisiert. + Die Simulation geht der Reihe nach alle Volumina durch. + Im Falle eines amorphen Volumens werden aus direkt anliegenden kristallinen Volumen der Anteil $d_r$ des Kohlenstoffs abgezogen und zu dem amorphen Volumen addiert. + Da nur ganze Atome "ubertragen werden k"onnen wird der Betrag auf die n"achst kleinere ganze Zahl abgerundet. + Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt. + + Die Sputter-Routine wird nach der Dosis, die einem Abtrag von $3 nm$ enstpricht ausgef"uhrt. + Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben: + \begin{equation} + S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.} + \end{equation} + Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben. + Dies geschieht wie folgt. + Der Inhalt der Eben $i$ wrd auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben. + Die Information der obersten Ebene $i=1$ geht dabei verloren. + Diese entspricht der abgetragenen Ebene. + Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null. + + Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren. + + Die Sputterrate kann durch {\em TRIM} bestimmt werden. + Bei den gegebenen Bedingungen werden ungef"ahr $50 nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen. + \section{Simulierte Tiefenbereiche} + Wie bereits erw"ahnt gibt es zwei verschiedene Versionen des Programms, die verschiedene Tiefenbereiche, im Folgenden Simulationsfenster genannt, simulieren. + + Da in erster Linie der Selbstorganisationsprozess der lamellaren Ausscheidungen an der vorderen Grenzfl"ache der amorphen $SiC_x$-Schicht simuliert werden soll, ist der Tiefenbereich der ersten Version gerade bis zu Beginn der durchgehenden Schicht. + Dies entspricht einer Tiefe von ungef"ahr $300 nm$, und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung. + + Wie in \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden. + Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohlenstofferh"ohung stattfindet. + + Die Zufallszahl $z$, die auf die Tiefen-Koordinate $m$ abgebildet wird, muss der Verteilung $p(z)dz = (sz + s_0)dz$ gen"ugen. + Dabei sind $s$ unnd $s_0$ die linear gen"aherte nukleare Bremskraft beschreibende Simulationsparameter. + Die Transformation wird wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben durchgef"uhrt. + Dasselbe betrifft die Wahl der Tiefen-Koordinate f"ur den Einbau des Kohlenstoffatoms. + Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend wird das linear gen"aherte Implantationsprofil verwendet. + Ausserdem wird nicht nach jedem Durchlauf ein Ion im Simulationsbereich zur Ruhe kommen. + Da das Maximum der Reichweitenverteilung sehr viel tiefer liegt werden die meisten Ionen ausserhalb des Simulationsfensters stehen bleiben. + Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Implantationskurve $I(x)$ bis $300 nm$ zur Fl"ache der gesamten Implantationskurve ist. + \begin{equation} + n_c < n \frac{\int_0^{300 nm} I(x) dx}{\int_0^{\infty} I(x) dx} + \end{equation} + + Da sowohl die Reichweitenverteilung als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist kann Sputtern nicht beachtet werden. + Der Diffusionsprozess ist uneingeschr"ankt "moglich. + + In der zweiten Version wird die gesamte Implantationstiefe simuliert. + Das Simulationsfenster geht von $0-700 nm$. + Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung. + + Die Tiefen-Koordinaten f"ur den Sto"sprozess und die Kohelnstoffinkorporation werden wie in Abschnitt \ref{subsection:a_r_step} beschrieben nach der Verwerfungsmethode entsprechend dem nuklearen Bremskraftprofil und der Reichweitenverteilung gewonnen. + + Da sowohl der nukleare Energieverlust und die Kohlenstoffkonzentration in Ebenen gr"osser $Z$ auf Null abgesunken ist, kann die Sputterroutine ausgef"uhrt werden. + Der Diffusionsprozess ist ebenfalls uneingeschr"ankt m"oglich. + \section{Test der Zufallszahlen} + F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein. + Es gibt viele statistische Tests eine Zahlenfolge auf ihre Verteilung beziehungsweise Zuf"alligkeit zu "uberpr"ufen. + + Im Folgenden soll nur kontrolliert werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren. + Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft. + + Dazu werden f"ur die unterschiedlichen Verteilungen jeweils 10 Millionen Zufallszahlen zwischen $0$ und $232$ erzeugt und auf die n"achst kleinere ganze Zahl abgerundet. + Ein einfaches Script-Programm z"ahlt die H"aufigkeit der einzelnen Zufallszahlen der Zufallszahlensequenz. + + \begin{figure}[h] + \includegraphics[width=12cm]{random.eps} + \caption{H"aufigkeit ganzzahliger Zufallszahlen unterschiedlicher Wahrscheinlichkeitsverteilungen. F"ur jede Verteilung wurden 10 Millionen Zufallszahlen ausgew"urfelt.} + \label{img:random_distrib} + \end{figure} + Abbildung \ref{img:random_distrib} zeigt die H"aufigkeit von Zufallszahlen zwischen $0$ und $232$, abgerundet auf die n"achst kleinere ganze Zahl, f"ur unterschiedliche Wahrscheinlichkeitsverteilungen. + + Die blauen Punkte zeigen die Gleichverteilung nach \eqref{eq:gleichverteilte_r}. + Man erkennt keine lokalen Anh"aufungen. + + Die roten Punkte zeigen die H"aufigkeit der Zufallszahlen bei Verwendung einer linear steigenden Wahrscheinlichkeitsverteilung wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben. + Dabei wurde $a=1$, $b=0$ und $Z=233$ gew"ahlt. + Wie erwartet zeigen die Punkte einen linearen Verlauf. + + Die H"aufigkeit der mit der Verwerfungsmethode erzeugten Zufallszahlen entsprechend der nuklearen Bremskraft (gr"un) und dem Implantationsprofil (schwarz) stimmen sehr gut mit den Profilen in Abbildung \ref{img:bk_impl_p} "uberein. + \section{Ablaufschema} + Das Ablaufshema ist wie der Simulationsalgorithmus aus drei Teilen zusammengesetzt. + Abbildung \ref{img:flowchart1} zeigt das Ablaufshema des Amorphisierungs- und Rekristallisationvorgangs. + + \begin{figure}[h] + \begin{pspicture}(0,0)(12,10) + \rput(6,10){\rnode{nlsop_start}{\psframebox{{\em NLSOP} Start}}} + + \rput(6,9){\rnode{koord_wahl}{\psframebox{Zuf"allige Wahl der Koordinaten $k$, $l$ und $m$}}} + \ncline[]{->}{nlsop_start}{koord_wahl} + + \rput(6,8){\rnode{berechnung_pca}{\psframebox{Berechnung von $p_{c \rightarrow a}(\vec{r}(k,l,m))$ und $p_{a \rightarrow c}(\vec{r}(k,l,m))$}}} + \ncline[]{->}{koord_wahl}{berechnung_pca} + + \rput(6,7){\rnode{status}{\psframebox{Volumen $\vec{r}(k,l,m)$ amorph?}}} + \ncline[]{->}{berechnung_pca}{status} + + \rput(3,5){\rnode{cryst}{\psframebox[linestyle=solid,linecolor=blue]{Zufallszahl $\le p_{c \rightarrow a}$?}}} + \rput(9,5){\rnode{amorph}{\psframebox[linestyle=solid,linecolor=red]{Zufallszahl $\le p_{a \rightarrow c}$?}}} + \ncline[]{->}{status}{cryst} + \lput*{0}{nein} + + \ncline[]{->}{status}{amorph} + \lput*{0}{ja} + + \rput(3,3){\rnode{do_amorph}{\psframebox[linestyle=solid,linecolor=red]{Setze Volumen amorph}}} + \ncline[]{->}{cryst}{do_amorph} + \lput*{0}{ja} + + \rput(9,3){\rnode{do_cryst}{\psframebox[linestyle=solid,linecolor=blue]{Setze Volumen kristallin}}} + \ncline[]{->}{amorph}{do_cryst} + \lput*{0}{ja} + + \rput(6,2){\rnode{check_h}{\psframebox{Anzahl der Durchl"aufe gleich Anzahl der Treffer pro Ion?}}} + + \rput(7,5){\pnode{h_2}} + \ncline[]{amorph}{h_2} + \ncline[]{->}{h_2}{check_h} + \lput*{0}{nein} + + \rput(5,5){\pnode{h_3}} + \ncline[]{cryst}{h_3} + \ncline[]{->}{h_3}{check_h} + \lput*{0}{nein} + + \rput(12,2){\pnode{h_4}} + \rput(12,9){\pnode{h_5}} + \ncline[]{check_h}{h_4} + \ncline[]{h_4}{h_5} + \lput*{0}{nein} + \ncline[]{->}{h_5}{koord_wahl} + + \ncline[]{->}{do_cryst}{check_h} + \ncline[]{->}{do_amorph}{check_h} + + \rput(12,2){\pnode{h_1}} + %\ncline[]{check_h}{h_1} + + \rput(6,0){\rnode{weiter_1}{\psframebox{weiter mit Kohlenstoffeinbau \ldots}}} + \ncline[]{->}{check_h}{weiter_1} + \lput*{0}{ja} + \end{pspicture} + \caption{{\em NLSOP} Ablaufshema des Amorphisierungs- und Rekristallisationsschritts} + \label{img:flowchart1} + \end{figure} + + %In Abbildung \ref{img:flowchart2} ist der Einbau des Kohlenstoffions shematisch aufgezeigt. + + + %Abbildung \ref{img:flowchart3} beinhaltet den Diffusions- und Sputervorgang. +