X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=nlsop%2Fdiplom%2Fsimulation.tex;h=837c17f3eaff65d40b35fa6211c31a8acab4759c;hp=67f709a925fd0b10e5b6cdbc4879f5260d3352f5;hb=fe7ff7f815e3edcce15da97e49480a9303e3c778;hpb=063f0cf839fa9fd414eb8d96af481581747e33e6 diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 67f709a..837c17f 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -281,6 +281,13 @@ Da sowohl die Reichweitenverteilung als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist kann Sputtern nicht beachtet werden. Der Diffusionsprozess ist uneingeschr"ankt "moglich. + Hier sei angemerkt, dass die Simulation prinzipiell auch Diffusion von Kohlenstoff innerhalb kristalliner Volumina behandeln kann. + Die erste Idee war, dass Kohlenstoff in kristalline Gebiete diffundieren kann, die bereits einen grossen Anteil ihres Kohlenstoffs an einen amorphen Nachbarn abgegeben haben. + Da jedoch das Konzentartionsprofil durch Diffusionsprozesse nicht ver"andert werden darf, wurde die rein kristalline Diffusion in $z$-Richtung ausgeschlossen. + Da weiterhin die Implantationsprofile von experimentellen Messungen und {\em TRIM}-Simulationen recht gut "ubereinstimmen, kann Diffusion in $z$-Richtung tats"achlich ausgeschlossen werden. + Eine Vorzugsrichtung der Diffusion ist unphysikalisch, weshalb die Diffusion innerhalb kristalliner Gebiete in weiteren Simulationen ausgeschlossen wurde. + Als Relikt bleibt die Option die Diffusion in $z$-Richtung auszuschalten. + In der zweiten Version wird die gesamte Implantationstiefe simuliert. Das Simulationsfenster geht von $0-700 nm$. Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung.