X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=nlsop%2Fposter%2Fnlsop_ibmm2006.tex;h=098893771024e247f4e48076db03a6011bfcea13;hp=43271f5ddec6613ad50b8d63f6dbaee265c2c167;hb=ffbb152419ec0697b3e12a77165307a35c056370;hpb=34b57344dd865030cdc34c2594f60c72a46af7e3 diff --git a/nlsop/poster/nlsop_ibmm2006.tex b/nlsop/poster/nlsop_ibmm2006.tex index 43271f5..0988937 100644 --- a/nlsop/poster/nlsop_ibmm2006.tex +++ b/nlsop/poster/nlsop_ibmm2006.tex @@ -14,9 +14,11 @@ % % special format, scaled by 2.82 -> A0 % -\def\breite{390mm} -\def\hoehe{319.2mm} -\def\anzspalten{4} +% A4 landscape (?) +% +%\def\breite{390mm} +%\def\hoehe{319.2mm} +%\def\anzspalten{4} % % A3 landscape % @@ -36,6 +38,18 @@ %\def\hoehe{297mm} %\def\anzspalten{2} % +% A0 portrait +% +%\def\breite{841mm} +%\def\hoehe{1189mm} +%\def\anzspalten{3} +% +% A0 / 2.82 portrait +% +\def\breite{298.23mm} +\def\hoehe{421.63mm} +\def\anzspalten{3} +% % % % scaling procedure: @@ -133,15 +147,15 @@ } % header -\vfill +%\vfill \hfill \psshadowbox{\makebox[0.95\textwidth]{% - \hfill - \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}} - \parbox[c]{0.7\linewidth}{% + %\hfill + \parbox[c]{0.15\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}} + \parbox[c]{0.62\linewidth}{% \begin{center} - \textbf{\Huge{Monte Carlo simulation study of a - selforganization process\\ + \textbf{\Huge{Monte Carlo simulation study \\ + of a selforganization process \\ leading to ordered precipitate structures} }\\[0.7em] \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen, @@ -152,12 +166,12 @@ } \end{center} } - \parbox[c]{0.1\linewidth}{% + \parbox[c]{0.15\linewidth}{% \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps} } - \hfill + %\hfill }} -\hfill\mbox{}\\[0.5cm] +\hfill\mbox{}\\[0cm] %\vspace*{1.3cm} @@ -166,6 +180,7 @@ \parbox[t][\textheight]{1.3\textwidth}{% %\vspace*{0.2cm} \hfill + %\hspace{0.5cm} % first column \begin{spalte} \begin{kasten} @@ -209,15 +224,15 @@ $\rightarrow$ {\bf amourphous} precipitates \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\ $\rightarrow$ {\bf lateral strain} (black arrows) +\item implantation range near surface\\ + $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component} \item reduction of the carbon supersaturation in $c-Si$\\ $\rightarrow$ {\bf carbon diffusion} into amorphous volumina (white arrows) -\item lateral strain (vertical component relaxating)\\ +\item remaining lateral strain\\ $\rightarrow$ {\bf strain induced} lateral amorphization \end{itemize} \end{kasten} -\end{spalte} -\begin{spalte} \begin{kasten} \section*{3 \hspace{0.1cm} {\color{blue}Simulation}} @@ -225,14 +240,28 @@ \begin{center} \includegraphics[width=6cm]{gitter_e.eps} \end{center} + Periodic boundary conditions in $x,y$-direction.\\ + Start conditions: All volumes crystalline, zero carbon + concentration. + \subsection*{3.3 {\color{blue} TRIM collision statistics}} + \begin{center} + \includegraphics[width=8cm]{trim_coll_e.eps} + \end{center} + \begin{center} + $\Rightarrow$ mean constant energy loss per collision of an ion + \end{center} + \end{kasten} +\end{spalte} +\begin{spalte} + \begin{kasten} \subsection*{3.2 {\color{blue} Simulation algorithm}} \subsubsection*{3.2.1 Amorphization/Recrystallization} \begin{itemize} - \item random numbers according to the nuclear - energy loss to determine the volume hit - by an impinging ion + \item random numbers distributed according to + the nuclear energy loss to determine the + volume hit by an impinging ion \item compute local probability for amorphization:\\ \[ @@ -262,8 +291,8 @@ Three contributions to the amorphization process controlled by: \subsubsection*{3.2.2 Carbon incorporation} \begin{itemize} - \item random numbers according to the - implantation profile to determine the + \item random numbers distributed according to + the implantation profile to determine the incorporation volume \item increase the amount of carbon atoms in that volume @@ -277,9 +306,8 @@ Three contributions to the amorphization process controlled by: corresponding to $3 \, nm$ of substrat removal \end{itemize} + \end{kasten} -\end{spalte} -\begin{spalte} \begin{kasten} \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}} @@ -290,19 +318,30 @@ Three contributions to the amorphization process controlled by: \begin{center} \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps} \end{center} + Simulation parameters:\\ + $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, + $d_v=1 \times 10^6$. \end{kasten} \begin{kasten} - \subsection*{4.2 {\color{blue} Carbon distribution}} + \subsection*{4.2 {\color{blue} Variation of the simulation parameters}} \begin{center} - \includegraphics[width=11cm]{ac_cconc_ver2_e.eps} + \includegraphics[width=11cm]{var_sim_paramters_en.eps} \end{center} - + Parameters of initial situation:\\ + $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, + $d_v=1 \times 10^6$. \end{kasten} \end{spalte} -% fourth column \begin{spalte} \begin{kasten} - \subsection*{4.3 {\color{blue} More structural/compositional + \subsection*{4.3 {\color{blue} Carbon distribution}} + \begin{center} + \includegraphics[width=11cm]{ac_cconc_ver2_e.eps} + \end{center} + + \end{kasten} + \begin{kasten} + \subsection*{4.4 {\color{blue} More structural/compositional information}} \begin{center} \includegraphics[width=8cm]{97_98_ng_e.eps} \\ @@ -310,35 +349,41 @@ Three contributions to the amorphization process controlled by: \end{center} \end{kasten} \begin{kasten} - \subsection*{4.4 \hspace{0.1cm} {\color{blue} Broad distribution + \subsection*{4.5 \hspace{0.1cm} {\color{blue} Broad distribution of lamellar structure - the recipe}} - \subsubsection*{4.4.1 Constant carbon concentration} + \subsubsection*{4.5.1 Constant carbon concentration} \makebox[11cm]{% - \parbox[c]{6cm}{% - \includegraphics[width=6cm]{multiple_impl_cp_e.eps} - } \parbox[c]{5cm}{% \begin{itemize} - \item multiple implantation \\ steps + \item multiple implantation\\ + steps \item energies: $180$ - $10 \, keV$ + \item temeprature: $500 ^{\circ} \mathrm{C}$\\ + $\rightarrow$ prevent amorphization \end{itemize} $\Rightarrow$ nearly constant carbon distribution ($10 \, at.\%$) } + \parbox[c]{6cm}{% + \includegraphics[width=6cm]{multiple_impl_cp_e.eps} + } } - \subsubsection*{4.4.2 2 MeV C$^+$ implantation + \subsubsection*{4.5.2 2 MeV C$^+$ implantation step} \begin{center} \includegraphics[width=10cm]{multiple_impl_e.eps} \end{center} + Starting point for materials with high photoluminescence.\\ + Dihu Chen et al. Opt. Mater. 23 (2003) 65. \end{kasten} \begin{kasten} - \section*{5 \hspace{0.1cm} {\color{red} Conclusions}} + \section*{5 \hspace{0.1cm} {\color{red} Conclusion}} \begin{itemize} \item selforganized nanometric precipitates by ion irradiation \item model describing the seoforganization process - \item precipitate structures traceable by simulation + \item set of parameters reproducing the experimental observations + \item precipitation process traceable by simulation \item detailed structural/compositional information \item recipe for broad distributions of lamellar structure \end{itemize}