X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=5f437fa5cce20f9e927260ebf57c5be34d814728;hp=0e49a4010aaf2afc5a105b209cbeadf0d4cb9fd4;hb=df550a4ec6a24e44ceba6ccf4111722940040c1d;hpb=a36c755ca1b7c925fbcde7dc24eeb910f773a77c diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 0e49a40..5f437fa 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,6 +1,26 @@ \part{Mathematical foundations} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + \chapter{Linear algebra} -Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots +\section{Vectors and bases} + +A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$. +\begin{equation} +\vec{a}=\sum_i \vec{e}_i a_i +\label{eq:vec_sum} +\end{equation} +The scalar product for an $N$-dimensional vector space is defined as +\begin{equation} +(\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} +\end{equation} +which introduces a norm +\begin{equation} +||\vec{a}||=\sqrt{(\vec{a},\vec{a})} +\end{equation} +that correpsonds to the length of vector \vec{a}. +Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} \ldots +\begin{equation} +\end{equation}