X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=83e13cbe04cabe9e8b2e1c127427c9b72ca51035;hp=c182a96cbce3e9031e14ad63b7952ff04ab5478c;hb=69b350d82ab4382625484e3edbffd933f267aa50;hpb=1b61eac526bb34de8c8060551f70c6e7cd437d89 diff --git a/physics_compact/math.tex b/physics_compact/math.tex index c182a96..83e13cb 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -47,10 +47,10 @@ Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vecto \begin{equation} \label{eq:complete} \vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow -\sum_i\vec{e}_i\cdot \vec{e}_i=\vec{1} +\sum_i\vec{e}_i\otimes \vec{e}_i=\vec{1} \end{equation} if the basis is complete. -Indeed, the very important identity representation by the outer product ($\cdot$) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. +Indeed, the very important identity representation by the outer product ($\otimes$, see \ref{math_app:product}) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. \section{Operators, matrices and determinants}