X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=b649597fa4f0f0d5db6434ad542ab110a695be72;hp=83e13cbe04cabe9e8b2e1c127427c9b72ca51035;hb=ba8558c8f4d001dafe94fc41c5dd0a3d7cc4fd32;hpb=69b350d82ab4382625484e3edbffd933f267aa50 diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 83e13cb..b649597 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,9 +1,9 @@ \part{Mathematical foundations} -Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots - \chapter{Linear algebra} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + \section{Vectors and bases} A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$ @@ -12,12 +12,12 @@ A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_ \label{eq:vec_sum} \end{equation} i.e., if the basis set is complete, any vector can be written as a linear combination of these basis vectors. -The scalar product for an $N$-dimensional real vector space is defined as +The scalar product in an $N$-dimensional Euclidean vector space is defined as \begin{equation} (\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} \label{eq:vec_sp} \end{equation} -which enables to define a norm +which satisfies the properties of an inner product (see \ref{math_app:product}) and enables to define a norm \begin{equation} ||\vec{a}||=\sqrt{(\vec{a},\vec{a})} \end{equation}