X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=bd2a888430d738d62ddc7b8aa1911e2f423d7043;hp=1903ab18ef1c5e7e699f6bef5b6c9afc6f9ba284;hb=93808b285afe6d16ac131af43108b975a0cc9042;hpb=f2dddd61b086ccbe46fa103d509903c3a426c034 diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 1903ab1..bd2a888 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,6 +1,74 @@ -\chapter{Mathematical tools} +\part{Mathematical foundations} -\section{Spherical coordinates} +\chapter{Linear algebra} -\section{Fourier integrals} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + +\section{Vectors and bases} + +A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$ +\begin{equation} +\vec{a}=\sum_i^N \vec{e}_i a_i +\label{eq:vec_sum} +\end{equation} +i.e., if the basis set is complete, any vector can be written as a linear combination of these basis vectors. +The scalar product in an $N$-dimensional Euclidean vector space is defined as +\begin{equation} +(\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} +\label{eq:vec_sp} +\end{equation} +which satisfies the properties of an inner product (see \ref{math_app:product}) and enables to define a norm +\begin{equation} +||\vec{a}||=\sqrt{(\vec{a},\vec{a})} +\end{equation} +that just corresponds to the length of vector $\vec{a}$. +Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} leads to +\begin{equation} +(\vec{a},\vec{b})=(\sum_i\vec{e}_ia_i,\sum_j\vec{e}_jb_j)= +\sum_i\sum_j(\vec{e}_i,\vec{e}_j)a_ib_j \text { ,} +\end{equation} +which is equal to \eqref{eq:vec_sp} only if +\begin{equation} +(\vec{e}_i,\vec{e}_j)= +\delta_{ij} = \left\{ \begin{array}{lll} +0 & {\rm for} ~i \neq j \\ +1 & {\rm for} ~i = j \end{array} \right. +\text{ (Kronecker delta symbol),} +\end{equation} +i.e.\ the basis vectors are mutually perpendicular (orthogonal) and have unit length (normalized). +Such a basis set is called orthonormal. +The component of a vector can be obtained by taking the scalar product with the respective basis vector. +\begin{equation} +(\vec{e}_j,\vec{a})=(\vec{e}_j,\sum_i \vec{e}_ia_i)= +\sum_i (\vec{e}_j,\vec{e}_i)a_i= +\sum_i\delta_{ij}a_i=a_j +\end{equation} +Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vector can be written as +\begin{equation} +\label{eq:complete} +\vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow +\sum_i\vec{e}_i\otimes \vec{e}_i=\vec{1} +\end{equation} +if the basis is complete. +Indeed, the very important identity representation by the outer product ($\otimes$, see \ref{math_app:product}) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. + +\section{Operators, matrices and determinants} + +An operator $O$ acts on a vector resulting in another vector +\begin{equation} +O\vec{a}=\vec{b} \text{ ,} +\end{equation} +which is linear if +\begin{equation} +O(\lambda\vec{a}+\mu\vec{b})=\lambda O\vec{a} + \mu O\vec{b} \text{ .} +\end{equation} +Thus, for a linear operator, it is sufficient to describe the effect on the complete set of basis vectors, which enables to describe the effect of the operator on any vector. +Since the result of an operator acting on a basis vector is a vector itself, it can be expressed by a linear combination of the basis vectors +\begin{equation} +O\vec{e}_i=\vec{e}_jO_{ji} +\text{ ,} +\end{equation} +with $O_{ji}$ determining the components of the new vector $O\vec{e}_i$ along $\vec{e}_j$. + +\section{Dirac notation}