X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=bd2a888430d738d62ddc7b8aa1911e2f423d7043;hp=4c8e6f9946efda96dfd874b2a2f90e79a0438fa5;hb=93808b285afe6d16ac131af43108b975a0cc9042;hpb=0929321d46ef53429ae8d78a0f08e452e96b3cd2 diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 4c8e6f9..bd2a888 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,26 +1,27 @@ \part{Mathematical foundations} -Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots - \chapter{Linear algebra} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + \section{Vectors and bases} -A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$. +A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$ \begin{equation} \vec{a}=\sum_i^N \vec{e}_i a_i \label{eq:vec_sum} \end{equation} -The scalar product for an $N$-dimensional real vector space is defined as +i.e., if the basis set is complete, any vector can be written as a linear combination of these basis vectors. +The scalar product in an $N$-dimensional Euclidean vector space is defined as \begin{equation} (\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} \label{eq:vec_sp} \end{equation} -which enables to define a norm +which satisfies the properties of an inner product (see \ref{math_app:product}) and enables to define a norm \begin{equation} ||\vec{a}||=\sqrt{(\vec{a},\vec{a})} \end{equation} -that just corresponds to the length of vector \vec{a}. +that just corresponds to the length of vector $\vec{a}$. Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} leads to \begin{equation} (\vec{a},\vec{b})=(\sum_i\vec{e}_ia_i,\sum_j\vec{e}_jb_j)= @@ -46,8 +47,28 @@ Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vecto \begin{equation} \label{eq:complete} \vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow -\sum_i\vec{e}_i\cdot \vec{e}_i=\vec{1} +\sum_i\vec{e}_i\otimes \vec{e}_i=\vec{1} \end{equation} if the basis is complete. -Indeed, the very important identity representation by the outer product ($\cdot$) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. +Indeed, the very important identity representation by the outer product ($\otimes$, see \ref{math_app:product}) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. + +\section{Operators, matrices and determinants} + +An operator $O$ acts on a vector resulting in another vector +\begin{equation} +O\vec{a}=\vec{b} \text{ ,} +\end{equation} +which is linear if +\begin{equation} +O(\lambda\vec{a}+\mu\vec{b})=\lambda O\vec{a} + \mu O\vec{b} \text{ .} +\end{equation} +Thus, for a linear operator, it is sufficient to describe the effect on the complete set of basis vectors, which enables to describe the effect of the operator on any vector. +Since the result of an operator acting on a basis vector is a vector itself, it can be expressed by a linear combination of the basis vectors +\begin{equation} +O\vec{e}_i=\vec{e}_jO_{ji} +\text{ ,} +\end{equation} +with $O_{ji}$ determining the components of the new vector $O\vec{e}_i$ along $\vec{e}_j$. + +\section{Dirac notation}